Previous Issue
Volume 10, March
 
 

Int. J. Turbomach. Propuls. Power, Volume 10, Issue 2 (June 2025) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
18 pages, 5184 KiB  
Article
Effects of Tip Injection on a Turbofan Engine with Non-Invasive High-Speed Actuators
by Yannik Schäfer, Marcel Stößel, Arnaud Barnique and Dragan Kožulović
Int. J. Turbomach. Propuls. Power 2025, 10(2), 9; https://doi.org/10.3390/ijtpp10020009 - 27 May 2025
Viewed by 205
Abstract
This paper presents an analysis of the stability margin improvement (SMI), which is also known as stall margin improvement, achieved by continuous tip air injection. New piezoelectric actuators were designed and manufactured with a new engine inlet for the Larzac 04 C5 jet [...] Read more.
This paper presents an analysis of the stability margin improvement (SMI), which is also known as stall margin improvement, achieved by continuous tip air injection. New piezoelectric actuators were designed and manufactured with a new engine inlet for the Larzac 04 C5 jet engine. It has noninvasive injection positions that do not have any measurable effect on the inlet air flow when it is switched off. The main focus of the system design was to achieve high power of the injected air and, as a result, a high SMI. The results presented enable a maximum SMI of 99%. A variety of engine operating conditions and injection positions were experimentally tested and discussed regarding SMI. Additionally, the complex relationship between SMI gains and thrust specific fuel consumption (TSFC) is explored in a power balance analysis, revealing a trade-off between SMI improvement and increased energy consumption. Full article
Show Figures

Figure 1

20 pages, 6698 KiB  
Article
A Quasi-Direct Numerical Simulation of a Compressor Blade with Separation Bubbles and Inflow Turbulence
by Guglielmo Vivarelli, João Anderson Isler, Chris D. Cantwell, Francesco Montomoli, Spencer J. Sherwin, Yuri Frey-Marioni, Marcus Meyer, Iftekhar Naqavi and Raul Vazquez-Diaz
Int. J. Turbomach. Propuls. Power 2025, 10(2), 8; https://doi.org/10.3390/ijtpp10020008 - 27 May 2025
Viewed by 278
Abstract
Within the turbomachinery industry, components are currently assessed deploying standard second-order steady solvers. These are unable to capture complicated unsteady phenomena that have a critical impact on component performance. In this work, the high-order spectral h/p solver Nektar++ will be applied to a [...] Read more.
Within the turbomachinery industry, components are currently assessed deploying standard second-order steady solvers. These are unable to capture complicated unsteady phenomena that have a critical impact on component performance. In this work, the high-order spectral h/p solver Nektar++ will be applied to a compressor blade to study the turbulent transition mechanisms and assess the effect of incoming disturbances with quasi-DNS resolution. The case will be modelled at an angle of incidence of 53.5° to match the original experimental loading at 52.8°. At clean inflow conditions, Kelvin–Helmholtz instabilities appear on both sides of the blade due to a double separation, with the pressure side one not being reported in the experiments. The separation is gradually removed by the incoming turbulent structures but at different rates on the two sides of the blade. It will be shown that there is an optimal amount of turbulence intensity that minimises momentum thickness, which is strongly related to losses. Moreover, a discussion on the spanwise extrusion will be included, this being a major player in the modelling costs. Finally, the wall-clock time and the exact expenditure to run this case will be outlined, providing quantitative evidence of the feasibility of considering a quasi-DNS resolution in an industrial setting. Full article
Show Figures

Graphical abstract

20 pages, 7754 KiB  
Article
Aeroelastic Response in an Oscillating Transonic Compressor Cascade—An Experimental and Numerical Approach
by Carlos Alberto Tavera Guerrero, Nenad Glodic, Mauricio Gutierrez Salas and Hans Mårtensson
Int. J. Turbomach. Propuls. Power 2025, 10(2), 7; https://doi.org/10.3390/ijtpp10020007 - 1 Apr 2025
Viewed by 484
Abstract
The steady-state aerodynamics and the aeroelastic response have been analyzed in an oscillating linear transonic cascade at the KTH Royal Institute of Technology. The investigated operating points (Π=1.29 and 1.25) represent an open-source virtual compressor (VINK) operating at a [...] Read more.
The steady-state aerodynamics and the aeroelastic response have been analyzed in an oscillating linear transonic cascade at the KTH Royal Institute of Technology. The investigated operating points (Π=1.29 and 1.25) represent an open-source virtual compressor (VINK) operating at a part speed line. At these conditions, a shock-induced separation mechanism is present on the suction side. In the cascade, the central blade vibrates in its first natural modeshape with a 0.69 reduced frequency, and the reference measurement span is 85%. The numerical results are computed from the commercial software Ansys CFX with an SST turbulence model, including a reattachment modification (RM). Steady-state results consist of a Laser-2-Focus anemometer (L2F), pressure taps, and flow visualization. Steady-state numerical results indicate good agreement with experimental data, including the reattachment line length, at both operating points, while discrepancies are observed at low-momentum regions within the passage. Experimental unsteady pressure coefficients at the oscillating blade display a fast amplitude decrease downstream, while numerical results overpredict the amplitude response. Numerical results indicate that, at the measurement plane, for both operating points, the harmonic amplitude is dominated by the shock location. At midspan, there is an interaction between the shock and the separation onset, where large pressure gradients are located. Experimental and numerical responses at blades adjacent to the oscillating blade are in good agreement at both operating points. Full article
Show Figures

Figure 1

20 pages, 1857 KiB  
Article
Preliminary Assessment of Geometric Variability Effects Through a Viscous Through-Flow Model Applied to Modern Axial-Flow Compressor Blades
by Arnaud Budo, Jules Bartholet, Thibault Le Men, Koen Hillewaert and Vincent E. Terrapon
Int. J. Turbomach. Propuls. Power 2025, 10(2), 6; https://doi.org/10.3390/ijtpp10020006 - 1 Apr 2025
Viewed by 466
Abstract
An important question for turbomachine designers is how to deal with blade and flowpath geometric variabilities stemming from the manufacturing process or erosion during the component lifetime. The challenge consists of identifying where stringent manufacturing tolerances are absolutely necessary and where looser tolerances [...] Read more.
An important question for turbomachine designers is how to deal with blade and flowpath geometric variabilities stemming from the manufacturing process or erosion during the component lifetime. The challenge consists of identifying where stringent manufacturing tolerances are absolutely necessary and where looser tolerances can be used as some geometric variations have little or no effects on performance while others do have a significant impact. Because numerical simulations based on Reynolds-averaged Navier–Stokes (RANS) equations are computationally expensive for a stochastic analysis, an alternative approach is proposed in which these simulations are complemented by cheaper through-flow simulations to provide a finer exploration of the range of variations, in particular in the context of robust design. The overall goal of the present study is to evaluate the adequacy of a viscous time-marching through-flow solver to predict geometric variability effects on compressor performance and, in particular, to capture the main trends. Although the computational efficiency of such a low-fidelity solver is useful for parametric studies, it is known that the involved assumptions and approximations associated with the through-flow (TF) approach introduce errors in the performance prediction. Thus, we first evaluate the model with respect to its underlying assumptions and correlations. To accomplish this, TF simulations are compared to RANS simulations applied to a modern low-pressure compressor designed by Safran Aero Boosters. On the one hand, the TF simulations are fed with the exact radial distribution of the correlation parameters using RANS input data in order to isolate the modeling error from correlation empiricism. Moreover, in the context of multi-fidelity optimization, such distributions can be predicted using the more detailed RANS simulations that are performed on selected operating points. On the other hand, correlations from the literature are assessed and improved. It is shown that the solver provides realistic predictions of performance but is highly sensitive to the underlying correlations. Then, two modeling aspects linked to the blade leading edge, namely incidence correction and camber line computation, are discussed. As geometric variability precisely at the blade leading edge has a significant impact on the performance, we assess how these two aspects influence the variability propagation in this region. Moreover, we propose a strategy to mitigate these model uncertainties, and geometric variabilities are introduced at the blade leading edge in order to quantify the resulting variation in performance. Finally, within the scope of this preliminary study, perturbations of the three-dimensional position of undeformed stator blades and deformations of the hub and shroud contours are introduced one factor at a time per simulation. Their range is defined based on the tolerance limits typically imposed in the industry and on observed manufacturing variability. It is found that the through-flow model broadly provides realistic predictions of performance variations resulting from the imposed geometric variations. These results are a promising first step towards the use of the through-flow modeling approach for geometric uncertainty quantification. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop