Previous Issue
Volume 9, December
 
 

Int. J. Turbomach. Propuls. Power, Volume 10, Issue 1 (March 2025) – 3 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
21 pages, 14831 KiB  
Article
Panel Method for 3D Inviscid Flow Simulation of Low-Pressure Compressor Rotors with Tip-Leakage Flow
by Valentin Caries, Jérôme Boudet and Eric Lippinois
Int. J. Turbomach. Propuls. Power 2025, 10(1), 3; https://doi.org/10.3390/ijtpp10010003 - 6 Feb 2025
Viewed by 410
Abstract
This paper presents a low-order three-dimensional approach for predicting the inviscid flow around low-pressure compressors. The method is suitable for early design stages and allows a broad exploration of design possibilities at minimal cost. It combines the vortex lattice method with the panel [...] Read more.
This paper presents a low-order three-dimensional approach for predicting the inviscid flow around low-pressure compressors. The method is suitable for early design stages and allows a broad exploration of design possibilities at minimal cost. It combines the vortex lattice method with the panel method by using a mixed boundary condition. In addition, it models the tip-leakage flow using an iterative algorithm. First, the verification of the approach is carried out on a low-pressure compressor configuration. The wake length is a decisive parameter for ensuring correct flow deflection in ducted applications. A periodicity condition is introduced and validated, which reduces the computational and memory requirements. On average, the calculations take less than one minute in real time. The approach is validated on the same low-pressure compressor configuration. A good agreement is obtained with RANS concerning the mean flow and the tip-leakage flow characteristics. Sensitivity to the mass flow rate is also fairly well predicted, although discrepancies develop at lower mass flow rates. Full article
Show Figures

Figure 1

31 pages, 7460 KiB  
Article
An Open Test Case for High-Speed Low-Pressure Turbines: The SPLEEN C1 Cascade
by Gustavo Lopes, Loris Simonassi, Samuel Gendebien, Antonino Federico Maria Torre, Marios Patinios, Nicolas Zeller, Ludovic Pintat and Sergio Lavagnoli
Int. J. Turbomach. Propuls. Power 2025, 10(1), 2; https://doi.org/10.3390/ijtpp10010002 - 3 Feb 2025
Viewed by 637
Abstract
Aviation accounts for a significant share of global CO2 emissions, necessitating efficient propulsion technologies to achieve net-zero emissions by 2050. Geared turbofan architectures offer a promising solution by enabling higher bypass ratios and improved fuel efficiency. However, geared turbofans introduce significant aerodynamic [...] Read more.
Aviation accounts for a significant share of global CO2 emissions, necessitating efficient propulsion technologies to achieve net-zero emissions by 2050. Geared turbofan architectures offer a promising solution by enabling higher bypass ratios and improved fuel efficiency. However, geared turbofans introduce significant aerodynamic and structural challenges, particularly in the low-pressure turbine. Current understanding of high-speed low-pressure turbine behavior under engine-representative conditions is limited, especially regarding unsteady wake interactions, secondary flows, and compressibility effects. To address these gaps, this work presents a novel test case of high-speed low-pressure turbines, the SPLEEN C1. The test case and experimental methodology are depicted. The study includes the commissioning and characterization of a transonic low-density linear cascade capable of testing quasi-3D flows. The rig’s operational stability, periodicity, and inlet flow characterization are assessed in terms of loss and turbulence quantities to ensure an accurate representation of engine conditions. These findings provide a validated experimental platform for studying complex flow interactions in high-speed low-pressure turbines, supporting future turbine design and efficiency advancements. Full article
Show Figures

Figure 1

26 pages, 11358 KiB  
Article
Computational Design of an Energy-Efficient Small Axial-Flow Fan Using Staggered Blades with Winglets
by Mustafa Tutar and Janset Betul Cam
Int. J. Turbomach. Propuls. Power 2025, 10(1), 1; https://doi.org/10.3390/ijtpp10010001 - 9 Jan 2025
Viewed by 620
Abstract
The present study introduces a conceptual design of a small axial-flow fan. Both individual and combined effects of blade stagger angle and winglet on the performance of the fan design are investigated in design and off-design operating conditions using a computational flow methodology. [...] Read more.
The present study introduces a conceptual design of a small axial-flow fan. Both individual and combined effects of blade stagger angle and winglet on the performance of the fan design are investigated in design and off-design operating conditions using a computational flow methodology. A stepwise solution, in which a proper stagger angle adjustment of a specifically generated blade profile is followed by appending a winglet at the tip of the blade with consideration of different geometrical parameters, is proposed to improve the performance characteristics of the fan. The initial model comparison analysis demonstrates that a three-dimensional, Reynolds-averaged Navier–Stokes (RANS) equation-based renormalization group (RNG) kε turbulence modeling approach coupled with the multiple reference frame (MRF) technique which adapts multi-block topology generation meshing method successfully resolves the rotating flow around the fan. The results suggest that the use of a proper stagger angle with the winglet considerably increases the fan performance and the fan attains the best total efficiency with an additional stagger angle of +10° and a winglet, which has a curvature radius of 6.77 mm and a twist angle of −7° for the investigated dimensioning range. The present study also underlines the effectiveness of passive flow control mechanisms of the stagger angle and winglets for energy-efficient axial-flow fans. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop