Ferrer House at Rocafort, an Early Case of Brise-Soleil’s Design for the Mediterranean Region in Valencia
Abstract
1. Introduction
2. Materials and Methods
3. Results of the Simulation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belakehal, A.; Tabet, K.; Bennadji, A. Sunlighting and daylighting strategies in the traditional urban spaces and buildings of the hot arid regions. Renew. Energy 2004, 29, 687–702. [Google Scholar] [CrossRef]
- Lara, F.; Kim, Y. Built global, lived local: A study of how two diametrically opposed cultures reacted to similar modern housing solutions. J. Archit. Plan. Res. 2010, 27, 91–106. Available online: https://www.jstor.org/stable/43030898 (accessed on 29 July 2023).
- Ghisi, E.; Tinker, J.A. An ideal window area concept for energy efficient integration of daylight and artificial light in buildings. Build. Environ. 2005, 40, 51–61. [Google Scholar] [CrossRef]
- Cabeza-Lainez, J. Architectural Characteristics of Different Configurations Based on New Geometric Determinations for the Conoid. Buildings 2022, 12, 10. [Google Scholar] [CrossRef]
- Heschong, L. Thermal Delight in Architecture; MIT Press: Cambridge, MA, USA, 1979; ISBN 026258039X. [Google Scholar]
- Nocera, F.; Lo Faro, A.; Costanzo, V.; Raciti, C. Daylight Performance of Classrooms in a Mediterranean School Heritage Building. Sustainability 2018, 10, 3705. [Google Scholar] [CrossRef]
- Holman, J.P. Heat Transfer, 7th ed.; Mac Graw Hill: New York, NY, USA, 1995. [Google Scholar]
- Moon, P.H.; Spencer, D.E. The Photic Field; The MIT Press: Cambridge, MA, USA, 1981. [Google Scholar]
- Siret, D. L’illusion du brise-soleil par Le Corbusier. In Colloque Langages Scientifiques et Pensée Critique: Modélisation, Environnement, Décision Publique; ffhalshs-00580040f; Belin Editions: Cerisy, France, 2002. [Google Scholar]
- Subramaniam, S.; Hoffmann, S.; Thyageswaran, S.; Ward, G. Calculation of View Factors for Building Simulations with an Open-Source Raytracing Tool. Appl. Sci. 2022, 12, 2768. [Google Scholar] [CrossRef]
- Modest, M.F. View Factors. In Radiative Heat Transfer, 3rd ed.; Academic Press: Cambridge, MA, USA, 2013. [Google Scholar]
- Hensen, J.L.M.; Lamberts, R. Building Performance Simulation for Design and Operation, 2nd ed.; Routledge: London, UK, 2019; ISBN 9781138392199. [Google Scholar]
- Howell, J.R.; Siegel, R.; Mengüç, M.P. Thermal Radiation Heat Transfer, 5th ed.; Taylor and Francis/CRC: New York, NY, USA, 2010. [Google Scholar]
- Moon, P.H. The Scientific Basis of Illuminating Engineering; McGraw-Hill Book Co. Dover Publications: New York, NY, USA, 1963. [Google Scholar]
- Feingold, A. Radiant-Interchange configuration factors between various selected plane surface. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 1966, 292, 51–60. Available online: https://www.jstor.org/stable/2415616 (accessed on 2 July 2022).
- Lambert, J.H. Photometria. sive de Mensura et Gradibus Luminis, Colorum et Umbrae; DiLaura, D., Ed.; IESNA: New York, NY, USA, 2001; p. 1764. [Google Scholar]
- Hilbert, D.; Cohn-Vossen, S. Geometry and the Imagination; AMS (American Mathematical Society) Chelsea Publishing: Providence, RI, USA, 1990. [Google Scholar]
- Camaraza-Medina, Y.; Hernandez-Guerrero, A.; Luviano-Ortiz, J.L. View factor for radiative heat transfer calculations between triangular geometries with common edge. J. Therm. Anal. Calorim. 2023, 148, 4523–4539. [Google Scholar] [CrossRef]
- Fock, V. Zur Berechnung der Beleuchtungsstärke; Optisches Institut: St. Petersburg, Russia, 1924. [Google Scholar]
- Cabeza-Lainez, J. Innovative Tool to Determine Radiative Heat Transfer Inside Spherical Segments. Appl. Sci. 2023, 13, 8251. [Google Scholar] [CrossRef]
- Sasaki, K. View factor of a spheroid and an ellipse from a plate element. J. Quant. Spectrosc. Radiat. Transf. 2024, 326, 109102, ISSN 0022-4073. [Google Scholar] [CrossRef]
- Cabeza-Lainez, J. Finding the Exact Radiative Field of Triangular Sources: Application for More Effective Shading Devices and Windows. Appl. Sci. 2023, 13, 11318. [Google Scholar] [CrossRef]
- Schröder, P.; Hanrahan, P. On the Form Factor between Two Polygons. In Proceedings of the SIGGRAPH ’93: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, Anaheim, CA, USA, 2–6 August 1993; pp. 163–164. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, T.; Qi, F. A correction method for calculating sky view factor in urban canyons using fisheye images. Build. Environ. 2024, 262, 111834, ISSN 0360-1323. [Google Scholar] [CrossRef]
- Howell, J.R. A Catalogue of Radiation Heat Transfer Configuration Factors. University of Texas at Austin. Available online: http://www.thermalradiation.net/indexCat.html (accessed on 3 February 2021).
- Howell, J.R. A Catalogue of Radiation Heat Transfer Configuration Factors. Factor C-43b. Available online: http://www.thermalradiation.net/sectionc/C-43b.html (accessed on 22 March 2023).
- Howell, J.R. A Catalogue, Factor C-140b. Available online: http://www.thermalradiation.net/sectionc/C-140b.html (accessed on 23 February 2023).
- Howell, J.R.; Siegel, R.; Pinar, M.M. Radiative transfer configuration factor catalogue: A listing of relations for common geometries. J. Quanti. Spectrosc. Radiat. Transf. 2011, 112, 910–912. [Google Scholar] [CrossRef]
- Cabeza-Lainez, J.; Almodóvar-Melendo, J.-M.; Revenga-Dominguez, P.; Rodríguez-Cunill, I.; Xu, Y. New Simulation Tool for Architectural Design in the Realm of Solar Radiative Transfer. Designs 2022, 6, 72. [Google Scholar] [CrossRef]
- Milton, R. The Ungreen Brise-soleil. Hidden Archit. J. 1936, 1, 17. Available online: https://hiddenarchitecture.net/ungreen-brise-soleil/ (accessed on 7 September 2020).
- Camaraza-Medina, Y. Polynomial cross-roots application for the exchange of radiant energy between two triangular geometries. Ingenius Rev. Cienc. Y Tecnol. 2023, 30, 29–41. [Google Scholar] [CrossRef]
- Feingold, A. A new look at radiation configuration factors between disks. J. Heat Transf. 1978, 100, 742–744. [Google Scholar] [CrossRef]
- Acosta, W. Vivienda y Clima; Ediciones Nueva Visión: Buenos Aires, Argentina, 1976. [Google Scholar]
- Gershun. The Light Field (translated from Russian by P. Moon and G. Timoshenko). J. Math. Phys. 1939, 18, 17. [Google Scholar]
- Cabeza-Lainez, J. A New Principle for Building Simulation of Radiative Heat Transfer in the Presence of Spherical Surfaces. Buildings 2023, 13, 1447. [Google Scholar] [CrossRef]
- Naraghi, M.H.N. Radiative View Factors from Spherical Segments to Planar Surfaces. J. Thermophys. Heat Transf. 1988, 2, 373–375. [Google Scholar] [CrossRef]
- Chung, B.T.F.; Naraghi, M.H.N. Some Exact Solutions for Radiation View Factors from Spheres. AIAA J. 1981, 19, 1077–1108. [Google Scholar] [CrossRef]
- Sasaki, K.; Sznajder, M. Analytical view factor solutions of a spherical cap from an infinitesimal surface. Int. J. Heat Mass Transf. 2020, 163, 120477. [Google Scholar] [CrossRef]
- McAdam, D.W.; Khatry, A.K.; Iqbal, M. Configuration Factors for Greenhouses. Am. Soc. Ag. Eng. 1971, 14, 1068–1092. [Google Scholar]
- Mathiak, F.U. Berechnung von konfigurationsfactoren polygonal berandeter ebener gebiete (Calculation of form-factors for plane areas with polygonal boundaries). Warme-Und Stoff Bertragung 1985, 19, 273–278. [Google Scholar] [CrossRef]
- Minning, C.P. Calculation of shape factors between parallel ring sectors sharing a common centerline. AIAA J. 1976, 14, 813–815. [Google Scholar] [CrossRef]
- Dunkle, R.V. Configuration factors for radiant heat-transfer calculations involving people. J. Heat Transf. 1963, 85, 71–76. [Google Scholar] [CrossRef]
- Nußelt, W. Graphische Bestimmung des Winkelverhältnisses bei der Wärmestrahlung. Z. Ver. Dtsch. Ing. 1928, 72, 673. [Google Scholar]
- Naraghi, M.H.N. Radiation View Factors from Differential plane sources to disks- A general formulation. Tech. Notes Am. Inst. Aeronaut. Astronaut. J. 1988, 2, 3. [Google Scholar] [CrossRef]
- MacAllister, A.S. Graphical solutions of problems involving plane surface lighting sources. Light. World 1911, 56, 135. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomez-Gil, A.; Cabeza-Lainez, J. Ferrer House at Rocafort, an Early Case of Brise-Soleil’s Design for the Mediterranean Region in Valencia. Designs 2024, 8, 96. https://doi.org/10.3390/designs8050096
Gomez-Gil A, Cabeza-Lainez J. Ferrer House at Rocafort, an Early Case of Brise-Soleil’s Design for the Mediterranean Region in Valencia. Designs. 2024; 8(5):96. https://doi.org/10.3390/designs8050096
Chicago/Turabian StyleGomez-Gil, Antonio, and Joseph Cabeza-Lainez. 2024. "Ferrer House at Rocafort, an Early Case of Brise-Soleil’s Design for the Mediterranean Region in Valencia" Designs 8, no. 5: 96. https://doi.org/10.3390/designs8050096
APA StyleGomez-Gil, A., & Cabeza-Lainez, J. (2024). Ferrer House at Rocafort, an Early Case of Brise-Soleil’s Design for the Mediterranean Region in Valencia. Designs, 8(5), 96. https://doi.org/10.3390/designs8050096