Previous Issue
Volume 5, September

Table of Contents

Inventions, Volume 5, Issue 4 (December 2020) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Open AccessArticle
Full-Scale Implementation of RES and Storage in an Island Energy System
Inventions 2020, 5(4), 52; https://doi.org/10.3390/inventions5040052 - 30 Oct 2020
Abstract
The field of energy, specifically renewable energy sources (RES), is considered vital for a sustainable society, a fact that is clearly defined by the European Green Deal. It will convert the old, conventional economy into a new, sustainable economy that is environmentally sound, [...] Read more.
The field of energy, specifically renewable energy sources (RES), is considered vital for a sustainable society, a fact that is clearly defined by the European Green Deal. It will convert the old, conventional economy into a new, sustainable economy that is environmentally sound, economically viable, and socially responsible. Therefore, there is a need for quick actions by everyone who wants to move toward energy-efficient development and new environmentally friendly behavior. This can be achieved by setting specific guidelines of how to proceed, where to start, and what knowledge is needed to implement such plans and initiatives. This paper seeks to contribute to this very important issue by appraising the ability of full-scale implementation of RES combined with energy storage in an island power system. The Greek island power system of Astypalaia is used as a case study where a battery energy storage system (BESS), along with wind turbines (WTs), is examined to be installed as part of a hybrid power plant (HPP). The simulation’s results showed that the utilization of HPP can significantly increase RES penetration in parallel with remarkable fuel cost savings. Finally, the fast response of BESS can enhance the stability of the system in the case of disturbances. Full article
(This article belongs to the Special Issue Emerging Technologies for the Energy Systems of the Future)
Open AccessArticle
Immersion Freezing of a Scots Pine Single Seed in a Water-Saturated Dispersion Medium: Mathematical Modelling
Inventions 2020, 5(4), 51; https://doi.org/10.3390/inventions5040051 - 25 Sep 2020
Viewed by 427
Abstract
Forest owners will be able to solve the problem of protecting small forest seeds from mechanical and atmospheric influences during aerial sowing, as well as the problem of manufacturing capsules in the field, saving financial, time and material resources. The process of creating [...] Read more.
Forest owners will be able to solve the problem of protecting small forest seeds from mechanical and atmospheric influences during aerial sowing, as well as the problem of manufacturing capsules in the field, saving financial, time and material resources. The process of creating a capsule by freezing the seed in a water-saturated dispersed system—immersion freezing—allows you to organize the technological properties of forest seeds depending on the initial requirements. In most cases, the quality of the seed capsule is determined by the thermophysical and mechanical properties of the components. The technological process of obtaining seed capsules for aerial seeding and the choice of freezing modes is based on a priori mathematical modeling of heat-and-mass transfer processes. The main purpose of the study is to predict the duration of the seed freezing process in a capsule with a water-saturated dispersed medium, depending on the external temperature conditions, the geometric parameters of the capsule and the seed. The cooling agent is carbon dioxide. The research is based on the use of numerical modeling methods on the platform COMSOL Multiphysics. A mathematical model is proposed that allows us to obtain the dynamics of the distribution of temperature and moisture content fields in the dispersed system and seed depending on a complex of geometric and thermophysical factors. The time of immersion freezing of the capsule with the common pine seed for the conditions considered should be in the range of 150 to 250 s. Full article
(This article belongs to the Section Inventions and innovation in Biotechnology and Materials)
Show Figures

Graphical abstract

Previous Issue
Back to TopTop