Criticality of Spray Solvent Choice on the Performance of Next Generation, Spray-Based Ambient Mass Spectrometric Ionization Sources: A Case Study Based on Synthetic Cannabinoid Forensic Evidence
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemical Standards and Stock Solution Preparation
2.2. Portable Mass Spectrometer Utilized for Spectral Determination
2.3. Spray-Based, Ambient Ionization Methods
3. Results and Discussion
3.1. Case Study: Observations Made during Authentic Synthetic Cannabinoid Evidence Screening via FCSI-MS
3.2. Comparison of MeOH and ACN-Based Spray Solvent Systems for Spray-Based Ambient Ionization Methods Employed for Cannabinoid-Class Evidence Types
3.3. Relation of Experimental Observations to Physicochemical Aspects Related to PSI-MS of Cannabinoids
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- May, B.; Naqi, H.A.; Tipping, M.; Scott, J.; Husbands, S.M.; Blagbrough, I.S.; Pudney, C.R. Synthetic cannabinoid receptor agonists detection using fluorescence spectral Fingerprinting. Anal. Chem. 2019, 91, 12971–12979. [Google Scholar] [CrossRef]
- Mensah, E.; Tabrizchi, R.; Daneshtalab, N. Pharmacognosy and effects of cannabinoids in the vascular system. ACS Pharmacol. Transl. Sci. 2022, 5, 1034–1049. [Google Scholar] [CrossRef] [PubMed]
- Bills, B.; Manicke, N. Using sesame seed oil to preserve and preconcentrate cannabinoids for paper spray mass spectrometry. J. Am. Soc. Mass Spectrom. 2020, 31, 675–684. [Google Scholar] [CrossRef]
- ElSohly, M.A.; Gul, W.; Wanas, A.S.; Radwan, M.M. Synthetic cannabinoids: Analysis and metabolites. Life Sci. 2014, 97, 78–90. [Google Scholar] [CrossRef]
- Kumar, S.; Baggi, T.R. Analytical methods for herbal products containing synthetic cannabinoids: A review. Forensic Chem. 2022, 27, 100396. [Google Scholar] [CrossRef]
- Dou, Q.; Liu, W.; Xiang, P.; Zhao, J. Quantitative analysis of three synthetic cannabinoids MDMB-4en-PINACA, ADB-BUTINACA, and ADB-4en-PINACA by thermal-assisted carbon fiber ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 2023, 34, 2316–2322. [Google Scholar] [CrossRef] [PubMed]
- Castaneto, M.S.; Gorelick, D.A.; Desrosiers, N.A.; Hartman, R.L.; Pirard, S.; Huestis, M.A. Synthetic cannabinoids: Epidemiology, pharmacodynamics, and clinical implications. Drug Alcohol Depend. 2014, 144, 12–41. [Google Scholar] [CrossRef]
- Brown, H.M.; McDaniel, T.J.; Fedick, P.W.; Mulligan, C.C. The current role of mass spectrometry in forensics and future prospects. Anal. Methods 2020, 12, 3974–3997. [Google Scholar] [CrossRef]
- Evans-Nguyen, K.; Stelmack, A.R.; Clowser, P.C.; Holtz, J.M.; Mulligan, C.C. Fieldable mass spectrometry for forensic science, homeland security and defense applications. Mass Spectrom. Rev. 2021, 40, 628–646. [Google Scholar] [CrossRef]
- Umebachi, R.; Saito, T.; Aoki, H.; Namera, A.; Nakamoto, A.; Kawamura, M.; Inokuchi, S. Detection of synthetic cannabinoids using GC-EI-MS, positive GC-CI-MS, and negative GC-CI-MS. Int. J. Legal Med. 2017, 131, 143–152. [Google Scholar] [CrossRef]
- Akutsu, M.; Sugie, K.-I.; Saito, K. Analysis of 62 synthetic cannabinoids by gas chromatography-mass spectrometry with photoionization. Forensic Toxicol. 2017, 35, 94–103. [Google Scholar] [CrossRef]
- Gerace, E.; Seganti, F.; Di Corcia, D.; Vincenti, M.; Salomone, A. GC-MS identification and quantification of the synthetic cannabinoid MDMB-4en- PINACA in cannabis-derived material seized in the Turin metropolitan area (Italy). Curr. Pharm. Des. 2022, 28, 2618–2621. [Google Scholar] [CrossRef]
- Grabenauer, M.; Krol, W.L.; Wiley, J.L.; Thomas, B.F. Analysis of synthetic cannabinoids using high-resolution mass spectrometry and mass defect filtering: Implications for nontargeted screening of designer drugs. Anal. Chem. 2012, 84, 5574–5581. [Google Scholar] [CrossRef]
- Mulet, C.T.; Tarifa, A.; DeCaprio, A.P. Comprehensive analysis of synthetic cannabinoids and metabolites in oral fluid by online solid-phase extraction coupled to liquid chromatography-triple quadrupole-mass spectrometry. Anal. Bioanal. Chem. 2020, 412, 7937–7953. [Google Scholar] [CrossRef]
- Lorensen, M.D.B.B.; Hayat, S.Y.; Wellner, N.; Bjarholt, N.; Janfelt, C. Leaves of cannabis sativa and their trichomes studied by DESI and MALDI mass spectrometry imaging for their contents of cannabinoids and flavonoids. Phytochem. Anal. 2023, 34, 269–279. [Google Scholar] [CrossRef]
- Musah, R.A.; Domin, M.A.; Walling, M.A.; Shepard, J.R.E. Rapid identification of synthetic cannabinoids in herbal samples via direct analysis in real time mass spectrometry. Rapid Commun. Mass Spectrom. 2012, 26, 1109–1114. [Google Scholar] [CrossRef]
- Lesiak, A.D.; Musah, R.A.; Domin, M.A.; Shepard, J.R.E. DART-MS as a preliminary screening method for “Herbal Incense”: Chemical analysis of synthetic cannabinoids. J. Forensic Sci. 2014, 59, 337–343. [Google Scholar] [CrossRef]
- Habala, L.; Valentová, J.; Pechová, I.; Fuknová, M.; Devínsky, F. DART—LTQ ORBITRAP as an expedient tool for the identification of synthetic cannabinoids. Leg. Med. 2016, 20, 27–31. [Google Scholar] [CrossRef]
- Li, L.-H.; Hsieh, H.-Y.; Hsu, C.-C. Clinical application of ambient ionization mass spectrometry. Mass Spectrom. 2017, 6, S0060. [Google Scholar] [CrossRef]
- Pirro, V.; Jarmusch, A.K.; Vincenti, M.; Cooks, R.G. Direct drug analysis from oral fluid using medical swab touch spray mass spectrometry. Anal. Chim. Acta 2015, 861, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Almeida de Paula, C.C.; Lordeiro, R.A.; Piccin, E.; Augusti, R. Paper spray mass spectrometry applied to the detection of cocaine in simulated samples. Anal. Methods 2015, 7, 9145–9149. [Google Scholar] [CrossRef]
- Steiner, R.R.; Larson, R.L. Validation of the direct analysis in real time source for use in forensic drug screening. J. Forensic Sci. 2009, 54, 617–622. [Google Scholar] [CrossRef] [PubMed]
- Lawton, Z.E.; Traub, A.; Fatigante, W.L.; Mancias, J.; O’Leary, A.E.; Hall, S.E.; Wieland, J.R.; Oberacher, H.; Gizzi, M.C.; Mulligan, C.C. Analytical validation of a portable mass spectrometer featuring interchangeable, ambient ionization sources for high throughput forensic evidence screening. J. Am. Soc. Mass Spectrom. 2017, 28, 1048–1059. [Google Scholar] [CrossRef] [PubMed]
- Venter, A.; Nefliu, M.; Cooks, G.R. Ambient desorption ionization mass spectrometry. Trends Anal. Chem. 2008, 27, 284–290. [Google Scholar] [CrossRef]
- Ma, Q.; Bai, H.; Li, W.; Wang, C.; Cooks, R.G.; Ouyang, Z. Rapid analysis of synthetic cannabinoids using a miniature mass spectrometer with ambient ionization capability. Talanta 2015, 142, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Parasecolo, L.; Dabija, L.G.; Shouk, R.; Shouk, D.; Augusti, R.; Ifa, D.R. Application of sandpaper spray ionization mass spectrometry to comprehensively examine maple leaves infected with distinct fungi. J. Mass Spectrom. 2024, 59, e5000. [Google Scholar] [CrossRef] [PubMed]
- Fatigante, W.L.; Mukta, S.; Lawton, Z.E.; Bruno, A.M.; Traub, A.; Gasa, A.J.; Stelmack, A.R.; Wilson-Frank, C.R.; Mulligan, C.C. Filter cone spray ionization coupled to a portable MS system: Application to on-site forensic evidence and environmental sample analysis. J. Am. Soc. Mass Spectrom. 2020, 31, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Brown, H.M.; McDaniel, T.J.; West, C.P.; Bondzie, E.H.; Aldeman, M.R.; Molnar, B.T.; Mulligan, C.C.; Fedick, P.W. Characterization and optimization of a rapid, automated 3D-printed cone spray ionization-mass spectrometry (3D-PCSI-MS) methodology. Int. J. Mass Spectrom. 2022, 474, 116781. [Google Scholar] [CrossRef]
- Brown, H.M.; McDaniel, T.J.; Doppalapudi, K.; Mulligan, C.C.; Fedick, P.W. Rapid, in-situ detection of chemical warfare agent simulants and hydrolysis products in bulk soils by low-cost 3D-printed cone spray ionization mass spectrometry. Analyst 2021, 146, 3127–3136. [Google Scholar] [CrossRef]
- Fedick, P.W.; Fatigante, W.L.; Lawton, Z.E.; O’Leary, A.E.; Hall, S.E.; Bain, R.M.; Aryton, S.T.; Ludwig, J.A.; Mulligan, C.C. A low-cost, simplified platform of interchangeable, ambient ionization sources for rapid, forensic evidence screening on portable mass spectrometric instrumentation. Instruments 2018, 2, 5. [Google Scholar] [CrossRef]
- Snyder, D.T.; Pulliam, C.J.; Ouzang, Z.; Cooks, G.R. Miniature and fieldable mass spectrometers: Recent advances. Anal. Chem. 2016, 88, 2–29. [Google Scholar] [CrossRef]
- Stelmack, A.R.; Mukta, S.; Fatigante, W.L.; Clowser, P.C.; Holtz, J.M.; Mulligan, C.C. Assessing the environmental ruggedness of paper spray ionization (PSI) coupled to a portable mass spectrometer operated under field conditions. Int. J. Mass Spectrom. 2022, 472, 116776. [Google Scholar] [CrossRef]
- McDaniel, T.J.; Holtz, J.M.; Bondzie, E.H.; Overfelt, M.; Fedick, P.W.; Mulligan, C.C. Rapid screening of high priority N-nitrosamines in pharmaceutical, forensic, and environmental samples with paper spray ionization and filter cone spray ionization-mass spectrometry. Rapid Commun. Mass Spectrom. 2023, 37, e9493. [Google Scholar] [CrossRef]
- Bondzie, E.H.; Adehinmoye, A.; Molnar, B.T.; Fedick, P.W.; Mulligan, C.C. Application of a modified 3D-PCSI-MS ion source to on-site, trace evidence processing via integrated vacuum collection. J. Am. Mass Spectrom. 2024, 35, 82–89. [Google Scholar] [CrossRef]
- Liu, J.; Wang, H.; Manicke, N.E.; Lin, J.-M.; Cooks, R.G.; Ouyang, Z. Development, characterization, and application of paper spray ionization. Anal. Chem. 2010, 82, 2463–2471. [Google Scholar] [CrossRef]
- McBride, E.M.; Mach, P.M.; Dhummakupt, E.S.; Dowling, S.; Carmany, D.O.; Demond, P.S.; Rizzo, G.; Manicke, N.E.; Glaros, T. Paper spray ionization: Applications and perspectives. TrAC Trends Anal. Chem. 2019, 118, 722–730. [Google Scholar] [CrossRef]
- Ikonomou, M.G.; Blades, A.T.; Kebarle, P. Electrospray mass spectrometry of methanol and water solutions suppression of electric discharge with SF6 gas. J. Am. Soc. Mass Spectrom. 1991, 2, 497–505. [Google Scholar] [CrossRef]
- Badu-Tawiah, A.K.; Eberlin, L.S.; Ouyang, Z.; Cooks, R.G. Chemical aspects of the extractive methods of ambient ionization mass spectrometry. Annu. Rev. Phys. Chem. 2013, 64, 481–505. [Google Scholar] [CrossRef]
- Kim, D.; Lee, J.; Kim, B.; Kim, S. Optimization and application of paper-based spray ionization mass spectrometry for analysis of natural organic matter. Anal. Chem. 2018, 90, 12027–12034. [Google Scholar] [CrossRef]
- Sans, M.; Krieger, A.; Wygant, B.R.; Garza, K.Y.; Mullins, C.B.; Eberlin, L.S. Spatially controlled molecular analysis of biological samples using nanodroplet arrays and direct droplet aspiration. J. Am. Soc. Mass Spectrom. 2020, 31, 418–428. [Google Scholar] [CrossRef]
- Unsihuay, D.; Qiu, J.; Swaroop, S.; Nagornov, K.O.; Kozhinov, A.N.; Tsybin, Y.O.; Kuang, S.; Laskin, J. Imaging of triglycerides in tissues using nanospray desorption electrospray ionization (Nano-DESI) mass spectrometry. Int. J. Mass Spectrom. 2020, 448, 116269. [Google Scholar] [CrossRef]
- Eberlin, L.S.; Ferreira, C.R.; Dill, A.L.; Ifa, D.R.; Cheng, L.; Cooks, R.G. Nondestructive, histologically compatible tissue imaging by desorption electrospray ionization mass spectrometry. ChemBioChem 2011, 12, 2129–2132. [Google Scholar] [CrossRef]
- Bills, B.J.; Kinkade, J.; Ren, G.; Manicke, N.E. The impacts of paper properties on matrix effects during paper spray mass spectrometry analysis of prescription drugs, fentanyls and synthetic Cannabinoids. Forensic Chem. 2018, 11, 15–22. [Google Scholar] [CrossRef]
- Zhang, C.; Manicke, N.E. Development of a paper spray mass spectrometry cartridge with integrated solid phase extraction for bioanalysis. Anal. Chem. 2015, 87, 6212–6219. [Google Scholar] [CrossRef]
- Damon, D.E.; Davis, K.M.; Moreira, C.R.; Capone, P.; Cruttenden, R.; Badu-Tawiah, A.K. Direct biofluid analysis using hydrophobic paper spray mass spectrometry. Anal. Chem. 2016, 88, 1878–1884. [Google Scholar] [CrossRef]
- Borden, S.A.; Saatchi, A.; Palaty, J.; Gill, C.G. A Direct mass spectrometry method for cannabinoid quantitation in urine and oral fluid utilizing reactive paper spray ionization. Analyst 2022, 147, 3109–3117. [Google Scholar] [CrossRef]
- Hall, S.E.; O’Leary, A.E.; Lawton, Z.E.; Mulligan, C.C. Trace level screening of chemicals related to clandestine desomorphine production with ambient sampling, portable mass spectrometry. J. Chem. 2017, 2017, 8571928. [Google Scholar] [CrossRef]
- Wang, Q.; Zheng, W.; Zhang, X.; Han, X.; Wang, T.; Zhang, Z. A Silica coated paper substrate: Development and its application in paper spray spectrometry for rapid analysis of pesticides in milk. Analyst 2015, 140, 8048–8056. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, W.; Manicke, N.E.; Cooks, R.G.; Ouyang, Z. Silica coated paper substrate for paper-spray analysis of therapeutic drugs in dried blood spots. Anal. Chem. 2012, 84, 931–938. [Google Scholar] [CrossRef]
- Rossini, E.L.; Kulyk, D.S.; Ansu-Gyeabourh, E.; Sahraeian, T.; Pezza, H.R.; Badu-Tawiah, A.K. Direct analysis of doping agents in raw urine using hydrophopic paper spray mass spectrometry. J. Am. Soc. Mass Spectrom. 2020, 31, 1212–1222. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, H.; Liu, J.; Zhang, Z.; McLuckey, M.N.; Ouyang, Z. Analysis of biological sample using paper spray mass spectrometry: An investigation of the impacts by the substrate, solvents and elution methods. Chromatographia 2013, 76, 1339–1346. [Google Scholar] [CrossRef]
- Riboni, N.; Quaranta, A.; Motwani, H.V.; Osterlund, N.; Graslund, A.; Bianchi, F.; Ilag, L.L. Solvent assisted paper spray ionization mass spectrometry (SAPSI-MS) for the analysis of biomolecules and biofluids. Sci. Rep. 2019, 9, 10296. [Google Scholar] [CrossRef]
- Taylor, G. Disintegration of water drops in an electric field. Proc. R. Soc. A 1964, 280, 383–397. [Google Scholar] [CrossRef]
- Tsai, C.W.; Tipple, C.A.; Yost, R.A. Application of paper spray ionization for explosive analysis. Rapid Commun. Mass Spectrom. 2017, 31, 1565–1572. [Google Scholar] [CrossRef]
- Smith, J.N.; Flagan, R.C.; Beauchamp, J.L. Droplet evaporation and discharge dynamics in electrospray ionization. J. Phys. Chem. 2002, 106, 9957–9967. [Google Scholar] [CrossRef]
- Henriksen, T.; Juhler, R.K.; Svensmark, B.; Chec, N.B. The relative influence of acidity and polarity on responsiveness of small organic molecules to analysis with negative ion electrospray ionization mass spectrometry (ESI-MS). J. Am. Soc. Mass Spectrom. 2005, 16, 446–455. [Google Scholar] [CrossRef]
- Kwan, V.; O’Dwyer, R.; Laur, D.; Tan, J.; Consta, S. Relation between ejection mechanism and ion abundance in electric double layer of droplets. J. Phys. Chem. 2021, 14, 2954–2966. [Google Scholar] [CrossRef]
- Kebarle, P.; Verkerk, U.H. A Brief Overview of the Mechanisms Involved in Electrospray Mass Spectrometry. Available online: https://application.wiley-vch.de/books/sample/3527323511_c01.pdf (accessed on 5 March 2022).
- Mulligan, C.C.; O’Leary, A.E. Assessing the Probative Value of Physical Evidence at Crime Scenes with Ambient Mass Spectrometry and Portable Instrumentation, Technical Report for NIJ Grant No. 2011-DN-BX-K552; Doc. No. 248884; National Institute of Justice: Washington, DC, USA, 2015; pp. 1–128. Available online: https://www.ojp.gov/library/publications/accessing-probative-value-physical-evidence-crime-scenes-ambient-mass (accessed on 29 May 2024).
- Mulligan, C.C.; Wieland, J.R.; Gizzi, M.C. Analytical Validation and Impact Assessment of On-Site Evidence Screening via Ambient Sampling, Portable Mass Spectrometry, Technical Summary for NIJ Grant No. 2015-IJ-CX-K011; Doc. No. 251910; National Institute of Justice: Washington, DC, USA, 2018; pp. 1–10. Available online: https://www.ojp.gov/library/publications/analytical-validation-and-impact-assessment-site-evidence-screening-ambient (accessed on 29 May 2024).
- Mulligan, C.C.; Driskell, J.D.; Kim, J.-H.; Wieland, J.R. Coupling Raman Spectroscopy with Ambient Sampling, Portable Mass Spectrometry for On-site, High-Throughput Evidence Confirmation on a Single Instrumental Platform, Technical Summary for NIJ Grant No. 2017-R2-CX-0022; Doc. No. 255670; National Institute of Justice: Washington, DC, USA, 2020; pp. 1–20. Available online: https://www.ojp.gov/ncjrs/virtual-library/abstracts/coupling-raman-spectroscopy-ambient-sampling-portable-mass (accessed on 29 May 2024).
Compound | MW (g/mol) | Precursor Ion (m/z) | MS2 Transitions (m/z) | Formula Loss * | CE (eV) ‡ |
---|---|---|---|---|---|
Δ9-THC | 314.469 | 315 | 193 (100%) | C9H14 | 0.420 |
259 (49%) | C4H8 | ||||
123 (23%) | C12H16O2 | ||||
HU-210 | 386.567 | 387 | 243 (100%) | C9H20O | 0.421 |
201 (30%) | C13H14O | ||||
(C8)-CP 47,497 | 332.519 | 333 | 247 (100%) | C6H14 | 0.402 |
XLR-11 | 329.459 | 330 | 125 (100%) | C13H16FN | 0.368 |
232 (48%) | C7H14 | ||||
312 (31%) | H2O | ||||
JWH-018 | 341.454 | 342 | 155 (100%) | C13H17N | 0.431 |
214 (29%) | C10H8 | ||||
ADB-Fubinaca | 382.439 | 383 | 338 (100%) | CH3NO | 0.457 |
253 (14%) | C6H14N2O | ||||
AB-Fubinaca | 368.412 | 369 | 324 (100%) | CH3NO | 0.470 |
351 (38%) | H2O | ||||
253 (11%) | C5H12N2O |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukta, S.; Bondzie, E.H.; Bell, S.E.; Deberry, C.; Mulligan, C.C. Criticality of Spray Solvent Choice on the Performance of Next Generation, Spray-Based Ambient Mass Spectrometric Ionization Sources: A Case Study Based on Synthetic Cannabinoid Forensic Evidence. Instruments 2024, 8, 34. https://doi.org/10.3390/instruments8020034
Mukta S, Bondzie EH, Bell SE, Deberry C, Mulligan CC. Criticality of Spray Solvent Choice on the Performance of Next Generation, Spray-Based Ambient Mass Spectrometric Ionization Sources: A Case Study Based on Synthetic Cannabinoid Forensic Evidence. Instruments. 2024; 8(2):34. https://doi.org/10.3390/instruments8020034
Chicago/Turabian StyleMukta, Shahnaz, Ebenezer H. Bondzie, Sara E. Bell, Chase Deberry, and Christopher C. Mulligan. 2024. "Criticality of Spray Solvent Choice on the Performance of Next Generation, Spray-Based Ambient Mass Spectrometric Ionization Sources: A Case Study Based on Synthetic Cannabinoid Forensic Evidence" Instruments 8, no. 2: 34. https://doi.org/10.3390/instruments8020034
APA StyleMukta, S., Bondzie, E. H., Bell, S. E., Deberry, C., & Mulligan, C. C. (2024). Criticality of Spray Solvent Choice on the Performance of Next Generation, Spray-Based Ambient Mass Spectrometric Ionization Sources: A Case Study Based on Synthetic Cannabinoid Forensic Evidence. Instruments, 8(2), 34. https://doi.org/10.3390/instruments8020034