#
Effective-Field Theory for Model High-T_{c} Cuprates

^{1}

^{2}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. S = 1 Pseudospin Formalism

## 3. Effective Spin-Pseudospin Hamiltonian

## 4. Effective-Field Approximation for the Doped Cuprates

## 5. EF Phase Diagrams

## 6. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## Abbreviations

HTSC | High Temperature SuperConductivity |

ZR | Zhang–Rice |

BCS | Bardeen–Cooper–Schrieffer |

VA | Variational Approach |

EF | Effective Field |

MFA | Mean-Field Approximation |

NO | Non-ordered |

CDW | Charge Density Wave |

AFMI | AntiFerroMagnetic Insulator |

CO | Charge Order |

PS | Phase Separation |

BS | Bose Superconductor |

dBS | d-wave Bose Superconductor |

FL | Fermi Liquid |

## References

- Bozovic, I.; He, X.; Wu, J.; Bollinger, A.T. Dependence of the Critical Temperature in Overdoped Copper Oxides on Superfluid Density. Nature
**2016**, 536, 309–311. [Google Scholar] [CrossRef] - Pelc, D.; Popcevic, P.; Pozek, M.; Greven, M.; Barišić, N. Unusual Behavior of Cuprates Explained by Heterogeneous Charge Localization. Sci. Adv.
**2019**, 5, eaau4538. [Google Scholar] [CrossRef] [Green Version] - Zhang, F.C.; Rice, T.M. Effective Hamiltonian for the superconducting Cu oxides. Phys. Rev. B
**1988**, 37, 3759–3761. [Google Scholar] [CrossRef] [Green Version] - Plakida, N.M.; Hayn, R.; Richard, J.-L. Two-band singlet-hole model for the copper oxide plane. Phys. Rev. B
**1995**, 51, 16599. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Marino, E.C.; Corrêa, R.O., Jr.; Arouca, R.; Nunes, L.H.; Alves, V.S. Superconducting and pseudogap transition temperatures in high-T
_{c}cuprates and the T_{c}dependence on pressure. Supercond. Sci. Technol.**2020**, 33, 035009. [Google Scholar] [CrossRef] - Arouca, R.; Marino, E.C. The resistivity of high-T
_{c}cuprates. Supercond. Sci. Technol.**2021**, 34, 035004. [Google Scholar] [CrossRef] - Emery, V. Theory of high-T
_{c}superconductivity in oxides. Phys. Rev. Lett.**1987**, 58, 2794. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Varma, C.M.; Schmitt-Rink, S.; Abrahams, E. Charge transfer excitations and superconductivity in “ionic” metals. Solid State Commun.
**1987**, 62, 681. [Google Scholar] [CrossRef] - Moskvin, A.S. True Charge-Transfer Gap in Parent Insulating Cuprates. Phys. Rev. B
**2011**, 84, 075116. [Google Scholar] [CrossRef] [Green Version] - Moskvin, A.S. Perspectives of Disproportionation Driven Superconductivity in Strongly Correlated 3d Compounds. J. Phys. Condens. Matter
**2013**, 25, 085601. [Google Scholar] [CrossRef] [Green Version] - Moskvin, A.S.; Panov, Y.D. Topological Structures in Unconventional Scenario for 2D Cuprates. J. Supercond. Nov. Magn.
**2019**, 32, 61–84. [Google Scholar] [CrossRef] - Mallett, B.P.P.; Wolf, T.; Gilioli, E.; Licci, F.; Williams, G.V.M.; Kaiser, A.B.; Ashcroft, N.W.; Suresh, N.; Tallon, J.L. Dielectric versus Magnetic Pairing Mechanisms in High-Temperature Cuprate Superconductors Investigated Using Raman Scattering. Phys. Rev. Lett.
**2013**, 111, 237001. [Google Scholar] [CrossRef] [Green Version] - Moskvin, A.S.; Panov, Y.D. Nature of the Pseudogap Phase of HTSC Cuprates. Phys. Solid State
**2020**, 62, 1554–1561. [Google Scholar] [CrossRef] - Nikolay, M. Plakida, High-Temperature Cuprate Superconductors. Experiment, Theory, and Applications; Springer: Berlin/Heidelberg, Germany; New York, NY, USA; Hong Kong, China; London, UK; Milan, Italy; Paris, France; Tokyo, Japan, 2011. [Google Scholar]
- Larsson, S. Strong electron correlation and phonon coupling in high T
_{c}superconductors. Phys. C Supercond.**2007**, 460–462, 1063–1065. [Google Scholar] [CrossRef] - Moskvin, A.S.; Panov, Y.D. Electronic structure of hole centers in CuO
_{2}planes of cuprates. Low Temp. Phys.**2011**, 37, 261–267. [Google Scholar] [CrossRef] - Ghosh, A.; Yarlagadda, S. Study of Long-Range Orders of Hard-Core Bosons Coupled to Cooperative Normal Modes in Two-Dimensional Lattices. Phys. Rev. B
**2017**, 96, 125108. [Google Scholar] [CrossRef] [Green Version] - Kapcia, K.; Robaszkiewicz, S.; Micnas, R. Phase Separation in a Lattice Model of a Superconductor with Pair Hopping. J. Phys. Condens. Matter
**2012**, 24, 215601. [Google Scholar] [CrossRef] [Green Version] - Caron, L.G.; Pratt, G.W. Correlation and Magnetic Effects in Narrow Energy Bands. II. Rev. Mod. Phys.
**1968**, 40, 802–806. [Google Scholar] [CrossRef] - Doganlar, M.; Ziegler, A. Embedded Cluster Calculation for the Hubbard Model. Phys. B Condens. Matter
**1995**, 206–207, 709–711. [Google Scholar] [CrossRef] - Gros, C. The Boundary Condition Integration Technique: Results for the Hubbard Model in 1D and 2D. Z. Phys. B Condens. Matter
**1992**, 86, 359–365. [Google Scholar] [CrossRef] - Panov, Y.D. Critical Temperatures of a Model Cuprate. Phys. Met. Metallogr.
**2019**, 120, 1276–1281. [Google Scholar] [CrossRef] - Hamidian, M.H.; Edkins, S.D.; Kim, C.K.; Davis, J.C.; Mackenzie, A.P.; Eisaki, H.; Uchida, S.; Lawler, M.J.; Kim, E.-A.; Sachdev, S.; et al. Atomic-Scale Electronic Structure of the Cuprate d-Symmetry Form Factor Density Wave State. Nat. Phys
**2016**, 12, 150–156. [Google Scholar] [CrossRef] - Arrigoni, E.; Strinati, G.C. Doping-Induced Incommensurate Antiferromagnetism in a Mott-Hubbard Insulator. Phys. Rev. B
**1991**, 44, 7455–7465. [Google Scholar] [CrossRef] [PubMed] - Pelc, D.; Veit, M.J.; Dorow, C.J.; Ge, Y.; Barišić, N.; Greven, M. Resistivity Phase Diagram of Cuprates Revisited. Phys. Rev. B
**2020**, 102, 075114. [Google Scholar] [CrossRef] - Kresin, V.; Ovchinnikov, Y.; Wolf, S. Inhomogeneous Superconductivity and the Pseudogap State of Novel Superconductors. Phys. Rep.
**2006**, 431, 231–259. [Google Scholar] [CrossRef] [Green Version] - de Mello, E.V.L.; Caixeiro, E.S. Effects of Phase Separation in the Cuprate Superconductors. Phys. Rev. B
**2004**, 70, 224517. [Google Scholar] [CrossRef] [Green Version] - Sacksteder, V. Quantized Repetitions of the Cuprate Pseudogap Line. J. Supercond. Nov. Magn.
**2020**, 33, 43–60. [Google Scholar] [CrossRef] [Green Version] - Ono, S.; Komiya, S.; Ando, Y. Strong Charge Fluctuations Manifested in the High-Temperature Hall Coefficient of High-Tc Cuprates. Phys. Rev. B
**2007**, 75, 024515. [Google Scholar] [CrossRef] [Green Version] - Gor’kov, L.P.; Teitel’baum, G.B. Interplay of Externally Doped and Thermally Activated Holes in La
_{2-x}Sr_{x}CuO_{4}and Their Impact on the Pseudogap Crossover. Phys. Rev. Lett.**2006**, 97, 247003. [Google Scholar] [CrossRef] [PubMed] - Kharkov, Y.A.; Sushkov, O.P. The Amplitudes and the Structure of the Charge Density Wave in YBCO. Sci. Rep.
**2016**, 6, 34551. [Google Scholar] [CrossRef] [Green Version] - Fazekas, P.; Anderson, P.W. On the Ground State Properties of the Anisotropic Triangular Antiferromagnet. Philos. Mag.
**1974**, 30, 423–440. [Google Scholar] [CrossRef] - Moskvin, A.S.; Panov, Y.D. Electron-Hole Dimers in the Parent Phase of Quasi-2D Cuprates. Phys. Solid State
**2019**, 61, 1553–1558. [Google Scholar] [CrossRef]

**Figure 1.**(Color online) Model T-n phase diagrams of the hole-doped cuprate calculated in the effective-field approximation ($n=p$ for the hole doping) under constant values of the Hamiltonian parameters (see text for detail); (

**a**) “critical” temperatures, the dashed, dotted, and dash-dotted lines indicate the boundaries of the stability region of the main homogeneous phases; and (

**b**) phase diagram assuming main homogeneous phases with no allowance made for the possible coexistence of two adjacent phases; (

**c**) phase diagram with phase separation taken into account. Black solid and dotted curves in (

**b**,

**c**) point to the second- and first-order transition lines, respectively, dashed curves in (

**c**) point to fifty-fifty volume fraction for two adjacent phases, yellow curves in (

**c**) present the third-order phase transition lines, these limit areas with 100% volume fraction. Inset in (

**b**) shows a typical phase diagram observed for hole-doped cuprate [23].

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Moskvin, A.; Panov, Y.
Effective-Field Theory for Model High-*T*_{c} Cuprates. *Condens. Matter* **2021**, *6*, 24.
https://doi.org/10.3390/condmat6030024

**AMA Style**

Moskvin A, Panov Y.
Effective-Field Theory for Model High-*T*_{c} Cuprates. *Condensed Matter*. 2021; 6(3):24.
https://doi.org/10.3390/condmat6030024

**Chicago/Turabian Style**

Moskvin, Alexander, and Yuri Panov.
2021. "Effective-Field Theory for Model High-*T*_{c} Cuprates" *Condensed Matter* 6, no. 3: 24.
https://doi.org/10.3390/condmat6030024