You are currently viewing a new version of our website. To view the old version click .
Tomography
  • Tomography is published by MDPI from Volume 7 Issue 1 (2021). Previous articles were published by another publisher in Open Access under a CC-BY (or CC-BY-NC-ND) licence, and they are hosted by MDPI on mdpi.com as a courtesy and upon agreement with Grapho, LLC.
  • Article
  • Open Access

1 June 2020

Quantitative Comparison of Prone and Supine PERCIST Measurements in Breast Cancer

,
,
,
,
,
,
,
and
1
Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
2
Department of Medicine, Vanderbilt University Medical Center, 2220 Pierce Avenue, 691 PRB, Nashville, TN 37209, USA
3
Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
4
Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA

Abstract

Positron emission tomography (PET) is typically performed in the supine position. However, breast magnetic resonance imaging (MRI) is performed in prone, as this improves visibility of deep breast tissues. With the emergence of hybrid scanners that integrate molecular information from PET and functional information from MRI, it is of great interest to determine if the prognostic utility of prone PET is equivalent to supine. We compared PERCIST (PET Response Criteria in Solid Tumors) measurements between prone and supine FDG-PET in patients with breast cancer and the effect of orientation on predicting pathologic complete response (pCR). In total, 47 patients were enrolled and received up to 6 cycles of neoadjuvant therapy. Prone and supine FDG-PET were performed at baseline (t0; n = 46), after cycle 1 (t1; n = 1) or 2 (t2; n = 10), or after all neoadjuvant therapy (t3; n = 19). FDG uptake was quantified by maximum and peak standardized uptake value (SUV) with and without normalization to lean body mass; that is, SUVmax, SUVpeak, SULmax, and SULpeak. PERCIST measurements were performed for each paired baseline and post-treatment scan. Receiver operating characteristic analysis for the prediction of pCR was performed using logistic regression that included age and tumor size as covariates. SUV and SUL metrics were significantly different between orientation (P < .001), but were highly correlated (P > .98). Importantly, no differences were observed with the PERCIST measurements (P > .6). Overlapping 95% confidence intervals for the receiver operating characteristic analysis suggested no difference at predicting pCR. Therefore, prone and supine PERCIST in this data set were not statistically different.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.