Wearable Multi-Channel Pulse Signal Acquisition System Based on Flexible MEMS Sensor Arrays with TSV Structure
Abstract
:1. Introduction
- A novel MEMS pulse pressure sensor that features a through-silicon-via (TSV) structure is proposed in this paper. Notably, the TSV design allows for direct connection to the flexible substrate, eliminating the common issue of sensor failure due to gold wire breaking, which is typically associated with conventional MEMS pressure sensors utilizing gold wire bonding.
- Based on the MEMS sensor, a 24-channel pulse sensor flexible array is engineered, which can completely cover the sensitive area of the radial artery of the wrist and collect pulse wave and static pressure simultaneously.
- The array is equipped with a self-customized multichannel pulse preprocessing chip, which accomplishes signal amplification and converts the pulse analog signal into a digital signal.
- An algorithm is developed to reconstruct the 3D pulse wave from the pulse wave array signal and calculate the pulse width. The pulse width calculation result is highly positively correlated with those obtained via infrared images.
- The experimental results and analysis verified the system’s efficacy and repeatability.
2. Materials and Methods
2.1. System Overview
2.2. MEMS Pressure Sensor with TSV Structure
2.3. Flexible MEMS Pressure Sensor Array
2.4. Multichannel Pulse Preprocessing Chip
2.5. 3D Pulse Wave and Pulse Width Measurement
3. Experimental Results and Discussion
3.1. MEMS Pressure Sensor Performance Test
3.2. Static Pressure Test of Sensor Array
3.3. Dynamic Pulse Test of Sensor Array
3.4. Experiment on Human Pulse Wave Acquisition
3.5. Experiment on Pulse Wave Width Measurement
3.6. Comparisons with Other Pulse Signal Acquisition Systems
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, D.; Wang, L.; Fan, X.; Yao, Y.; Geng, N.; Sun, Y.; Xu, L.; Qian, W. A New Mathematical Model of Wrist Pulse Waveforms Characterizes Patients with Cardiovascular Disease—A Pilot Study. Med. Eng. Phys. 2017, 48, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, Y.; Yao, L.; Song, H.; Kos, A. A Sensor-Based Wrist Pulse Signal Processing and Lung Cancer Recognition. J. Biomed. Inform. 2018, 79, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Moura, N.; Ferreira, A. Pulse Waveform Analysis of Chinese Pulse Images and Its Association with Disability in Hypertension. J. Acupunct. Meridian Stud. 2016, 9, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Geng, X.; Kang, X.; Zhang, Y.; Zhang, J.; Zhang, H. A Novel Radial Artery P-S Curve Model Based on Radial Vibration of Vascular Wall. Appl. Sci. 2022, 12, 9706. [Google Scholar] [CrossRef]
- Liu, Z.-D.; Liu, J.-K.; Wen, B.; He, Q.-Y.; Li, Y.; Miao, F. Cuffless Blood Pressure Estimation Using Pressure Pulse Wave Signals. Sensors 2018, 18, 4227. [Google Scholar] [CrossRef]
- Jatoi, N.; Mahmud, A.; Bennett, K.; Feely, J. Assessment of arterial stiffness in hypertension: Comparison of oscillometric (Arteriograph), piezoelectronic (Complior) and tonometric (SphygmoCor) techniques. J. Hypertens. 2009, 27, 2186–2191. [Google Scholar] [CrossRef]
- Zhang, Y.; Cui, J.; Ma, K.; Chen, H.; Zhang, J. A wristband device for detecting human pulse and motion based on the Internet of Things. Meas. J. Int. Meas. Confed. 2020, 163, 108036. [Google Scholar] [CrossRef]
- Tsai, Y.; Huang, Y.; Lin, S.; Lee, S.; Cheng, Y.; Chang, Y.; Su, Y. Different harmonic characteristics were found at each location on TCM radial pulse diagnosis by spectrum analysis. Evid. Based Complement. Altern. Med. 2018, 2018, 9018271. [Google Scholar] [CrossRef]
- Fine, J.; McShane, M.J.; Coté, G.L.; Scully, C.G. A Computational Modeling and Simulation Workflow to Investigate the Impact of Patient-Specific and Device Factors on Hemodynamic Measurements from Non-Invasive Photoplethysmography. Biosensors 2022, 12, 598. [Google Scholar] [CrossRef]
- Miao, F.; Wang, X.; Yin, L.; Li, Y. A wearable sensor for arterial stiffness monitoring based on machine learning algorithms. IEEE Sens. J. 2019, 19, 1426–1434. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, J.; Hu, J.; Luo, N.; Sun, F.; Venkatesan, H.; Zhao, N.; Zhang, Y. Ultrafast-Response/Recovery Flexible Piezoresistive Sensors with DNA-Like Double Helix Yarns for Epidermal Pulse Monitoring. Adv. Mater. 2022, 34, 2104313. [Google Scholar] [CrossRef] [PubMed]
- Martín-Escudero, P.; Cabanas, A.M.; Fuentes-Ferrer, M.; Galindo-Canales, M. Oxygen Saturation Behavior by Pulse Oximetry in Female Athletes: Breaking Myths. Biosensors 2021, 11, 391. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Zhang, J.; Shao, Z.; Wang, G.; Geng, X.; Zhang, Y. A Wearable and Real-Time Pulse Wave Monitoring System Based on a Flexible Compound Sensor. Biosensors 2022, 12, 133. [Google Scholar] [CrossRef]
- Liu, S.; Zhang, S.; Zhang, Y.; Geng, X.; Zhang, J.; Zhang, H. A novel flexible pressure sensor array for depth information of radial artery. Sens. Actuators A Phys. 2018, 272, 92–101. [Google Scholar] [CrossRef]
- Chen, J.; Sun, K.; Zheng, R.; Sun, Y.; Yang, H.; Zhong, Y.; Li, X. Three-Dimensional Arterial Pulse Signal Acquisition in Time Domain Using Flexible Pressure-Sensor Dense Arrays. Micromachines 2021, 12, 569. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Li, Z.; Zhang, Y.; Zhang, S.; Hou, J.; Zhang, H. A 3D Wrist Pulse Signal Acquisition System for Width Information of Pulse Wave. Sensors 2020, 20, 11. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, N.; Shelley, K.; Silverman, D.; Stachenfeld, N.; Galante, N.; Florian, J.; Mendelson, Y.; Chon, K. A novel approach using time-frequency analysis of pulse-oximeter data to detect progressive hypovolemia in spontaneously breathing healthy subjects(optical). IEEE Trans. Biomed. Eng. 2011, 58, 2272–2279. [Google Scholar] [CrossRef]
- Chang, H.; Chen, J.; Liu, Y. Micro-piezoelectric pulse diagnoser and frequency domain analysis of human pulse signals. J. Tradit. Chin. Med. Sci. 2018, 5, 35–42. [Google Scholar] [CrossRef]
- Zhang, S.; Cao, J.; Xu, L.; Wang, F.; Zhang, X.; Li, G.; Fang, P.; Zhu, G. A Piezoelectret-based Flexible Sensor for Pulse Monitoring. In Proceedings of the 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS), Shenzhen, China, 25–27 October 2018; pp. 13–16. [Google Scholar]
- Liu, L.; Zuo, W.; Zhang, D.; Li, N.; Zhang, H. Combination of heterogeneous features for wrist pulse blood flow signal diagnosis via multiple kernel learning. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 598–606. [Google Scholar] [CrossRef]
- Zhang, D.; Zuo, W.; Zhang, D.; Zhang, H.; Li, N. Wrist blood flow signal-based computerized pulse diagnosis using spatial and spectrum features. J. Biomed. Sci. Eng. 2010, 3, 361–366. [Google Scholar] [CrossRef]
- Hu, C.; Chung, Y.; Yeh, C.; Luo, C. Temporal and spatial properties of arterial pulsation measurement using pressure sensor array. Evid. Based Complement. Altern. Med. 2012, 2012, 745127. [Google Scholar] [CrossRef] [PubMed]
- Jia, D.; Chao, J.; Li, S.; Zhang, H.; Yan, Y.; Liu, T.; Sun, Y. A Fiber Bragg Grating Sensor for Radial Artery Pulse Waveform Measurement. IEEE Trans. Biomed. Eng. 2018, 65, 839–846. [Google Scholar] [CrossRef] [PubMed]
- Leitão, C.; da Costa Antunes, P.; Bastos, J.; Pinto, J.; de Brito André, P. Plastic Optical Fiber Sensor for Noninvasive Arterial Pulse Waveform Monitoring. IEEE Sens. J. 2014, 15, 14–18. [Google Scholar] [CrossRef]
- Kim, B.; Hong, Y.; An, Y.; Kim, S.; Lee, H.; Kim, S.; Hong, S.; Yun, G.; Yook, J. A Proximity Coupling RF Sensor for Wrist Pulse Detection Based on Injection-Locked PLL. IEEE Trans. Microw. Theory Tech. 2016, 64, 1667–1676. [Google Scholar] [CrossRef]
- Nie, B.; Li, R.; Brandt, J.D.; Pan, T. Iontronic microdroplet array for flexible ultrasensitive tactile sensing. Lab Chip 2014, 14, 1107–1116. [Google Scholar] [CrossRef]
- Boutry, C.M.; Nguyen, A.; Lawal, Q.O.; Chortos, A.; Rondeau-Gagné, S.; Bao, Z. A sensitive and biodegradable pressure sensor array for cardiovascular monitoring. Adv. Mater. 2015, 27, 6954–6961. [Google Scholar] [CrossRef]
- Bai, N.; Wang, L.; Wang, Q.; Deng, J.; Wang, Y.; Lu, P.; Huang, J.; Li, G.; Zhang, Y.; Yang, J.; et al. Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity. Nat. Commun. 2020, 11, 209. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, Y.; Wu, Z.; Zhang, Y.; Lin, J.; Chen, T. Wearable multichannel pulse condition monitoring system based on flexible pressure sensor arrays. Microsyst. Nanoeng. 2022, 8, 16. [Google Scholar] [CrossRef]
- Chu, Y.; Zhong, J.; Liu, H.; Ma, Y.; Liu, N.; Song, Y.; Liang, J.; Shao, Z.; Sun, Y.; Dong, Y.; et al. Human pulse diagnosis for medical assessments using a wearable piezoelectret sensing system. Adv. Funct. Mater. 2018, 28, 1803413. [Google Scholar] [CrossRef]
- Wang, B.; Liu, C.; Xiao, Y.; Zhong, J.; Li, W.; Cheng, Y.; Hu, B.; Huang, L.; Zhou, J. Ultrasensitive cellular fluorocarbon piezoelectret pressure sensor for self-powered human physiological monitoring. Nano Energy 2017, 32, 42–49. [Google Scholar] [CrossRef]
- Lin, D.; Zhang, A.; Gu, J.; Chen, X.; Wang, Q.; Yang, L.; Chou, Y.; Liu, G.; Wang, J. Detection of multipoint pulse waves and dynamic 3D pulse shape of the radial artery based on binocular vision theory. Comput. Methods Programs Biomed. 2018, 155, 61–73. [Google Scholar] [CrossRef]
- Jiao, D.; Ni, Z.; Wang, J.; Li, X. Ultra-small pressure sensors fabricated using a scar-free microhole inter-etch and sealing (MIS) process. J. Micromech. Microeng. 2020, 30, 065012. [Google Scholar] [CrossRef]
- Fei, Z.F. Contemporary Sphygmology in Traditional Chinese Medicine; People’s Medical Publishing House: Beijing, China, 2003; pp. 58–61. [Google Scholar]
- Wang, S.; Zhang, Z.; Chen, Z.; Mei, D.; Wang, Y. Development of Pressure Sensor Based Wearable Pulse Detection Device for Radial Pulse Monitoring. Micromachines 2022, 13, 1699. [Google Scholar] [CrossRef] [PubMed]
- Andreozzi, E.; Sabbadini, R.; Centracchio, J.; Bifulco, P.; Irace, A.; Breglio, G.; Riccio, M. Multimodal Finger Pulse Wave Sensing: Comparison of Forcecardiography and Photoplethysmography Sensors. Sensors 2022, 22, 7566. [Google Scholar] [CrossRef] [PubMed]
- Chan, M.; Ganti, V.G.; Heller, J.A.; Abdallah, C.A.; Etemadi, M.; Inan, O.T. Enabling Continuous Wearable Reflectance Pulse Oximetry at the Sternum. Biosensors 2021, 11, 521. [Google Scholar] [CrossRef]
- Fu, Y.; Zhao, S.; Zhu, R. A Wearable Multifunctional Pulse Monitor Using Thermosensation-Based Flexible Sensors. IEEE Trans. Biomed. Eng. 2018, 66, 1412–1421. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, B.; Li, H.; Li, M.; Song, Y.; Wang, R.; Wang, T.; Zhang, H. Flexible Wearable Sensors in Medical Monitoring. Biosensors 2022, 12, 1069. [Google Scholar] [CrossRef]
- Jin, C.; Xia, C.; Zhang, S.; Wang, L.; Wang, Y.; Yan, H. A wearable combined wrist pulse measurement system using airbags for pressurization. Sensors 2019, 19, 386. [Google Scholar] [CrossRef]
Variables | Parameters |
---|---|
Number of pulse signal input channels | 8 |
Single chip power consumption | 18.7 mW |
Amplifier gain | 35.9 dB |
Sample rate | 1 Msps |
ADC bits | 10 bits |
System sampling frequency | 256 Hz |
Variables | Parameters |
---|---|
Chip area | 2 mm × 2 mm |
Sensitivity | 177.5398 mV/120 KPa@5 V |
Precision | 0.3395% FS |
Pressure range | 1–120 KPa |
Maximum pressure | Over 2 × FS |
Nonlinear | 0.1062% |
Sensor No. | 2 | 7 | 9 | 14 | 18 | 23 | Average Value |
---|---|---|---|---|---|---|---|
Repeatability | 3.4% | 3.1% | 2.4% | 3.7% | 4.2% | 3.8% | 3.4% |
Pressure Interval | 1 | 2 | 3 | 4 | 5 | 6 |
---|---|---|---|---|---|---|
RSD of Pulse wave amplitude | 6.71% | 4.24% | 2.21% | 2.39% | 2.06% | 4.53% |
RSD of Static Pressure | 6.25% | 3.27% | 2.41% | 4.46% | 3.69% | 4.05% |
Variables | Parameters |
---|---|
Gender | |
Male | 8 |
Female | 7 |
Age (year) | 32.1 ± 7.3 (21–46) |
Height (cm) | 171.6 ± 8.2 (155–190) |
Weight (Kg) | 62.6 ± 12.8 (41–101) |
BMI | 21.2 ± 3.1 (17.1–30.2) |
System | Hu [22] | Liu [14] | Jin [40] | Chen [16] | Kang [13] | Wang [29] | Proposed |
---|---|---|---|---|---|---|---|
Number of sensors | 12 | 5 | 3 | 12 | 1 | 9 | 24 |
Array | 3 × 4 | 1 × 5 | 1 × 3 | 3 × 4 | 1 | 3 × 3 | 4 × 6 |
Single sensor size (mm) | 2.5 × 2.5 | 30 × 12 | 5.6 × 5.6 | 5.5 × 3.6 | 40 × 10 | 2 × 2 | 2 × 2 |
Flexible | No | Yes | No | Yes | Yes | No | Yes |
Wearable | No | No | No | No | Yes | Yes | Yes |
3D pulse wave | Yes | No | No | Yes | No | Yes | Yes |
Pulse Width | No | No | No | Yes | No | Yes | Yes |
Pulse-taking pressure acquisition | Yes | Yes | Yes | Yes | Yes | No | Yes |
Measure under continuously changing pressure | Yes | No | No | No | Yes | No | Yes |
Year of publication | 2017 | 2018 | 2019 | 2020 | 2022 | 2022 | 2023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, X.; Huang, L.; Zhang, Y.; Yun, S.; Jiao, B.; Liu, X.; Zhang, J.; Li, Z.; Zhang, H. Wearable Multi-Channel Pulse Signal Acquisition System Based on Flexible MEMS Sensor Arrays with TSV Structure. Biomimetics 2023, 8, 207. https://doi.org/10.3390/biomimetics8020207
Kang X, Huang L, Zhang Y, Yun S, Jiao B, Liu X, Zhang J, Li Z, Zhang H. Wearable Multi-Channel Pulse Signal Acquisition System Based on Flexible MEMS Sensor Arrays with TSV Structure. Biomimetics. 2023; 8(2):207. https://doi.org/10.3390/biomimetics8020207
Chicago/Turabian StyleKang, Xiaoxiao, Lin Huang, Yitao Zhang, Shichang Yun, Binbin Jiao, Xin Liu, Jun Zhang, Zhiqiang Li, and Haiying Zhang. 2023. "Wearable Multi-Channel Pulse Signal Acquisition System Based on Flexible MEMS Sensor Arrays with TSV Structure" Biomimetics 8, no. 2: 207. https://doi.org/10.3390/biomimetics8020207
APA StyleKang, X., Huang, L., Zhang, Y., Yun, S., Jiao, B., Liu, X., Zhang, J., Li, Z., & Zhang, H. (2023). Wearable Multi-Channel Pulse Signal Acquisition System Based on Flexible MEMS Sensor Arrays with TSV Structure. Biomimetics, 8(2), 207. https://doi.org/10.3390/biomimetics8020207