Design and Use of a Custom Phantom for Regular Tests of Radiography Apparatus: A Feasibility Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phantoms
2.2. Imaging Protocols
2.3. Data Processing and Evaluation
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tsapaki, V. Radiation dose optimization in diagnostic and interventional radiology: Current issues and future perspectives. Phys. Medica 2020, 79, 16–21. [Google Scholar] [CrossRef] [PubMed]
- NHS. Diagnostic Imaging Dataset Statistical Release. Provisional monthly statistics, August 2020 to August 2021 National Health Service 2021. Available online: https://www.england.nhs.uk/statistics/wp-content/uploads/sites/2/2021/12/Statistical-Release-16th-December-2021-PDF-870KB-1.pdf (accessed on 2 October 2023).
- Gershan, V.; Madjunarova, S.; Stikova, E. Survey on the frequency of typical x-ray examinations and estimation of associated population doses in the Republic of Macedonia. In Proceedings of the Third Conference on Medical Physics and Biomedical Engeenering, Skopje, North Macedonia, 18–19 October 2013; pp. 14–19. [Google Scholar]
- Delis, H.; Christaki, K.; Healy, B.; Loreti, G.; Poli, G.L.; Toroi, P.; Meghzifene, A. Moving beyond quality control in diagnostic radiology and the role of the clinically qualified medical physicist. Phys. Med. 2017, 41, 104–108. [Google Scholar] [CrossRef] [PubMed]
- IAEA. Radiation Protection No. 180. Medical Radiation Exposure of the European Population. EUropean Commision 2015. Available online: https://energy.ec.europa.eu/system/files/2015-02/RP180web_0.pdf (accessed on 2 October 2023).
- Achuka, J.A.; Aweda, M.A.; Usikalu, M.R. Cancer risks from head radiography procedures. In IOP Conference Series: Earth and Environmental Science, 1st ed.; Adagunodo, T.A., Usikalu, M.R., Eds.; Institute of Physics Publishing: Bristol, UK, 2018; Volume 173. [Google Scholar] [CrossRef]
- Linet, M.S.; Slovis, T.L.; Miller, D.L.; Kleinerman, R.; Lee, C.; Rajaraman, P.; Berrington De Gonzalez, A. Cancer risks associated with external radiation from diagnostic imaging procedures. CA Cancer J. Clin. 2012, 62, 75–100. [Google Scholar] [CrossRef] [PubMed]
- Behling, R. X-Ray sources: 125 years of developments of this intriguing technology. Phys. Medica 2020, 79, 162–187. [Google Scholar] [CrossRef]
- Galiano, E. Some radiological, structural, and physical properties of a clinical X-Ray unit oil. Appl. Radiat. Isotopes 2023, 191, 110562. [Google Scholar] [CrossRef] [PubMed]
- Pirtle, O.L. X-Ray machine calibration: A study of failure rates. Radiol. Technol. 1994, 65, 291–295, quiz 296–298. [Google Scholar]
- Sungita, Y.Y.; Mdoe, S.S.L.; Msaki, P. Diagnostic X-Ray facilities as per quality control performances in Tanzania. J. Appl. Clin. Med. Phys. 2006, 7, 66–73. [Google Scholar] [CrossRef]
- Clark, J.L.; Wadhwani, C.P.; Abramovitch, K.; Rice, D.D.; Kattadiyil, M.T. Effect of image sharpening on radiographic image quality. J. Prosthet. Dent. 2018, 120, 927–933. [Google Scholar] [CrossRef]
- Kim, F.H.; Pintar, A.L.; Moylan, S.P.; Garboczi, E.J. The Influence of X-Ray Computed Tomography Acquisition Parameters on Image Quality and Probability of Detection of Additive Manufacturing Defects. J. Manuf. Sci. Eng. 2019, 141. [Google Scholar] [CrossRef]
- Huda, W.; Abrahams, R.B. X-Ray-based medical imaging and resolution. AJR Am. J. Roentgenol. 2015, 204, W393–W397. [Google Scholar] [CrossRef]
- IAEA. Roles and Responsibilities, and Education and Training Requirements for Clinically Qualified Medical Physicists; International Atomic Energy Agency: Vienna, Austria, 2013. [Google Scholar]
- Mahesh, M. Essential Role of a Medical Physicist in the Radiology Department. Radiographics 2018, 38, 1665–1671. [Google Scholar] [CrossRef] [PubMed]
- Trauernicht, C.; Hasford, F.; Khelassi-Toutaoui, N.; Bentouhami, I.; Knoll, P.; Tsapaki, V. Medical physics services in radiology and nuclear medicine in Africa: Challenges and opportunities identified through workforce and infrastructure surveys. Health Technol. 2022, 12, 729–737. [Google Scholar] [CrossRef]
- Muharam, R.; Lestariningsih, I.; Nurlely; Soejoko, D.S. Designing phantom in-house for quick check computed radiography (CR) and digital radiography (DR) system. J. Phys. Conf. Ser. 2020, 1568, 012023. [Google Scholar] [CrossRef]
- Bosmans, H.; Bliznakova, K.; Padovani, R.; Christofides, S.; Van Peteghem, N.; Tsapaki, V.; Caruana, C.J.; Vassileva, J. EUTEMPE-RX, an EC supported FP7 project for the training and education of medical physics experts in radiology. Radiat. Prot. Dosim. 2015, 165, 518–522. [Google Scholar] [CrossRef] [PubMed]
- IAEA. Handbook of Basic Quality Control Tests for Diagnostic Radiology; International Atomic Energy Agency: Vienna, Austria, 2023. [Google Scholar]
- Tsalafoutas, I.A.; AlKhazzam, S.; Tsapaki, V.; AlNaemi, H.; Kharita, M.H. Digital radiography image quality evaluation using various phantoms and software. J. Appl. Clin. Med. Phys. 2022, 23, e13823. [Google Scholar] [CrossRef]
- Mora, P.; Pfeiffer, D.; Zhang, G.; Bosmans, H.; Delis, H.; Razi, Z.; Arreola, M.; Tsapaki, V. The IAEA remote and automated quality control methodology for radiography and mammography. J. Appl. Clin. Med. Phys. 2021, 22, 126–142. [Google Scholar] [CrossRef]
- Paruccini, N.; Villa, R.; Oberhofer, N.; Loria, A.; Signoriello, M.; Giordano, C.; Soavi, R.; Colombo, P.; De Mattia, C.; Rottoli, F.; et al. A single phantom, a single statistical method for low-contrast detectability assessment. Phys. Med. 2021, 91, 28–42. [Google Scholar] [CrossRef]
- Rabba, J.A.; Jaafar, H.A.; Suhaimi, F.M.; Jafri, M.Z.M.; Osman, N.D. A simplified low-cost phantom for image quality assessment of dental cone beam computed tomography unit. J. Med. Radiat. Sci. 2024, 71, 78–84. [Google Scholar] [CrossRef]
- Dukov, N.; Valkova, V.-M.; Yordanova, M.; Bliznakova, K. Investigation of Specialized Phantom for Quality Control. In Proceedings of the Advances in Digital Health and Medical Bioengineering, Online, 1 October 2024; pp. 288–296. [Google Scholar] [CrossRef]
- Bliznakova, K.; Mettivier, G.; Russo, P.; Bliznakov, Z. Validation of a software platform for 2D and 3D phase contrast imaging: Preliminary subjective evaluation. Proc. Spie 2020, 11513, 1151312. (In English) [Google Scholar] [CrossRef]
- Dukov, N.; Bliznakova, K.; Teneva, T.; Marinov, S.; Bakic, P.; Bosmans, H.; Bliznakov, Z. Experimental Evaluation of Physical Breast Phantoms for 2D and 3D Breast X-Ray Imaging Techniques. In Proceedings of the 8th European Medical and Biological Engineering Conference, Portorož, Slovenia, 29 November–3 December 2020; Springer: Cham, Switzerland; pp. 544–552. [Google Scholar]
- Feradov, F.; Marinov, S.; Bliznakova, K. Physical Breast Phantom Dedicated for Mammography Studies. Ifmbe Proc. 2020, 76, 344–352. (In English) [Google Scholar] [CrossRef]
- Bliznakova, K. The advent of anthropomorphic three-dimensional breast phantoms for X-Ray imaging. Phys. Medica 2020, 79, 145–161. [Google Scholar] [CrossRef] [PubMed]
- Bliznakova, K.; Buliev, I.; Bliznakov, Z. Anthropomorphic Phantoms in Image Quality and Patient Dose Optimization: A EUTEMPE Network Book; IPEM–IOP Series in Physics and Engineering in Medicine and Biology; IOP Publishing Ltd.: Bristol, UK, 2018; pp. 1–222. (In English) [Google Scholar] [CrossRef]
- Bliznakova, K.; Dukov, N.; Feradov, F.; Gospodinova, G.; Bliznakov, Z.; Russo, P.; Mettivier, G.; Bosmans, H.; Cockmartin, L.; Sarno, A.; et al. Development of breast lesions models database. Phys. Medica 2019, 64, 293–303. [Google Scholar] [CrossRef] [PubMed]
- de Sisternes, L.; Brankov, J.G.; Zysk, A.M.; Schmidt, R.A.; Nishikawa, R.M.; Wernick, M.N. A computational model to generate simulated three-dimensional breast masses. Med. Phys. 2015, 42, 1098–1118. [Google Scholar] [CrossRef] [PubMed]
- Salomon, E.; Vanko, B.; Homolka, P.; Cockmartin, L.; Figl, M.; Clauser, P.; Unger, E.; Bosmans, H.; Marshall, N.; Hummel, J. A spiculated mass target model for clinical image quality control in digital mammography. Brit J. Radiol. 2024, 97, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Shaheen, E.; De Keyzer, F.; Bosmans, H.; Dance, D.R.; Young, K.C.; Van Ongeval, C. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis. Med. Phys. 2014, 41, 383–399. [Google Scholar] [CrossRef] [PubMed]
- Esposito, G.; Mettivier, G.; Bliznakova, K.; Bliznakov, Z.; Bosmans, H.; Bravin, A.; Buliev, I.; Di Lillo, F.; Ivanov, D.; Mintutillo, M.; et al. Investigation of the refractive index decrement of 3D printing materials for manufacturing breast phantoms for phase contrast imaging. Phys. Med. Biol. 2019, 64, 075008. [Google Scholar] [CrossRef]
- Ivanov, D.; Bliznakova, K.; Buliev, I.; Popov, P.; Mettivier, G.; Russo, P.; Di Lillo, F.; Sarno, A.; Vignero, J.; Bosmans, H.; et al. Suitability of low density materials for 3D printing of physical breast phantoms. Phys. Med. Biol. 2018, 63, 175020. [Google Scholar] [CrossRef]
- Dukov, N.; Bliznakova, K.; Feradov, F.; Ridlev, I.; Bosmans, H.; Mettivier, G.; Russo, P.; Cockmartin, L.; Bliznakov, Z. Models of breast lesions based on three-dimensional X-Ray breast images. Phys. Medica 2019, 57, 80–87. [Google Scholar] [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Campbell, M.J.; Machin, D.; Walters, S.J. Medical Statistics: A Textbook for the Health Sciences; Wiley: Hoboken, NJ, USA, 2010. (In English) [Google Scholar]
- Noonoo, J.B.; Sosu, E.; Hasford, F. Three-dimensional image quality test phantom for planar X-Ray imaging. S. Afr. J. Sci. 2023, 119. [Google Scholar] [CrossRef]
- Ali, A.M.; Hogg, P.; Johansen, S.; England, A. Construction and validation of a low cost paediatric pelvis phantom. Eur. J. Radiol. 2018, 108, 84–91. (In English) [Google Scholar] [CrossRef]
- Koukou, V.; Martini, N.; Fountos, G.; Michail, C.; Sotiropoulou, P.; Bakas, A.; Kalyvas, N.; Kandarakis, I.; Speller, R.; Nikiforidis, G. Dual energy subtraction method for breast calcification imaging. Nucl. Instrum. Methods Phys. Res. Sect. A 2017, 848, 31–38. [Google Scholar] [CrossRef]
- Koukou, V.; Martini, N.; Velissarakos, K.; Gkremos, D.; Fountzoula, C.; Bakas, A.; Michail, C.; Kandarakis, I.; Fountos, G. PVAL breast phantom for dual energy calcification detection. J. Phys. Conf. Ser. 2015, 637, 012013. [Google Scholar] [CrossRef]
- Johns, P.C.; Drost, D.J.; Yaffe, M.J.; Fenster, A. Dual-Energy Mammography—Initial Experimental Results. Med. Phys. 1985, 12, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Bliznakova, K.; Kolitsi, Z.; Speller, R.D.; Horrocks, J.A.; Tromba, G.; Pallikarakis, N. Evaluation of digital breast tomosynthesis reconstruction algorithms using synchrotron radiation in standard geometry. Med. Phys. 2010, 37, 1893–1903. [Google Scholar] [CrossRef]
- Bliznakova, K.; Russo, P.; Kamarianakis, Z.; Mettivier, G.; Requardt, H.; Bravin, A.; Buliev, I. In-line phase-contrast breast tomosynthesis: A phantom feasibility study at a synchrotron radiation facility. Phys. Med. Biol. 2016, 61, 6243–6263. [Google Scholar] [CrossRef]
Radius, mm | 13.0 | 9.0 | 8.0 | 7.5 | 7.0 | 6.0 |
---|---|---|---|---|---|---|
Number of spheres | 1 | 1 | 1 | 5 | 3 | 7 |
Imaging Protocol | General Characteristics of the Selected Imaging Protocols | ||
---|---|---|---|
Abdomen Debout F | The protocol is used for abdominal imaging and for hysterosalpingography. The latter is applied for diagnosing the complete or partial blockage of the fallopian tubes and the detection of various pathological conditions affecting the uterus. It is also used for diagnosing various diseases of the kidneys, bladder, and ureters. | ||
High energy | 70 kV | 200 mA | |
Medium energy | 66 kV | 200 mA | |
Low energy | 55 kV | 50 mA | |
Sternum | The protocol is used for imaging the sternum, particularly when there is a suspicion of a sternum fracture. Given the challenge of visualizing the breastbone (sternum) adequately in a frontal view, a lateral profile is often employed for a more comprehensive examination. | ||
High energy | 80 kV | 200 mA | |
Medium energy | 70 kV | 125 mA | |
Low energy | 60 kV | 125 mA | |
Nez P | The protocol is used for nasal imaging and involves examining the nose and sinuses for various purposes, including the detection of fractures, post-rhinoplasty preventive imaging, and the identification of sinus issues such as sinusitis and facial bone polyps. | ||
High energy | 46 kV | 6.3 mA | |
Medium energy | 44 kV | 4 mA | |
Low energy | 40 kV | 3.2 mA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dukov, N.; Valkova, V.-M.; Yordanova, M.; Tsapaki, V.; Bliznakova, K. Design and Use of a Custom Phantom for Regular Tests of Radiography Apparatus: A Feasibility Study. J. Imaging 2024, 10, 258. https://doi.org/10.3390/jimaging10100258
Dukov N, Valkova V-M, Yordanova M, Tsapaki V, Bliznakova K. Design and Use of a Custom Phantom for Regular Tests of Radiography Apparatus: A Feasibility Study. Journal of Imaging. 2024; 10(10):258. https://doi.org/10.3390/jimaging10100258
Chicago/Turabian StyleDukov, Nikolay, Vanessa-Mery Valkova, Mariana Yordanova, Virginia Tsapaki, and Kristina Bliznakova. 2024. "Design and Use of a Custom Phantom for Regular Tests of Radiography Apparatus: A Feasibility Study" Journal of Imaging 10, no. 10: 258. https://doi.org/10.3390/jimaging10100258
APA StyleDukov, N., Valkova, V.-M., Yordanova, M., Tsapaki, V., & Bliznakova, K. (2024). Design and Use of a Custom Phantom for Regular Tests of Radiography Apparatus: A Feasibility Study. Journal of Imaging, 10(10), 258. https://doi.org/10.3390/jimaging10100258