Advances in Vanadium-Redoxed Polyanions for High-Voltage Sodium-Ion Batteries
Abstract
:1. Introduction
Materials | Structure | Redox (V) | Redox Couple | Theoretical Capacity (mAh g−1) | Theoretical Specific Energy (vs. Na+/Na) (Wh kg−1) | Electrochemical Activity |
---|---|---|---|---|---|---|
Na3V2(PO4)3 [21,22] | Rhombohedral | 3.4 | V4+/V3+ | 117.6 | 400 | 117 mAh g−1 at 1 C 82 mAh g−1 at 100 C |
Na3V3(PO4)4 [23] | Monoclinic (layered structure) | 3.9 | V4+/V3+ | 44.5 | 174 | ~40 mAh g−1 at 0.6 C |
Na3V(PO4)2 [24] | Monoclinic (layered structure) | 3.5 | V4+/V3+ | 90 | 315 | ~90 mAh g−1 at 0.2 C |
VOPO4 [25] | Tetragonal (layered structure) | 3.4 | V5+/V4+ | 165.5 | 563 | 150 mAh g−1 at 0.05 C |
NaVOPO4 [26] | Monoclinic | 3.6 | V5+/V4+ | 145 | 522 | 101 mAh g−1 at 5 mA g−1 |
NaVOPO4 [27] | Orthorhombic | 3.3 | V5+/V4+ | 145 | 479 | 115 mAh g−1 at 0.1 C |
NaVOPO4 [28] | Triclinic | 3.5 | V5+/V4+ | 145 | 508 | 144 mAh g−1 at 0.05 C |
Na4VO(PO4)2 [29,30] | Orthorhombic | 3.5 | V5+/V4+ | 78 | 273 | 41.3 mAh g−1 at 10 C |
NaVPO4F [31] | Tetragonal (NASICON) | 3.7 | V4+/V3+ | 142.5 | 527 | 120.9 mAh g−1 at 0.05 C 70.1 mAh g−1 at 0.5 C |
NaVPO4F [32,33,34] | Monoclinic (NASICON) | 3.4 | V4+/V3+ | 142.5 | 484.5 | 135 mAh g−1 at 0.2 C 86.5 mAh g−1 at 100 C |
Na5V(PO4)2F2 [35] | Trigonal/Orthorhombic | 3.4/3.5 | V4+/V3+ | 68 | 231.2/238 | 61 mAh g−1 at 0.1C |
Na3V2(PO4)2F3 [36,37] | Tetragonal (NASICON) | 3.9 | V4+/V3+ | 128.3 | 500 | 125 mAh g−1 at 0.2 C |
Na3V2(PO4)2O2F [38,39] | Tetragonal | 3.8 | V5+/V4+ | 130 | 494 | 127.4 mAh g−1 at 0.2C |
Na3V2(PO4)2O1.6F1.4 [40,41] | Tetragonal | 3.8 | V5+/V4+ | 129.7 | 492.9 | 134 mAh g−1 at 0.1 C |
NaVP2O7 [42] | Monoclinic | 3.9 | V4+/V3+ | 108.1 | 421 | 104 mAh g−1 at 0.1 C |
Na7V3(P2O7)4 [43,44] | Monoclinic | 4.13 | V4+/V3+ | 79.6 | 329 | 67.2 mAh g−1 at 8 C |
Na2VOP2O7 [45] | Tetragonal | 3.8 | V5+/V4+ | 93.4 | 355 | 80 mAh g−1 at 0.05 C |
Na7V4(P2O7)4(PO4) [46,47] | Tetragonal | 3.85 | V4+/V3+ | 92.7 | 357 | 92 mAh g−1 at 0.05 C 70.2 mAh g−1 at 10 C |
Na2(VO)2(HPO4)2(C2O4) [48] | Monoclinic | 4.0 | V5+/V4+ | 116.6 | 466.4 | 105 mA h g−1 at 0.1 C |
2. Phosphate
2.1. Na3V2(PO4)3 (3.4 V vs. Na+/Na, the Same Hereinafter)
2.2. Na3V3(PO4)4 (3.9 V)
2.3. Na3V(PO4)2 (3.5 V)
2.4. VOPO4 (3.4 V)
2.5. NaVOPO4 (3.3 V/3.5 V/3.6 V Due to Phase Difference)
2.6. Na4VO(PO4)2 (3.5 V)
3. Fluorophosphate and Vanadyl Fluorophosphate
3.1. NaVPO4F (3.7 V)
3.2. Na5V(PO4)2F2 (3.4 V/3.5 V)
3.3. Na3V2(PO4)2F3 (3.9 V)
3.4. Na3V2O2x(PO4)2F3−2x (0 < x ≤ 1)
3.4.1. Na3V2(PO4)2O2F (3.8 V)
3.4.2. Na3V2(PO4)2O1.6F1.4 (3.8 V)
4. Pyrophosphates
4.1. NaVP2O7 (3.9 V)
4.2. Na7V3(P2O7)4 (4.13 V)
4.3. Na2(VO)P2O7 (3.8 V)
5. Mixed Polyanions
5.1. Na7V4(P2O7)4(PO4) (3.85 V)
5.2. Na2(VO)2(HPO4)2C2O4 (4.0 V)
6. Summary and Perspectives
- Improvement in the operating voltage. Although V-based polyanionic compounds present relatively high operating voltages, more work is still urgently needed to further enhance the voltage of Vn+1/Vn+ (n = 2,3,4) redox couples as well as specific energies (vs. Na+/Na). There are three primary strategies to improve the operating voltage: utilization of inductive effect, activation of the V5+/V4+ redox couple, and substitution of functional elements. On one hand, owing to the inductive effect, the stronger electronegativity of X and a more ionic M–O bond will always result in a higher working voltage for the Mn+1/Mn+ redox couple. For the V3+/V4+ redox couple, different groups exhibit diverse operating voltages, following the order of P2O7 > PO4F ≈ (PO4)m(P2O7) > (PO4). On the other hand, it is possible for V-based compounds are to exhibit a multi-electron reaction (involving V3+/V2+, V4+/V3+, and V5+/V4+ redox couples). V4+/V3+ is the most widespread redox couple with a moderate voltage, while an efficient way to achieve a much higher voltage is to activate the V5+/V4+ redox couple at a higher voltage. Lastly, partially substituting vanadium with other high-voltage redox elements is also regarded as an efficient approach to promote voltage. Mn2+ and Co2+ may be ideal options and further investigation is necessary.
- Developing new V-based polyanionic compounds. To achieve higher specific energy (vs. Na+/Na), partially substituting heavy polyanionic groups (PO43−, P2O74−) with other light groups (CO32−, BO33−, etc.) is a viable option. The oxalate–phosphate compound Na2(VO)2(HPO4)2(C2O4) mentioned above is a referential instance. Additionally, considering the higher electronegativity for SO42−, V-based sulfates may also an available way to achieve high-voltage material. Vanadium-based phosphate polyanionic compounds are competitive candidates for application in SIBs because of their high voltage, high power density, and cycle stability.
- Although high-voltage V-based polyanionic compounds seem to be competitive candidate for SIBs, there is still a long way to go before their wide application (Figure 9). For instance, Li3V2(PO4)3 is a well-studied cathode material in Li-ion batteries but has not been commercialized for large-scale EES; however, the analysis of it may help us figure out the obstacles towards commercialization. Li3V2(PO4)3 provides a high capacity of 156.9 mAh g−1 within the voltage range of 3.0–4.8 V. However, its instability under high pressure, which may be caused by lithium–vanadium antisite mixing, necessitates researchers to limit the upper cut-off voltage to 4.3 V, resulting in uncompetitive specific energy (380 Wh kg−1 for Li3V2(PO4)3, ~496 Wh kg−1 for LiFePO4, ~430 Wh kg−1 for LiMn2O4). In short, the performance gap with rival products makes it difficult to commercialize. Even if V-based compounds have comparative advantages over other transition metal compounds, challenges still remain before their mass production. First, while vanadium resources are abundant in the upper continental crust, the price of vanadium is higher when compared to Fe, etc. Additionally, the recycling of vanadium and vanadium dissolution are also urgent problems before commercialization. Lastly, the pollution and toxicity of vanadium have also been noteworthy issues. Research indicates that vanadium enrichment will become an ecological problem around vanadium-production areas. Meanwhile, vanadium is moderately toxic, and excess vanadium can cause certain damage to the body’s organs and tissues. In general, if we can improve the production process of vanadium resources to reduce pollutants, and recycle V-based batteries at the end of their life, then vanadium-based cathode materials will usher in a promising future and maintain exuberant vitality.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hu, Y.-S.; Lu, Y. 2019 Nobel Prize for the Li-Ion Batteries and New Opportunities and Challenges in Na-Ion Batteries. ACS Energy Lett. 2019, 4, 2689–2690. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Zhang, Y.; Jiang, Z.; Zeng, X.; Ji, J.; Li, Z.; Gao, X.; Sun, M.; Lin, Z.; Ling, M.; et al. Exploring competitive features of stationary sodium ion batteries for electrochemical energy storage. Energy Environ. Sci. 2019, 12, 1512–1533. [Google Scholar] [CrossRef]
- Wedepohl, K.H. The composition of the continental crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Lv, Z.; Ling, M.; Yue, M.; Li, X.; Song, M.; Zheng, Q.; Zhang, H. Vanadium-based polyanionic compounds as cathode materials for sodium-ion batteries: Toward high-energy and high-power applications. J. Energy Chem. 2021, 55, 361–390. [Google Scholar] [CrossRef]
- Khan, Z.; Vagin, M.; Crispin, X. Can Hybrid Na–Air Batteries Outperform Nonaqueous Na–O2 Batteries? Adv. Sci. 2020, 7, 1902866. [Google Scholar] [CrossRef] [Green Version]
- Pu, X.; Wang, H.; Zhao, D.; Yang, H.; Ai, X.; Cao, S.; Chen, Z.; Cao, Y. Recent Progress in Rechargeable Sodium-Ion Batteries: Toward High-Power Applications. Small 2019, 15, e1805427. [Google Scholar]
- Song, J.; Wang, L.; Lu, Y.; Liu, J.; Guo, B.; Xiao, P.; Lee, J.; Yang, X.; Henkelman, G.; Goodenough, J. Removal of Interstitial H2O in Hexacyanometallates for a Superior Cathode of a Sodium-Ion Battery. J. Am. Chem. Soc. 2015, 137, 2658–2664. [Google Scholar] [CrossRef]
- Wu, X.; Wu, C.; Wei, C.; Hu, L.; Qian, J.; Cao, Y.; Ai, X.; Wang, J.; Yang, H. Highly Crystallized Na2CoFe(CN)6 with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8, 5393–5399. [Google Scholar] [CrossRef]
- Sun, Y.; Guo, S.; Zhou, H. Adverse effects of interlayer-gliding in layered transition-metal oxides on electrochemical sodium-ion storage. Energy Environ. Sci. 2019, 12, 825–840. [Google Scholar] [CrossRef]
- Yin, X.; Sarkar, S.; Shi, S.; Huang, Q.A.; Zhao, H.; Yan, L.; Zhao, Y.; Zhang, J. Recent Progress in Advanced Organic Electrode Materials for Sodium-Ion Batteries: Synthesis, Mechanisms, Challenges and Perspectives. Adv. Funct. Mater. 2020, 30, 908445. [Google Scholar]
- Yuan, T.; Wang, Y.; Zhang, J.; Pu, X.; Ai, X.; Chen, Z.; Yang, H.; Cao, Y. 3D graphene decorated Na4Fe3(PO4)2(P2O7) microspheres as low-cost and high-performance cathode materials for sodium-ion batteries. Nano Energy 2019, 56, 160–168. [Google Scholar] [CrossRef]
- Pu, X.; Wang, H.; Yuan, T.; Cao, S.; Liu, S.; Xu, L.; Yang, H.; Ai, X.; Chen, Z.; Cao, Y. Na4Fe3(PO4)2P2O7/C nanospheres as low-cost, high-performance cathode material for sodium-ion batteries. Energy Storage Mater. 2019, 22, 330–336. [Google Scholar] [CrossRef]
- Wang, H.; Pan, Z.; Zhang, H.; Dong, C.; Ding, Y.; Cao, Y.; Chen, Z. A Green and Scalable Synthesis of Na3Fe2(PO4)P2O7/rGO Cathode for High-Rate and Long-Life Sodium-Ion Batteries. Small Methods 2021, 5, 2100372. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Xu, J.; Zhang, W.; Mao, M.; Wei, Z.; Wang, L.; Cui, C.; Zhu, Y.; Ma, J. Research progress on vanadium-based cathode materials for sodium ion batteries. J. Mater. Chem. A 2018, 6, 8815–8838. [Google Scholar] [CrossRef]
- Barpanda, P.; Lander, L.; Nishimura, S.-i.; Yamada, A. Polyanionic Insertion Materials for Sodium-Ion Batteries. Adv. Energy Mater. 2018, 8, 1703055. [Google Scholar] [CrossRef]
- You, Y.; Manthiram, A. Progress in High-Voltage Cathode Materials for Rechargeable Sodium-Ion Batteries. Adv. Energy Mater. 2017, 8, 1701785. [Google Scholar] [CrossRef]
- Fang, Y.; Chen, Z.; Xiao, L.; Ai, X.; Cao, Y.; Yang, H. Recent Progress in Iron-Based Electrode Materials for Grid-Scale Sodium-Ion Batteries. Small 2018, 14, 1703116. [Google Scholar] [CrossRef]
- Jin, T.; Li, H.; Zhu, K.; Wang, P.F.; Liu, P.; Jiao, L. Polyanion-type cathode materials for sodium-ion batteries. Chem. Soc. Rev. 2020, 49, 2342–2377. [Google Scholar] [CrossRef]
- Pan, W.; Guan, W.; Jiang, Y. Research Advances in Polyanion-Type Cathodes for Sodium-Ion Batteries. Acta Phys. -Chim. Sin. 2020, 36, 1905017. [Google Scholar]
- Zheng, Q.; Yi, H.; Li, X.; Zhang, H. Progress and prospect for NASICON-type Na3V2(PO4)3 for electrochemical energy storage. J. Energy Chem. 2018, 27, 1597–1617. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Zhao, X.; Song, Y.; Li, Q.; Liu, Y.; Chen, J.; Xing, X. Understanding the superior sodium-ion storage in a novel Na3.5Mn0.5V1.5(PO4)3 cathode. Energy Storage Mater. 2019, 23, 25–34. [Google Scholar] [CrossRef]
- Zhu, C.; Kopold, P.; van Aken, P.A.; Maier, J.; Yu, Y. High Power-High Energy Sodium Battery Based on Threefold Interpenetrating Network. Adv. Mater. 2016, 28, 2409–2416. [Google Scholar] [CrossRef]
- Liu, R.; Liu, H.; Sheng, T.; Zheng, S.; Zhong, G.; Zheng, G.; Liang, Z.; Ortiz, G.F.; Zhao, W.; Mi, J.; et al. Novel 3.9 V Layered Na3V3(PO4)4 Cathode Material for Sodium Ion Batteries. ACS Appl. Energy Mater. 2018, 1, 3603–3606. [Google Scholar] [CrossRef]
- Kim, J.; Yoon, G.; Kim, H.; Park, Y.-U.; Kang, K. Na3V(PO4)2: A New Layered-Type Cathode Material with High Water Stability and Power Capability for Na-Ion Batteries. Chem. Mater. 2018, 30, 3683–3689. [Google Scholar] [CrossRef]
- He, G.; Kan, W.H.; Manthiram, A. A 3.4 V Layered VOPO4 Cathode for Na-Ion Batteries. Chem. Mater. 2016, 28, 682–688. [Google Scholar] [CrossRef]
- Chen, C.-Y.; Matsumoto, K.; Nohira, T.; Hagiwara, R. Improved Electrochemical Performance of NaVOPO4 Positive Electrodes at Elevated Temperature in an Ionic Liquid Electrolyte. J. Electrochem. Soc. 2015, 162, A2093–A2098. [Google Scholar] [CrossRef] [Green Version]
- Ni, Y.; He, G. Stable cycling of β-VOPO4/NaVOPO4 cathodes for sodium-ion batteries. Electrochim. Acta 2018, 292, 47–54. [Google Scholar] [CrossRef]
- Fang, Y.; Liu, Q.; Xiao, L.; Rong, Y.; Liu, Y.; Chen, Z.; Ai, X.; Cao, Y.; Yang, H.; Xie, J.; et al. A Fully Sodiated NaVOPO4 with Layered Structure for High-Voltage and Long-Lifespan Sodium-Ion Batteries. Chem 2018, 4, 1167–1180. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.; Kim, H.; Lee, S. High Power Cathode Material Na4VO(PO4)2 with Open Framework for Na Ion Batteries. Chem. Mater. 2017, 29, 3363–3366. [Google Scholar] [CrossRef]
- Aparicio, P.A.; de Leeuw, N.H. Electronic structure, ion diffusion and cation doping in the Na4VO(PO4)2 compound as a cathode material for Na-ion batteries. Phys. Chem. Chem. Phys. 2020, 22, 6653–6659. [Google Scholar] [CrossRef]
- Ruan, Y.-L.; Wang, K.; Song, S.-D.; Han, X.; Cheng, B.-W. Graphene modified sodium vanadium fluorophosphate as a high voltage cathode material for sodium ion batteries. Electrochim. Acta 2015, 160, 330–336. [Google Scholar] [CrossRef]
- Ling, M.; Li, F.; Yi, H.; Li, X.; Hou, G.; Zheng, Q.; Zhang, H. Superior Na-storage performance of molten-state-blending-synthesized monoclinic NaVPO4F nanoplates for Na-ion batteries. J. Mater. Chem. A 2018, 6, 24201–24209. [Google Scholar] [CrossRef]
- Cheng, B.; Zhang, S.; Zou, F.; Luo, L.; Chen, Y.; Chen, S.; Zhuo, H.; Zeng, X. Nano-NaVPO4F enwrapped in reduced graphene oxide as a cathode material for long-cycle and high-rate sodium-ion batteries. J. Alloys Compd. 2019, 811, 151828. [Google Scholar] [CrossRef]
- Chen, C.; Li, T.; Tian, H.; Zou, Y.; Sun, J. Building highly stable and industrial NaVPO4F/C as bipolar electrodes for high-rate symmetric rechargeable sodium-ion full batteries. J. Mater. Chem. A 2019, 7, 18451–18457. [Google Scholar] [CrossRef]
- Liang, Z.; Zhang, X.; Liu, R.; Ortiz, G.F.; Zhong, G.; Xiang, Y.; Chen, S.; Mi, J.; Wu, S.; Yang, Y. New Dimorphs of Na5V(PO4)2F2 as an Ultrastable Cathode Material for Sodium-Ion Batteries. ACS Appl. Energy Mater. 2020, 3, 1181–1189. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Huang, X.; Wang, H.; Zhou, T.; Xie, H.; Ren, Y. Synthesis and electrochemical performances of Na3V2(PO4)2F3/C composites as cathode materials for sodium ion batteries. RSC Adv. 2019, 9, 30628–30636. [Google Scholar] [CrossRef] [Green Version]
- Yi, H.; Ling, M.; Xu, W.; Li, X.; Zheng, Q.; Zhang, H. VSC-doping and VSU-doping of Na3V2-xTix(PO4)2F3 compounds for sodium ion battery cathodes: Analysis of electrochemical performance and kinetic properties. Nano Energy 2018, 47, 340–352. [Google Scholar] [CrossRef]
- Guo, J.Z.; Wang, P.F.; Wu, X.L.; Zhang, X.H.; Yan, Q.; Chen, H.; Zhang, J.P.; Guo, Y.G. High-Energy/Power and Low-Temperature Cathode for Sodium-Ion Batteries: In Situ XRD Study and Superior Full-Cell Performance. Adv. Mater. 2017, 29, 1701968. [Google Scholar] [CrossRef]
- Xu, J.; Chen, J.; Tao, L.; Tian, Z.; Zhou, S.; Zhao, N.; Wong, C.-P. Investigation of Na3V2(PO4)2O2F as a sodium ion battery cathode material: Influences of morphology and voltage window. Nano Energy 2019, 60, 510–519. [Google Scholar] [CrossRef]
- Park, Y.U.; Seo, D.H.; Kwon, H.S.; Kim, B.; Kim, J.; Kim, H.; Kim, I.; Yoo, H.I.; Kang, K. A new high-energy cathode for a Na-ion battery with ultrahigh stability. J. Am. Chem. Soc. 2013, 135, 13870–13878. [Google Scholar] [CrossRef]
- Zhu, J.; Li, Y.; Yang, B.; Liu, L.; Li, J.; Yan, X.; He, D. A Dual Carbon-Based Potassium Dual Ion Battery with Robust Comprehensive Performance. Small 2018, 14, 1801836. [Google Scholar] [CrossRef]
- Drozhzhin, O.A.; Tertov, I.V.; Alekseeva, A.M.; Aksyonov, D.A.; Stevenson, K.J.; Abakumov, A.M.; Antipov, E.V. β-NaVP2O7 as a Superior Electrode Material for Na-Ion Batteries. Chem. Mater. 2019, 31, 7463–7469. [Google Scholar] [CrossRef]
- Kim, J.; Park, I.; Kim, H.; Park, K.-Y.; Park, Y.-U.; Kang, K. Tailoring a New 4V-Class Cathode Material for Na-Ion Batteries. Adv. Energy Mater. 2016, 6, 1502147. [Google Scholar] [CrossRef]
- Kovrugin, V.M.; Chotard, J.-N.; Fauth, F.; Masquelier, C. Na7V3(P2O7)4 as a high voltage electrode material for Na-ion batteries: Crystal structure and mechanism of Na+ extraction/insertion by operando X-ray diffraction. J. Mater. Chem. A 2020, 8, 21110–21121. [Google Scholar] [CrossRef]
- Barpanda, P.; Liu, G.; Avdeev, M.; Yamada, A. t-Na2(VO)P2O7: A 3.8 V Pyrophosphate Insertion Material for Sodium-Ion Batteries. ChemElectroChem 2014, 1, 1488–1491. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, J.; Li, Z.; Liu, X.; Xu, Q.; Liu, H.; Wang, Y.; Xia, Y.; Ma, Z. Using Na7V4(P2O7)4(PO4) with superior Na storage performance as bipolar electrodes to build a novel high-energy-density symmetric sodium-ion full battery. J. Power Sources 2020, 451, 227734. [Google Scholar] [CrossRef]
- Fang, W.; An, Z.; Xu, J.; Zhao, H.; Zhang, J. Superior performance of Na7V4(P2O7)4PO4 in sodium ion batteries. RSC Adv. 2018, 8, 21224–21228. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Guan, C.; Xu, M.; Guo, J.; Yuan, K.; Cheng, K.; Xie, Y.; Zhang, L.; Zheng, J.; Lai, Y.; et al. Organic/inorganic anions coupling enabled reversible high-valent redox in vanadium-based polyanionic compound. Energy Storage Mater. 2022, 47, 526–533. [Google Scholar] [CrossRef]
- Bui, K.M.; Dinh, V.A.; Okada, S.; Ohno, T. Na-ion diffusion in a NASICON-type solid electrolyte: A density functional study. Phys. Chem. Chem. Phys. 2016, 18, 27226–27231. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Rui, X.; Chen, D.; Tan, H.; Yang, D.; Huang, S.; Yu, Y. Na3V2(PO4)3: An advanced cathode for sodium-ion batteries. Nanoscale 2019, 11, 2556–2576. [Google Scholar] [CrossRef]
- Saravanan, K.; Mason, C.W.; Rudola, A.; Wong, K.H.; Balaya, P. The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries. Adv. Energy Mater. 2013, 3, 444–450. [Google Scholar] [CrossRef]
- Jian, Z.; Han, W.; Lu, X.; Yang, H.; Hu, Y.-S.; Zhou, J.; Zhou, Z.; Li, J.; Chen, W.; Chen, D.; et al. Superior Electrochemical Performance and Storage Mechanism of Na3V2(PO4)3 Cathode for Room-Temperature Sodium-Ion Batteries. Adv. Energy Mater. 2013, 3, 156–160. [Google Scholar] [CrossRef]
- Jian, Z.; Yuan, C.; Han, W.; Lu, X.; Gu, L.; Xi, X.; Hu, Y.-S.; Li, H.; Chen, W.; Chen, D.; et al. Atomic Structure and Kinetics of NASICON NaxV2(PO4)3 Cathode for Sodium-Ion Batteries. Adv. Funct. Mater. 2014, 24, 4265–4272. [Google Scholar] [CrossRef]
- Bui, K.M.; Dinh, V.A.; Okada, S.; Ohno, T. Hybrid functional study of the NASICON-type Na3V2(PO4)3: Crystal and electronic structures, and polaron-Na vacancy complex diffusion. Phys. Chem. Chem. Phys. 2015, 17, 30433–30439. [Google Scholar] [CrossRef]
- Jian, Z.; Zhao, L.; Pan, H.; Hu, Y.-S.; Li, H.; Chen, W.; Chen, L. Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries. Electrochem. Commun. 2012, 14, 86–89. [Google Scholar] [CrossRef]
- Shen, W.; Li, H.; Guo, Z.; Wang, C.; Li, Z.; Xu, Q.; Liu, H.; Wang, Y.; Xia, Y. Double-Nanocarbon Synergistically Modified Na3V2(PO4)3: An Advanced Cathode for High-Rate and Long-Life Sodium-Ion Batteries. ACS Appl. Mater. Interfaces 2016, 8, 15341–15351. [Google Scholar] [CrossRef]
- Zakharkin, M.V.; Drozhzhin, O.A.; Ryazantsev, S.V.; Chernyshov, D.; Kirsanova, M.A.; Mikheev, I.V.; Pazhetnov, E.M.; Antipov, E.V.; Stevenson, K.J. Electrochemical properties and evolution of the phase transformation behavior in the NASICON-type Na3+xMnxV2-x(PO4)3 (0≤x≤1) cathodes for Na-ion batteries. J. Power Sources 2020, 470, 228231. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, Y.; Sun, X.; Zhang, B.; He, S.; Li, L.; Wang, C. Preventing structural degradation from Na3V2(PO4)3 to V2(PO4)3: F-doped Na3V2(PO4)3/C cathode composite with stable lifetime for sodium ion batteries. J. Power Sources 2018, 378, 423–432. [Google Scholar] [CrossRef]
- Nie, P.; Zhu, Y.; Shen, L.; Pang, G.; Xu, G.; Dong, S.; Dou, H.; Zhang, X. From biomolecule to Na3V2(PO4)3/nitrogen-decorated carbon hybrids: Highly reversible cathodes for sodium-ion batteries. J. Mater. Chem. A 2014, 2, 18606–18612. [Google Scholar] [CrossRef]
- Guo, J.Z.; Wu, X.L.; Wan, F.; Wang, J.; Zhang, X.H.; Wang, R.S. A Superior Na3V2(PO4)3-Based Nanocomposite Enhanced by Both N-Doped Coating Carbon and Graphene as the Cathode for Sodium-Ion Batteries. Chemistry 2015, 21, 17371–17378. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhou, X.; Li, D.; Cheng, X.; Liu, F.; Yu, Y. Highly Reversible Na Storage in Na3V2(PO4)3 by Optimizing Nanostructure and Rational Surface Engineering. Adv. Energy Mater. 2018, 8, 1800068. [Google Scholar] [CrossRef]
- Duan, W.; Zhu, Z.; Li, H.; Hu, Z.; Zhang, K.; Cheng, F.; Chen, J. Na3V2(PO4)3@C core–shell nanocomposites for rechargeable sodium-ion batteries. J. Mater. Chem. A 2014, 2, 8668–8675. [Google Scholar] [CrossRef]
- Wang, Q.; Zhao, B.; Zhang, S.; Gao, X.; Deng, C. Superior sodium intercalation of honeycomb-structured hierarchical porous Na3V2(PO4)3/C microballs prepared by a facile one-pot synthesis. J. Mater. Chem. A 2015, 3, 7732–7740. [Google Scholar] [CrossRef]
- Kovrugin, V.M.; David, R.; Chotard, J.N.; Recham, N.; Masquelier, C. A High Voltage Cathode Material for Sodium Batteries: Na3V(PO4)2. Inorg. Chem. 2018, 57, 8760–8768. [Google Scholar] [CrossRef]
- Hao, X.; Xie, H.; Zhang, X.; Wang, R.; Yu, S.; Liu, Y.; Yu, Y.; Xu, Y.; Sun, K. Electrochemical properties and sodium ion diffusion in Na3V(PO4)2. J. Solid State Chem. 2020, 281, 121047. [Google Scholar] [CrossRef]
- Kuganathan, N.; Chroneos, A. Na3V(PO4)2 cathode material for Na ion batteries: Defects, dopants and Na diffusion. Solid State Ion. 2019, 336, 75–79. [Google Scholar] [CrossRef] [Green Version]
- Liu, R.; Liang, Z.; Xiang, Y.; Zhao, W.; Liu, H.; Chen, Y.; An, K.; Yang, Y. Recognition of V3+/V4+/V5+ Multielectron Reactions in Na3V(PO4)2: A Potential High Energy Density Cathode for Sodium-Ion Batteries. Molecules 2020, 25, 1000. [Google Scholar] [CrossRef] [Green Version]
- Boudin, S.; Guesdon, A.; Leclaire, A.; Borel, M.-M. Review on vanadium phosphates with mono and divalent metallic cations: Syntheses, structural relationships and classification, properties. J Int. J. Inorg. Mater. 2000, 2, 561–579. [Google Scholar] [CrossRef]
- Dupré, N.; Wallez, G.; Gaubicher, J.; Quarton, M. Phase transition induced by lithium insertion in αI- and αII-VOPO4. J. Solid State Chem. 2004, 177, 2896–2902. [Google Scholar] [CrossRef]
- Zhu, Y.; Peng, L.; Chen, D.; Yu, G. Intercalation Pseudocapacitance in Ultrathin VOPO4 Nanosheets: Toward High-Rate Alkali-Ion-Based Electrochemical Energy Storage. Nano Lett. 2016, 16, 742–747. [Google Scholar] [CrossRef]
- Li, H.; Peng, L.; Zhu, Y.; Chen, D.; Zhang, X.; Yu, G. An advanced high-energy sodium ion full battery based on nanostructured Na2Ti3O7/VOPO4 layered materials. Energy Environ. Sci. 2016, 9, 3399–3405. [Google Scholar] [CrossRef]
- Zhang, Z.; Ni, Y.; Avdeev, M.; Kan, W.H.; He, G. Dual-ion intercalation to enable high-capacity VOPO4 cathodes for Na-ion batteries. Electrochim. Acta 2021, 365, 137376. [Google Scholar] [CrossRef]
- Song, J.; Xu, M.; Wang, L.; Goodenough, J.B. Exploration of NaVOPO4 as a cathode for a Na-ion battery. Chem. Commun. 2013, 49, 5280–5282. [Google Scholar] [CrossRef]
- He, G.; Huq, A.; Kan, W.H.; Manthiram, A. β-NaVOPO4 Obtained by a Low-Temperature Synthesis Process: A New 3.3 V Cathode for Sodium-Ion Batteries. Chem. Mater. 2016, 28, 1503–1512. [Google Scholar] [CrossRef]
- Aparicio, P.A.; Dawson, J.A.; Islam, M.S.; de Leeuw, N.H. Computational Study of NaVOPO4 Polymorphs as Cathode Materials for Na-Ion Batteries: Diffusion, Electronic Properties, and Cation-Doping Behavior. J. Phys. Chem. C 2018, 122, 25829–25836. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Zhang, J.; Zhong, F.; Feng, X.; Chen, W.; Ai, X.; Yang, H.; Cao, Y. Amorphous NaVOPO4 as a High-Rate and Ultrastable Cathode Material for Sodium-Ion Batteries. CCS Chem. 2021, 3, 2428–2436. [Google Scholar] [CrossRef]
- Ding, J.; Lin, Y.C.; Liu, J.; Rana, J.; Zhang, H.; Zhou, H.; Chu, I.H.; Wiaderek, K.M.; Omenya, F.; Chernova, N.A.; et al. KVOPO4: A New High Capacity Multielectron Na-Ion Battery Cathode. Adv. Energy Mater. 2018, 8, 1800221. [Google Scholar] [CrossRef] [Green Version]
- Deriouche, W.; Anger, E.; Freire, M.; Maignan, A.; Amdouni, N.; Pralong, V. A vanadium oxy-phosphate Na4VO(PO4)2 as cathode material for Na ion batteries. Solid State Sci. 2017, 72, 124–129. [Google Scholar] [CrossRef]
- Ling, M.; Jiang, Q.; Li, T.; Wang, C.; Lv, Z.; Zhang, H.; Zheng, Q.; Li, X. The Mystery from Tetragonal NaVPO4F to Monoclinic NaVPO4F: Crystal Presentation, Phase Conversion, and Na-Storage Kinetics. Adv. Energy Mater. 2021, 11, 2100627. [Google Scholar] [CrossRef]
- Ling, M.; Lv, Z.; Li, F.; Zhao, J.; Zhang, H.; Hou, G.; Zheng, Q.; Li, X. Revisiting of Tetragonal NaVPO4F: A High Energy Density Cathode for Sodium-Ion Batteries. ACS Appl Mater Interfaces 2020, 12, 30510–30519. [Google Scholar] [CrossRef]
- Jin, T.; Liu, Y.; Li, Y.; Cao, K.; Wang, X.; Jiao, L. Electrospun NaVPO4F/C Nanofibers as Self-Standing Cathode Material for Ultralong Cycle Life Na-Ion Batteries. Adv. Energy Mater. 2017, 7, 1700087. [Google Scholar] [CrossRef]
- Zhao, J.; He, J.; Ding, X.; Zhou, J.; Ma Yo Wu, S.; Huang, R. A novel sol–gel synthesis route to NaVPO4F as cathode material for hybrid lithium ion batteries. J. Power Sources 2010, 195, 6854–6859. [Google Scholar] [CrossRef]
- Zhao, C.-D.; Guo, J.-Z.; Gu, Z.-Y.; Zhao, X.-X.; Li, W.-H.; Yang, X.; Liang, H.-J.; Wu, X.-L. Robust three-dimensional carbon conductive network in a NaVPO4F cathode used for superior high-rate and ultralong-lifespan sodium-ion full batteries. J. Mater. Chem. A 2020, 8, 17454–17462. [Google Scholar] [CrossRef]
- Kumar, V.K.; Ghosh, S.; Biswas, S.; Martha, S.K. Pitch-Derived Soft-Carbon-Wrapped NaVPO4F Composite as a Potential Cathode Material for Sodium-Ion Batteries. ACS Appl. Energy Mater. 2021, 4, 4059–4069. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, F.; Lü, T.-Y.; Wu, S.; Zhu, Z. Probing the Limiting Mechanism of Sodium-Ion Extraction in the Na5V(PO4)2F2 Cathode. J. Phys. Chem. C 2021, 125, 14583–14589. [Google Scholar] [CrossRef]
- Song, W.; Ji, X.; Wu, Z.; Yang, Y.; Zhou, Z.; Li, F.; Chen, Q.; Banks, C.E. Exploration of ion migration mechanism and diffusion capability for Na3V2(PO4)2F3 cathode utilized in rechargeable sodium-ion batteries. J. Power Sources 2014, 256, 258–263. [Google Scholar] [CrossRef]
- Nguyen, L.H.B.; Sanz Camacho, P.; Broux, T.; Olchowka, J.; Masquelier, C.; Croguennec, L.; Carlier, D. Density Functional Theory-Assisted 31P and 23Na Magic-Angle Spinning Nuclear Magnetic Resonance Study of the Na3V2(PO4)2F3-Na3V2(PO4)2FO2 Solid Solution: Unraveling Its Local and Electronic Structures. Chem. Mater. 2019, 31, 9759–9768. [Google Scholar] [CrossRef]
- Xiong, H.; Liu, Y.; Shao, H.; Yang, Y. Understanding the electrochemical mechanism of high sodium selective material Na3V2(PO4)2F3 in Li+/Na+ dual-ion batteries. Electrochim. Acta 2018, 292, 234–246. [Google Scholar] [CrossRef]
- Guo, C.; Yang, J.; Cui, Z.; Qi, S.; Peng, Q.; Sun, W.; Lv, L.-P.; Xu, Y.; Wang, Y.; Chen, S. In-situ structural evolution analysis of Zr-doped Na3V2(PO4)2F3 coated by N-doped carbon layer as high-performance cathode for sodium-ion batteries. J. Energy Chem. 2022, 65, 514–523. [Google Scholar] [CrossRef]
- Gu, Z.-Y.; Guo, J.-Z.; Sun, Z.-H.; Zhao, X.-X.; Li, W.-H.; Yang, X.; Liang, H.-J.; Zhao, C.-D.; Wu, X.-L. Carbon-coating-increased working voltage and energy density towards an advanced Na3V2(PO4)2F3@C cathode in sodium-ion batteries. Sci. Bull. 2020, 65, 702–710. [Google Scholar] [CrossRef]
- Qi, Y.; Mu, L.; Zhao, J.; Hu, Y.-S.; Liu, H.; Dai, S. pH-regulative synthesis of Na3(VPO4)2F3 nanoflowers and their improved Na cycling stability. J. Mater. Chem. A 2016, 4, 7178–7184. [Google Scholar] [CrossRef]
- Li, L.; Xu, Y.; Chang, R.; Wang, C.; He, S.; Ding, X. Unraveling the mechanism of optimal concentration for Fe substitution in Na3V2(PO4)2F3/C for Sodium-Ion batteries. Energy Storage Mater. 2021, 37, 325–335. [Google Scholar] [CrossRef]
- Liang, K.; Wang, S.; Zhao, H.; Huang, X.; Ren, Y.; He, Z.; Mao, J.; Zheng, J. A facile strategy for developing uniform hierarchical Na3V2(PO4)2F3@carbonized polyacrylonitrile multi-clustered hollow microspheres for high-energy-density sodium-ion batteries. Chem. Eng. J. 2022, 428, 131780. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, E.; Zhang, J.; Quan, J.; Wang, H.; Sun, Z.; Jiang, Y. Fabrication of a Sandwiched Core Carbon Sphere@Na3V2(PO4)2O2F@N-Doped Carbon Cathode for Superior Sodium-Ion Batteries. ACS Appl. Energy Mater. 2021, 4, 3952–3961. [Google Scholar] [CrossRef]
- Park, Y.-U.; Seo, D.-H.; Kim, H.; Kim, J.; Lee, S.; Kim, B.; Kang, K. A Family of High-Performance Cathode Materials for Na-ion Batteries, Na3(VO1−xPO4)2F1+2x(0 ≤ x ≤ 1): Combined First-Principles and Experimental Study. Adv. Funct. Mater. 2014, 24, 4603–4614. [Google Scholar] [CrossRef]
- Fang, R.; Olchowka, J.; Pablos, C.; Bianchini Nuernberg, R.; Croguennec, L.; Cassaignon, S. Impact of the F- for O2- Substitution in Na3V2(PO4)2F3-yOy on Their Transport Properties and Electrochemical Performance. ACS Appl. Energy Mater. 2022, 5, 1065–1075. [Google Scholar] [CrossRef]
- Olchowka, J.; Nguyen, L.H.B.; Broux, T.; Sanz Camacho, P.; Petit, E.; Fauth, F.; Carlier, D.; Masquelier, C.; Croguennec, L. Aluminum substitution for vanadium in the Na3V2(PO4)2F3 and Na3V2(PO4)2FO2 type materials. Chem. Commun. (Camb) 2019, 55, 11719–11722. [Google Scholar] [CrossRef]
- Nguyen, L.H.B.; Broux, T.; Camacho, P.S.; Denux, D.; Bourgeois, L.; Belin, S.; Iadecola, A.; Fauth, F.; Carlier, D.; Olchowka, J.; et al. Stability in water and electrochemical properties of the Na3V2(PO4)2F3-Na3(VO)2(PO4)2F solid solution. Energy Storage Mater. 2019, 20, 324–334. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, L.H.B.; Olchowka, J.; Belin, S.; Sanz Camacho, P.; Duttine, M.; Iadecola, A.; Fauth, F.; Carlier, D.; Masquelier, C.; Croguennec, L. Monitoring the Crystal Structure and the Electrochemical Properties of Na3(VO)2(PO4)2F through Fe3+ Substitution. ACS Appl. Mater. Interfaces 2019, 11, 38808–38818. [Google Scholar] [CrossRef]
- Serras, P.; Palomares, V.; Goñi, A.; Gil de Muro, I.; Kubiak, P.; Lezama, L.; Rojo, T. High voltage cathode materials for Na-ion batteries of general formula Na3V2O2x(PO4)2F3−2x. J. Mater. Chem. 2012, 22, 22301–22308. [Google Scholar] [CrossRef]
- Serras, P.; Palomares, V.; Goñi, A.; Kubiak, P.; Rojo, T. Electrochemical performance of mixed valence Na3V2O2x(PO4)2F3−2x/C as cathode for sodium-ion batteries. J. Power Sources 2013, 241, 56–60. [Google Scholar] [CrossRef]
- Sharma, N.; Serras, P.; Palomares, V.; Brand, H.E.A.; Alonso, J.; Kubiak, P.; Fdez-Gubieda, M.L.; Rojo, T. Sodium Distribution and Reaction Mechanisms of a Na3V2O2(PO4)2F Electrode during Use in a Sodium-Ion Battery. Chem. Mater. 2014, 26, 3391–3402. [Google Scholar] [CrossRef]
- Mao, Z.; Wang, R.; He, B.; Gong, Y.; Wang, H. Large-Area, Uniform, Aligned Arrays of Na3(VO)2(PO4)2F on Carbon Nanofiber for Quasi-Solid-State Sodium-Ion Hybrid Capacitors. Small 2019, 15, 1902466. [Google Scholar] [CrossRef] [PubMed]
- Olchowka, J.; Fang, R.; Bianchini Nuernberg, R.; Pablos, C.; Carlier, D.; Cassaignon, S.; Croguennec, L. Particle nanosizing and coating with an ionic liquid: Two routes to improve the transport properties of Na3V2(PO4)2FO2. Nanoscale 2022, 14, 8663–8676. [Google Scholar] [CrossRef]
- Palomares, V.; Iturrondobeitia, A.; Sanchez-Fontecoba, P.; Goonetilleke, D.; Sharma, N.; Lezama, L.; Rojo, T. Iron-Doped Sodium–Vanadium Fluorophosphates: Na3V2–yO2–yFey(PO4)2F1+y (y < 0.3). Inorg. Chem. 2019, 59, 854–862. [Google Scholar]
- Li, C.; Shen, M.; Lou, X.; Hu, B. Unraveling the Redox Couples of VIII/VIV Mixed-Valent Na3V2(PO4)2O1.6F1.4 Cathode by Parallel-Mode EPR and In Situ/Ex Situ NMR. J. Phys. Chem. C 2018, 122, 27224–27232. [Google Scholar] [CrossRef]
- Li, C.; Shen, M.; Hu, B.; Lou, X.; Zhang, X.; Tong, W.; Hu, B. High-energy nanostructured Na3V2(PO4)2O1.6F1.4 cathodes for sodium-ion batteries and a new insight into their redox chemistry. J. Mater. Chem. A 2018, 6, 8340–8348. [Google Scholar] [CrossRef]
- Kee, Y.; Dimov, N.; Staikov, A.; Barpanda, P.; Lu, Y.-C.; Minami, K.; Okada, S. Insight into the limited electrochemical activity of NaVP2O7. RSC Adv. 2015, 5, 64991–64996. [Google Scholar] [CrossRef]
- Vellaisamy, M.; Reddy, M.V.; Chowdari, B.V.R.; Kalaiselvi, N. Exploration of AVP2O7/C (A = Li, Li0.5Na0.5, and Na) for High-Rate Sodium-Ion Battery Applications. J. Phys. Chem. C 2018, 122, 24609–24618. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, S.; Zhao, B. First exploration of ultrafine Na7V3(P2O7)4 as a high-potential cathode material for sodium-ion battery. Energy Storage Mater. 2016, 4, 71–78. [Google Scholar] [CrossRef]
- Daidouh, A.; Veiga, M.; Pico, C. New polymorphs of A2VP2O8 (A=Na, Rb): Structure determination and ionic conductivity. Solid State Ion. 1998, 106, 103–112. [Google Scholar] [CrossRef]
- Lim, S.Y.; Kim, H.; Chung, J.; Lee, J.H.; Kim, B.G.; Choi, J.J.; Chung, K.Y.; Cho, W.; Kim, S.J.; Goddard, W.A., 3rd; et al. Role of intermediate phase for stable cycling of Na7V4(P2O7)4PO4 in sodium ion battery. Proc. Natl. Acad. Sci. USA 2014, 111, 599–604. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, C.; Zhang, S.; Wu, Y. Hydrothermal-assisted synthesis of the Na7V4(P2O7)4(PO4)/C nanorod and its fast sodium intercalation chemistry in aqueous rechargeable sodium batteries. Nanoscale 2015, 7, 487–491. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, S.; Deng, C.; Meng, Y. Bicontinuous hierarchical Na7V4(P2O7)4(PO4)/C nanorod-graphene composite with enhanced fast sodium and lithium ions intercalation chemistry. J. Mater. Chem. A 2014, 2, 20538–20544. [Google Scholar] [CrossRef]
- Deng, C.; Zhang, S. 1D nanostructured Na7V4(P2O7)4(PO4) as high-potential and superior-performance cathode material for sodium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 9111–9117. [Google Scholar] [CrossRef]
- Li, Q.; Lin, B.; Zhang, S.; Deng, C. Towards high potential and ultra long-life cathodes for sodium ion batteries: Freestanding 3D hybrid foams of Na7V4(P2O7)4(PO4) and Na7V3(P2O7)4@biomass-derived porous carbon. J. Mater. Chem. A 2016, 4, 5719–5729. [Google Scholar] [CrossRef]
- Zhao, D.; Wang, C.; Ding, Y.; Ding, M.; Cao, Y.; Chen, Z. Will Vanadium-Based Electrode Materials Become the Future Choice for Metal-Ion Batteries? ChemSusChem 2022, 15, e202200479. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, H.; Chen, Y.; Wen, T.; Chen, L.; Pu, X.; Chen, Z. Advances in Vanadium-Redoxed Polyanions for High-Voltage Sodium-Ion Batteries. Batteries 2023, 9, 56. https://doi.org/10.3390/batteries9010056
Wu H, Chen Y, Wen T, Chen L, Pu X, Chen Z. Advances in Vanadium-Redoxed Polyanions for High-Voltage Sodium-Ion Batteries. Batteries. 2023; 9(1):56. https://doi.org/10.3390/batteries9010056
Chicago/Turabian StyleWu, Honglun, Yiqing Chen, Tianzhuo Wen, Long Chen, Xiangjun Pu, and Zhongxue Chen. 2023. "Advances in Vanadium-Redoxed Polyanions for High-Voltage Sodium-Ion Batteries" Batteries 9, no. 1: 56. https://doi.org/10.3390/batteries9010056
APA StyleWu, H., Chen, Y., Wen, T., Chen, L., Pu, X., & Chen, Z. (2023). Advances in Vanadium-Redoxed Polyanions for High-Voltage Sodium-Ion Batteries. Batteries, 9(1), 56. https://doi.org/10.3390/batteries9010056