Innovative Tools for the Nitrogen Fertilization Traceability of Organic Farming Products
Abstract
:1. Background
2. The Up-to-Date Literature
3. Methodology
4. Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miller, H.I. Buying ‘Organic’ to Get ‘Authenticity’? Or Safer and More Nutritious Food? Think Again. And Again. Mo. Med. 2019, 116, 8–11. [Google Scholar]
- Prache, S.; Lebret, B.; Baéza, E.; Martin, B.; Gautron, J.; Feidt, C.; Médale, F.; Corraze, G.; Raulet, M.; Lefèvre, F.; et al. Review: Quality and authentication of organic animal products in Europe. Animal 2022, 16, 100405. [Google Scholar] [CrossRef]
- Chebrolu, K.K.; Jayaprakasha, G.K.; Jifon, J.; Patil, B.S. Production system and storage temperature influence grapefruit vitamin C, limonoids, and carotenoids. J. Agric. Food Chem. 2012, 60, 7096–7103. [Google Scholar] [CrossRef]
- Blundell, R.; Schmidt, J.E.; Igwe, A.; Cheung, A.L.; Vannette, R.L.; Gaudin, A.C.; Casteel, C.L. Organic management promotes natural pest control through altered plant resistance to insects. Nat. Plants 2020, 6, 483–491. [Google Scholar] [CrossRef]
- Fabroni, S.; Amenta, M.; Rapisarda, S.; Torrisi, B.; Licciardello, C. Amino acid metabolism and expression of genes involved in nitrogen assimilation in common oranges cv. Valencia Late. Biol. Plant. 2022, 66, 155–162. [Google Scholar] [CrossRef]
- Bateman, A.S.; Kelly, S.D.; Jickells, T.D. Nitrogen Isotope Relationships between Crops and Fertilizer: Implications for Using Nitrogen Isotope Analysis as an Indicator of Agricultural Regime. J. Agric. Food Chem. 2005, 53, 5760–5765. [Google Scholar] [CrossRef]
- Muñoz-Redondo, J.M.; Montenegro, J.C.; Moreno-Rojas, J.M. Using Nitrogen Stable Isotopes to Authenticate Organically and Conventionally Grown Vegetables: A New Tracking Framework. Agronomy 2023, 13, 131. [Google Scholar] [CrossRef]
- United Nations. Available online: https://www.un.org/sustainabledevelopment/ (accessed on 15 May 2023).
- European Commission. Available online: https://commission.europa.eu/strategy-and-policy/priorities-2019-2024/european-green-deal_en (accessed on 15 May 2023).
- Reganold, J.P.; Wachter, J.M. Organic agriculture in the twenty-first century. Nat. Plants 2016, 2, 15221. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Towards a Better Understanding of Agronomic Efficiency of Nitrogen: Assessment and Improvement Strategies. Agronomy 2016, 6, 31. [Google Scholar] [CrossRef]
- Persiani, A.; Diacono, M.; Monteforte, A.; Montemurro, F. Agronomic performance, energy analysis and carbon balance comparing different fertilization strategies in horticulture under Mediterranean conditions. Environ. Sci. Pollut. Res. 2019, 26, 19250–19260. [Google Scholar] [CrossRef]
- Regulation (EU) 2018/848 of the European Parliament and of the Council of 30 May 2018 on Organic Production and Labelling of Organic Products and Repealing Council Regulation (EC) No 834/2007. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32018R0848 (accessed on 15 May 2023).
- Ambrus, A. Reliability of measurements of pesticide residues in food. Accredit. Qual. Assur. 2004, 9, 288–304. [Google Scholar] [CrossRef]
- Kazimierczak, R.; Średnicka-Tober, D.; Golba, J.; Nowacka, A.; Hołodyńska-Kulas, A.; Kopczyńska, K.; Góralska-Walczak, R.; Gnusowski, B. Evaluation of Pesticide Residues Occurrence in Random Samples of Organic Fruits and Vegetables Marketed in Poland. Foods 2022, 11, 1963. [Google Scholar] [CrossRef] [PubMed]
- Rapisarda, P.; Calabretta, M.L.; Romano, G.; Intrigliolo, F. Nitrogen Metabolism Components as a Tool to Discriminate between Organic and Conventional Citrus Fruits. J. Agric. Food Chem. 2005, 53, 2664–2669. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Xie, D.; Ni, J.; Chen, F.; Ni, C.; Shao, J.; Zhu, D.; Wang, S.; Lei, P.; Zhao, G.; et al. Characteristics and influencing factors of chemical fertilizer and pesticide applications by farmers in hilly and mountainous areas of Southwest, China. Ecol. Indic. 2022, 143, 109346. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission, CAC/GL 60-Principles for Traceability/Product Tracing as a Tool within a Food Inspection and Certification System. 2006. Available online: www.codexalimentarius.net/input/download/standards/.../CXG_060e.pdf (accessed on 15 May 2023).
- Picó, Y.; Barceló, D. Isotopic Mass Spectrometry in Food and Environmental Chemistry. Mass Spectrometry in Food and Environmental Chemistry. In The Handbook of Environmental Chemistry; Picó, Y., Campo, J., Eds.; Springer: Cham, Switzerland, 2022; Volume 119. [Google Scholar] [CrossRef]
- Zhi, L.; Yuan, W.; Yudi, H.; Wei, L.; Bin, L.; Guiyuan, M. Multi-stable isotope and multi-element origin traceability of rice from the main producing regions in Asia: A long-term investigation during 2017–2020. Food Chem. 2023, 412, 135417. [Google Scholar] [CrossRef]
- Bontempo, L.; Perini, M.; Pianezze, S.; Horacek, M.; Roßmann, A.; Kelly, S.D.; Thomas, F.; Heinrich, K.; Schlicht, C.; Schellenberg, A.; et al. Characterization of Beef Coming from Different European Countries through Stable Isotope (H, C, N, and S) Ratio Analysis. Molecules 2023, 28, 2856. [Google Scholar] [CrossRef]
- Popîrdă, A.; Luchian, C.E.; Colibaba, L.C.; Focea, E.C.; Nicolas, S.; Noret, L.; Cioroiu, I.B.; Gougeon, R.; Cotea, V.V. Carbon-Isotope Ratio (δ13C) and Phenolic-Compounds Analysis in Authenticity Studies of Wines from Dealu Mare and Cotnari Regions (Romania). Agronomy 2022, 12, 2286. [Google Scholar] [CrossRef]
- Flores, P.; Fenoll, J.; Hellin, P. The Feasibility of Using δ15N and δ13C Values for Discriminating between conventionally and Organically Fertilized Pepper (Capsicum annuum L.). J. Agric. Food Chem. 2007, 55, 5740–5745. [Google Scholar] [CrossRef]
- Bateman, A.S.; Kelly, S.D.; Woolfe, M. Nitrogen Isotope Composition of Organically and Conventionally Grown Crops. J. Agric. Food Chem. 2007, 55, 2664–2670. [Google Scholar] [CrossRef]
- Rapisarda, P.; Camin, F.; Fabroni, S.; Perini, M.; Torrisi, B.; Intrigliolo, F. Influence of Different Organic Fertilizers on Quality Parameters and the δ15N, δ13C, δ2H, δ34S, and δ18O Values of Orange Fruit (Citrus sinensis L. Osbeck). J. Agric. Food Chem. 2010, 58, 3502–3506. [Google Scholar] [CrossRef]
- Camin, F.; Perini, M.; Bontempo, L.; Fabroni, S.; Faedi, W.; Magnani, S.; Baruzzi, G.; Bonoli, M.; Tabilio, M.R.; Musmeci, S.; et al. Potential isotopic and chemical markers for characterizing organic fruits. Food Chem. 2011, 125, 1072–1082. [Google Scholar] [CrossRef]
- Hayashi, N.; Ujihara, T.; Tanaka, E.; Kishi, Y.; Ogwa, H.; Matsuo, H. Annual Variation of Natural 15N Abundance in Tea Leaves and Its Practicality as an Organic Tea Indicator. J. Agric. Food Chem. 2011, 59, 10317–10321. [Google Scholar] [CrossRef]
- Carter, J.F.; Chesson, L.A. Food Forensics: Stable Isotopes as a Guide to Authenticity and Origin; CRC Press: Boca Raton, FL, USA, 2017; pp. 273–302. [Google Scholar]
- Novak, V.; Adler, J.; Husted, S.; Fromberg, A.; Laursen, K.H. Authenticity Testing of Organically Grown Vegetables by Stable Isotope Ratio Analysis of Oxygen in Plant-Derived Sulphate. Food Chem. 2019, 291, 59–67. [Google Scholar] [CrossRef] [Green Version]
- Gatzert, X.; Chun, K.P.; Boner, M.; Hermanowski, R.; Mäder, R.; Breuer, L.; Gattinger, A.; Orlowski, N. Assessment of multiple stable isotopes for tracking regional and organic authenticity of plant products in Hesse, Germany. Isot. Environ. Health Stud. 2021, 57, 281–300. [Google Scholar] [CrossRef]
- Bontempo, L.; van Leeuwen, K.A.; Paolini, M.; Holst Laursen, K.; Micheloni, C.; Prenzler, P.D.; Ryan, D.; Camin, F. Bulk and compound-specific stable isotope ratio analysis for authenticity testing of organically grown tomatoes. Food Chem. 2020, 318, 126426. [Google Scholar] [CrossRef] [PubMed]
- Wassenaar, L.I.; Kelly, S.D.; Douence, C.; Islam, M.; Monteiro, L.; Abrahim, A.; Rinke, P. Assessment of rapid low-cost isotope (δ15N, δ18O) analyses of nitrate in fruit extracts by Ti(III) reduction to differentiate organic from conventional production. Rapid Commun. Mass Spectrom. 2022, 36, e9259. [Google Scholar] [CrossRef] [PubMed]
- Inácio, C.T.; Chalk, P.M.; Magalhães, A.M. Principles and limitations of stable isotopes in differentiating organic and conventional foodstuffs: 1. Plant products. Crit. Rev. Food Sci. Nutr. 2015, 55, 1206–1218. [Google Scholar] [CrossRef]
- Yun, S.-I.; Lim, S.-S.; Lee, G.-S.; Lee, S.-M.; Kim, H.-Y.; Ro, H.-M.; Choi, W.-J. Natural 15N abundance of paddy rice (Oryza sativa L.) grown with synthetic fertilizer, livestock manure compost, and hairy vetch. Biol. Fertil. Soils 2011, 47, 607–617. [Google Scholar] [CrossRef]
- Lester, G.E.; Manthey, J.A.; Buslig, B.S. Organic vs. conventionally grown Rio Red whole grapefruit and juice: Comparison of production inputs, market quality, consumer acceptance, and human health-bioactive compounds. J. Agric. Food Chem. 2007, 55, 4474–4480. [Google Scholar] [CrossRef]
- Navarro, P.; Pérez-López, A.J.; Mercader, M.T.; Carbonell-Barrachina, A.A.; Gabaldon, J.A. Antioxidant activity, color, carotenoids composition, minerals, vitamin C and sensory quality of organic and conventional mandarin juice, cv. Orogrande. Food Sci. Technol. Int. 2011, 17, 241–248. [Google Scholar] [CrossRef]
- Esch, J.R.; Friend, J.R.; Kariuki, J.K. Determination of the vitamin c content of conventionally and organically grown fruits by cyclic voltammetry. Int. J. Electrochem. Sci. 2010, 5, 1464–1474. [Google Scholar]
- Mihailova, A.; Kelly, S.D.; Chevallier, O.P.; Elliott, C.T.; Maestroni, B.M.; Cannavan, A. High-Resolution Mass Spectrometry-Based Metabolomics for the Discrimination between Organic and Conventional Crops: A Review. Trends. Food Sci. Technol. 2021, 110, 142–154. [Google Scholar] [CrossRef]
- Cubero-Leon, E.; De Rudder, O.; Maquet, A. Metabolomics for Organic Food Authentication: Results from a Long-Term Field Study in Carrots. Food Chem. 2018, 239, 760–770. [Google Scholar] [CrossRef] [PubMed]
- Canali, S.; Diacono, M.; Campanelli, G.; Montemurro, F. Organic no-till with roller crimpers: Agro-ecosystem services and applications in organic Mediterranean vegetable productions. Sustain. Agric. Res. 2015, 4, 70. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fabroni, S.; Bontempo, L.; Campanelli, G.; Canali, S.; Montemurro, F. Innovative Tools for the Nitrogen Fertilization Traceability of Organic Farming Products. Horticulturae 2023, 9, 723. https://doi.org/10.3390/horticulturae9060723
Fabroni S, Bontempo L, Campanelli G, Canali S, Montemurro F. Innovative Tools for the Nitrogen Fertilization Traceability of Organic Farming Products. Horticulturae. 2023; 9(6):723. https://doi.org/10.3390/horticulturae9060723
Chicago/Turabian StyleFabroni, Simona, Luana Bontempo, Gabriele Campanelli, Stefano Canali, and Francesco Montemurro. 2023. "Innovative Tools for the Nitrogen Fertilization Traceability of Organic Farming Products" Horticulturae 9, no. 6: 723. https://doi.org/10.3390/horticulturae9060723