Application of an Alternative Nutrient Replenishment Method to Electrical Conductivity-Based Closed-Loop Soilless Cultures of Sweet Peppers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation Conditions for Experimental-Scale System
2.2. Cultivation Conditions for Commercial-Scale System
2.3. Alternative Nutrient Replenishment Technique
2.4. Measurement of Fruit Yield and Analysis of Nutrient Content in Leaves and Fruits
2.5. Nutrients Analyses and Statistics
3. Results and Discussion
3.1. Nutrient Concentration Changes
3.2. Nutrient Ratio Changes
3.3. Fruit Yield Components
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Desmidt, E.; Ghyselbrecht, K.; Zhang, Y.; Pinoy, L.; Van der Bruggen, B.; Verstraete, W.; Rabaey, K.; Meesschaert, B. Global Phosphorus Scarcity and Full-Scale P-Recovery Techniques: A Review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 336–384. [Google Scholar] [CrossRef]
- Fiksel, J. Designing Resilient, Sustainable Systems. Environ. Sci. Technol. 2003, 37, 5330–5339. [Google Scholar] [CrossRef] [PubMed]
- Beerling, E.A.M.; Blok, C.; van der Maas, A.A.; van Os, E.A. Closing the Water and Nutrient Cycles in Soilless Cultivation Systems. Acta Hortic. 2014, 1034, 49–55. [Google Scholar] [CrossRef]
- Van Noordwijk, M. Synchronisation of Supply and Demand Is Necessary to Increase Efficiency of Nutrient Use in Soilless Horticulture; Plant Nutrition-Physiology and Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1990. [Google Scholar]
- Olympios, C.M. Overview of Soilless Culture: Advantages, Constraints and Perspectives for Its Use in Mediterranean Countries. Cah. Options Méditerr. 1999, 31, 307–324. [Google Scholar]
- Massa, D.; Magán, J.J.; Montesano, F.F.; Tzortzakis, N. Minimizing Water and Nutrient Losses from Soilless Cropping in Southern Europe. Agric. Water Manag. 2020, 241, 106395. [Google Scholar] [CrossRef]
- Ku, C.S.M.; Hershey, D.R. Leachate Electrical-Conductivity and Growth of Potted Poinsettia with Leaching Fractions of 0 to 0.4. J. Am. Soc. Hortic. Sci. 1991, 116, 802–806. [Google Scholar] [CrossRef] [Green Version]
- Hao, X.; Papadopoulos, A.P. Growth, Photosynthesis and Productivity of Greenhouse Tomato Cultivated in Open or Closed Rockwool Systems. Can. J. Plant Sci. 2002, 82, 771–780. [Google Scholar] [CrossRef]
- Kläring, H.-P. Strategies to Control Water and Nutrient Supplies to Greenhouse Crops. A Review. Agronomie 2001, 21, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Bar-Yosef, B. Fertigation Management and Crops Response to Solution Recycling in Semi-Closed Greenhouses. In Soilless Culture; Raviv, M., Lieth, J.H., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 341–424. ISBN 978-0-444-52975-6. [Google Scholar]
- Zekki, H.; Gauthier, L.; Gosselin, A. Growth, Productivity, and Mineral Composition of Hydroponically Cultivated Greenhouse Tomatoes, with or without Nutrient Solution Recycling. J. Am. Soc. Hortic. Sci. 1996, 121, 1082–1088. [Google Scholar] [CrossRef]
- Gieling, T.H.; van Straten, G.; Janssen, H.J.J.; Wouters, H. ISE and Chemfet Sensors in Greenhouse Cultivation. Sens. Actuator B—Chem. 2005, 105, 74–80. [Google Scholar] [CrossRef]
- Bratov, A.; Abramova, N.; Ipatov, A. Recent Trends in Potentiometric Sensor Arrays—A Review. Anal. Chim. Acta 2010, 678, 149–159. [Google Scholar] [CrossRef]
- Bamsey, M.; Graham, T.; Thompson, C.; Berinstain, A.; Scott, A.; Dixon, M. Ion-Specific Nutrient Management in Closed Systems: The Necessity for Ion-Selective Sensors in Terrestrial and Space-Based Agriculture and Water Management Systems. Sensors 2012, 12, 13349–13392. [Google Scholar] [CrossRef]
- Ehret, D.L.; Menzies, J.G.; Helmer, T. Production and Quality of Greenhouse Roses in Recirculating Nutrient Systems. Sci. Hortic. 2005, 106, 103–113. [Google Scholar] [CrossRef]
- Miller, A.; Adhikari, R.; Nemali, K. Recycling Nutrient Solution Can Reduce Growth Due to Nutrient Deficiencies in Hydroponic Production. Front. Plant Sci. 2020, 11, 607643. [Google Scholar] [CrossRef]
- Cott, G.M.; Caplan, J.S.; Mozdzer, T.J. Nitrogen Uptake Kinetics and Saltmarsh Plant Responses to Global Change. Sci. Rep. 2018, 8, 5393. [Google Scholar] [CrossRef] [Green Version]
- Le Bot, J.; Adamowicz, S.; Robin, P. Modelling Plant Nutrition of Horticultural Crops: A Review. Sci. Hortic. 1998, 74, 47–82. [Google Scholar] [CrossRef]
- Golicnik, M. Exact and Approximate Solutions for the Decades-Old Michaelis-Menten Equation: Progress-Curve Analysis through Integrated Rate Equations. Biochem. Mol. Biol. Educ. 2011, 39, 117–125. [Google Scholar] [CrossRef]
- Massa, D.; Incrocci, L.; Maggini, R.; Bibbiani, C.; Carmassi, G.; Malorgio, F.; Pardossi, A. Simulation of Crop Water and Mineral Relations in Greenhouse Soilless Culture. Environ. Model. Softw. 2011, 26, 711–722. [Google Scholar] [CrossRef]
- Signore, A.; Serio, F.; Santamaria, P. A Targeted Management of the Nutrient Solution in a Soilless Tomato Crop according to Plant Needs. Front. Plant Sci. 2016, 7, 391. [Google Scholar] [CrossRef] [Green Version]
- Ahn, T.I.; Shin, J.H.; Son, J.E. Theoretical and Experimental Analyses of Nutrient Control in Electrical Conductivity-Based Nutrient Recycling Soilless Culture System. Front. Plant Sci. 2021, 12, 656403. [Google Scholar] [CrossRef]
- Ahn, T.I.; Son, J.E. Theoretical and Experimental Analysis of Nutrient Variations in Electrical Conductivity-Based Closed-Loop Soilless Culture Systems by Nutrient Replenishment Method. Agronomy 2019, 9, 649. [Google Scholar] [CrossRef] [Green Version]
- Wada, T. Chapter 1.1—Theory and Technology to Control the Nutrient Solution of Hydroponics. In Plant Factory Using Artificial Light; Anpo, M., Fukuda, H., Wada, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 5–14. ISBN 978-0-12-813973-8. [Google Scholar]
- Sonneveld, C.; Voogt, W. Plant Nutrition of Greenhouse Crops; Springer: Dordrecht, The Netherlands, 2009; ISBN 978-90-481-2531-9. [Google Scholar]
- Shin, J.H.; Son, J.E. Application of a Modified Irrigation Method Using Compensated Radiation Integral, Substrate Moisture Content, and Electrical Conductivity for Soilless Cultures of Paprika. Sci. Hortic. 2016, 198, 170–175. [Google Scholar] [CrossRef]
- Bautista, A.S.; Lopez-Galarza, S.; Martinez, A.; Pascual, B.; Maroto, J.V. Influence of Cation Proportions of the Nutrient Solution on Tipburn Incidence in Strawberry Plants. J. Plant Nutr. 2009, 32, 1527–1539. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The Water-culture Method for Growing Plants without Soil. Calif. Agric. Exp. Stn. Circ. 1950, 347, 1–32. [Google Scholar]
- Jones, J.B. Hydroponics: Its History and Use in Plant Nutrition Studies. J. Plant Nutr. 1982, 5, 1003–1030. [Google Scholar] [CrossRef]
- Steiner, A.A. The Selective Capacity of Plants for Ions and Its Importance for the Composition and Treatment of the Nutrient Solution. Acta Hortic. 1980, 98, 87–97. [Google Scholar] [CrossRef]
- Ahn, T.I.; Park, J.-E.; Jung, J.H.; Kim, S.M.; Yoo, G.; Kim, H.S.; Lee, J.Y. Nutrient Dosing Framework for an Emission-Free Urban Hydroponic Production. Front. Plant Sci. 2021, 12, 2679. [Google Scholar] [CrossRef]
- Neocleous, D.; Savvas, D. Modelling Ca2+ Accumulation in Soilless Zucchini Crops: Physiological and Agronomical Responses. Agric. Water Manag. 2018, 203, 197–206. [Google Scholar] [CrossRef]
- Savvas, D. Automated Replenishment of Recycled Greenhouse Effluents with Individual Nutrients in Hydroponics by Means of Two Alternative Models. Biosyst. Eng. 2002, 83, 225–236. [Google Scholar] [CrossRef]
- Savvas, D.; Stamati, E.; Tsirogiannis, I.L.; Mantzos, N.; Barouchas, P.E.; Katsoulas, N.; Kittas, C. Interactions between Salinity and Irrigation Frequency in Greenhouse Pepper Grown in Closed-Cycle Hydroponic Systems. Agric. Water Manag. 2007, 91, 102–111. [Google Scholar] [CrossRef]
- Son, J.E.; Ahn, T.I.; Moon, T. Advances in Nutrient Management Modelling and Nutrient Concentration Prediction for Soilless Culture Systems. In Advances in Horticultural Soilless Culture; Burleigh Dodds Science Publishing: Cambridge, UK, 2021; pp. 277–302. ISBN 978-1-78676-435-5. [Google Scholar]
- Ministry of Agriculture, Food and Fisheries. Growing Greenhouse Pepper in British Columbia; BC Greenhouse Grower’s Association: Surrey, BC, Canada, 2005.
- Labas, M.D.; Martín, C.A.; Cassano, A.E. Kinetics of Bacteria Disinfection with UV Radiation in an Absorbing and Nutritious Medium. Chem. Eng. Sci. 2005, 114, 87–97. [Google Scholar] [CrossRef]
- Ahn, T.I.; Yang, J.-S.; Park, S.H.; Im, Y.-H.; Lee, J.Y. Nutrient Recirculating Soilless Culture System as a Predictable and Stable Way of Microbial Risk Management. J. Clean. Prod. 2021, 298, 126747. [Google Scholar] [CrossRef]
Position | Treatment | T-N | P | K | Ca | Mg | S |
---|---|---|---|---|---|---|---|
Top | Open | 3.52 ± 0.06 | 0.36 ± 0.06 | 6.14 ± 0.81 | 3.15 ± 0.12 | 0.44 ± 0.04 | 0.52 ± 0.03 |
Closed | 3.67 ± 0.02 | 0.42 ± 0.03 | 5.38 ± 0.33 | 3.54 ± 0.22 | 0.51 ± 0.05 | 0.57 ± 0.02 | |
t-test | * | NS | NS | NS | NS | NS | |
Bottom | Open | 2.59 ± 0.15 | 0.21 ± 0.03 | 5.72 ± 0.83 | 4.53 ± 0.17 | 0.58 ± 0.01 | 0.42 ± 0.07 |
Closed | 2.65 ± 0.26 | 0.25 ± 0.05 | 6.61 ± 0.65 | 4.46 ± 0.27 | 0.69 ± 0.04 | 0.52 ± 0.05 | |
t-test | NS | NS | NS | NS | * | NS | |
Fruit (6.14) | Open | 2.01 ± 0.14 | 0.38 ± 0.02 | 2.66 ± 0.12 | 0.09 ± 0.01 | 0.11 ± 0.009 | 0.23 ± 0.01 |
Closed | 1.85 ± 0.09 | 0.33 ± 0.02 | 2.36 ± 0.34 | 0.08 ± 0.01 | 0.09 ± 0.003 | 0.21 ± 0.01 | |
t-test | NS | NS | NS | NS | * | * | |
Fruit (7.12) | Open | 2.16 ± 0.18 | 0.38 ± 0.03 | 2.62 ± 0.13 | 0.07 ± 0.01 | 0.11 ± 0.011 | 0.22 ± 0.03 |
Closed | 1.99 ± 0.08 | 0.37 ± 0.01 | 2.63 ± 0.41 | 0.08 ± 0.02 | 0.11 ± 0.013 | 0.23 ± 0.01 | |
t-test | NS | NS | NS | NS | NS | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahn, T.-I.; Son, J.-E. Application of an Alternative Nutrient Replenishment Method to Electrical Conductivity-Based Closed-Loop Soilless Cultures of Sweet Peppers. Horticulturae 2022, 8, 295. https://doi.org/10.3390/horticulturae8040295
Ahn T-I, Son J-E. Application of an Alternative Nutrient Replenishment Method to Electrical Conductivity-Based Closed-Loop Soilless Cultures of Sweet Peppers. Horticulturae. 2022; 8(4):295. https://doi.org/10.3390/horticulturae8040295
Chicago/Turabian StyleAhn, Tae-In, and Jung-Eek Son. 2022. "Application of an Alternative Nutrient Replenishment Method to Electrical Conductivity-Based Closed-Loop Soilless Cultures of Sweet Peppers" Horticulturae 8, no. 4: 295. https://doi.org/10.3390/horticulturae8040295
APA StyleAhn, T. -I., & Son, J. -E. (2022). Application of an Alternative Nutrient Replenishment Method to Electrical Conductivity-Based Closed-Loop Soilless Cultures of Sweet Peppers. Horticulturae, 8(4), 295. https://doi.org/10.3390/horticulturae8040295