Smart Horticulture: Latest Advances and Prospects
1. Introduction
2. Overview of Published Articles
2.1. Advances in Yield Monitoring and Mapping
2.2. Smart Horticulture for Crop Status Assessment
2.3. Technologies for Process Implementation
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
List of Contributions
- Martello, M.; Paulo Molin, J.; Couto Bazame, H. Obtaining and Validating High-Density Coffee Yield Data. Horticulturae 2022, 8, 421.
- Kamiwaki, Y.; Fukuda, S. A Machine Learning-Assisted Three-Dimensional Image Analysis for Weight Estimation of Radish. Horticulturae 2024, 10, 142.
- Kevrešan, Ž.; Mastilović, J.; Kukolj, D.; Ubiparip Samek, D.; Kovač, R.; Đerić, M.; Bajić, A.; Ostojić, G.; Stankovski, S. Insights from a Patent Portfolio Analysis on Sensor Technologies for Measuring Fruit Properties. Horticulturae 2024, 10, 30.
- Kaufmane, E.; Edelmers, E.; Sudars, K.; Namatēvs, I.; Nikulins, A.; Strautiņa, S.; Kalniņa, I.; Peter, A. Three-Dimensional Imaging in Agriculture: Challenges and Advancements in the Phenotyping of Japanese Quinces in Latvia. Horticulturae 2023, 9, 1347.
- Sharaf-Eldin, M.A.; Elsayed, S.; Elmetwalli, A.H.; Yaseen, Z.M.; Moghanm, F.S.; Elbagory, M.; El-Nahrawy, S.; Omara, A.E.D.; Tyler, A.N.; Elsherbiny, O. Using Optimized Three-Band Spectral Indices and a Machine Learning Model to Assess Squash Characteristics under Moisture and Potassium Deficiency Stress. Horticulturae 2023, 9, 79.
- Fang, S.L.; Cheng, Y.J.; Tu, Y.K.; Yao, M.H.; Kuo, B.J. Exploring Efficient Methods for Using Multiple Spectral Reflectance Indices to Establish a Prediction Model for Early Drought Stress Detection in Greenhouse Tomato. Horticulturae 2023, 9, 1317.
- Gorji, R.; Skvaril, J.; Odlare, M. Determining Moisture Content of Basil Using Handheld Near-Infrared Spectroscopy. Horticulturae 2024, 10, 336.
- Radočaj, D.; Rapčan, I.; Jurišić, M. Indoor Plant Soil-Plant Analysis Development (SPAD) Prediction Based on Multispectral Indices and Soil Electroconductivity: A Deep Learning Approach. Horticulturae 2023, 9, 1290.
- Jewan, S.Y.Y.; Singh, A.; Billa, L.; Sparkes, D.; Murchie, E.; Gautam, D.; Cogato, A.; Pagay, V. Can Multi-Temporal Vegetation Indices and Machine Learning Algorithms Be Used for Estimation of Groundnut Canopy State Variables? Horticulturae 2024, 10, 748.
- Stevens, J.D.; Murray, D.; Diepeveen, D.; Toohey, D. Development and Testing of an IoT Spectroscopic Nutrient Monitoring System for Use in Micro Indoor Smart Hydroponics. Horticulturae 2023, 9, 185.
- Demirel, F.; Uğur, R.; Popescu, G.C.; Demirel, S.; Popescu, M. Usage of Machine Learning Algorithms for Establishing an Effective Protocol for the In Vitro Micropropagation Ability of Black Chokeberry (Aronia melanocarpa (Michx.) Elliott). Horticulturae 2023, 9, 1112.
References
- Agriculture Organization of the United Nations (FAO). Hunger Hotspots FAO—WFP Early Warnings June to October 2024 Outlook; FAO: Rome, Italy, 2024. [Google Scholar]
- Molotoks, A.; Smith, P.; Dawson, T.P. Impacts of land use, population, and climate change on global food security. Food Energy Secur. 2021, 10, e261. [Google Scholar] [CrossRef]
- Manikas, I.; Ali, B.M.; Sundarakani, B. A systematic literature review of indicators measuring food security. Agric. Food Secur. 2023, 12, 10. [Google Scholar] [CrossRef] [PubMed]
- Cappelli, S.L.; Domeignoz-Horta, L.A.; Loaiza, V.; Laine, A.L. Plant biodiversity promotes sustainable agriculture directly and via belowground effects. Trends Plant Sci. 2022, 27, 674–687. [Google Scholar] [CrossRef] [PubMed]
- Ludwig-Ohm, S.; Hildner, P.; Isaak, M.; Dirksmeyer, W.; Schattenberg, J. The contribution of Horticulture 4.0 innovations to more sustainable horticulture. Procedia Comput. Sci. 2022, 217, 465–477. [Google Scholar] [CrossRef]
- Goel, R.K.; Yadav, C.S.; Vishnoi, S.; Rastogi, R. Smart agriculture—Urgent need of the day in developing countries. Sustain. Comput. Inform. Syst. 2021, 30, 100512. [Google Scholar] [CrossRef]
- Singh, R.; Singh, R.; Gehlot, A.; Akram, S.V.; Priyadarshi, N.; Twala, B. Horticulture 4.0: Adoption of Industry 4.0 Technologies in Horticulture for Meeting Sustainable Farming. Appl. Sci. 2022, 12, 12557. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cogato, A.; Sozzi, M.; Nikolić, N.; Laroche-Pinel, E. Smart Horticulture: Latest Advances and Prospects. Horticulturae 2025, 11, 27. https://doi.org/10.3390/horticulturae11010027
Cogato A, Sozzi M, Nikolić N, Laroche-Pinel E. Smart Horticulture: Latest Advances and Prospects. Horticulturae. 2025; 11(1):27. https://doi.org/10.3390/horticulturae11010027
Chicago/Turabian StyleCogato, Alessia, Marco Sozzi, Nebojša Nikolić, and Eve Laroche-Pinel. 2025. "Smart Horticulture: Latest Advances and Prospects" Horticulturae 11, no. 1: 27. https://doi.org/10.3390/horticulturae11010027
APA StyleCogato, A., Sozzi, M., Nikolić, N., & Laroche-Pinel, E. (2025). Smart Horticulture: Latest Advances and Prospects. Horticulturae, 11(1), 27. https://doi.org/10.3390/horticulturae11010027