Technological and Functional Assessment of Riboflavin Enriched Probiotic SoyCurd
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Strains and Culture Media
2.2. Preparation and Fermentation of Soymilk
2.3. Growth Rate Evaluation of Strains in Soymilk
2.4. pH and Titratable Acidity Estimation
2.5. Rheological Measurements
2.6. Texture Profile Analysis (TPA)
2.7. Riboflavin Extraction from Fermented Soycurd
2.8. Riboflavin Quantification In Fermented Soycurd
2.9. DPPH Scavenging Activity
2.10. Antibacterial Activity
2.11. Sensory Evaluation of Fermented Soycurd
2.12. Statistical Analysis
3. Results and Discussion
3.1. Probiotic Growth Pattern after Soymilk Fermentation
3.2. pH and Titratable Acidity Estimation
3.3. Rheological Properties
3.4. Textural Characteristics
3.5. Riboflavin Estimation in Fermented Soycurd
3.6. Antioxidant Property
3.7. Antibacterial Activities
3.8. Sensory Evaluation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Verbeke, W. Consumer acceptance of functional foods: Sociodemographic cognitive and attitudinal determinants. Food Qual. Prefer. 2005, 16, 45–57. [Google Scholar] [CrossRef]
- Mishra, V.; Shah, C.; Mokashe, N.; Chavan, R.; Yadav, H.; Prajapati, J. Probiotics as potential antioxidants: A systematic review. J. Agric. Food Chem. 2015, 63, 3615–3636. [Google Scholar] [CrossRef]
- Ghosh, T.; Beniwal, A.; Semwal, A.; Navani, N.K. Mechanistic insights into probiotic properties of lactic acid bacteria associated with ethnic fermented dairy products. Front. Microbiol. 2019, 10, 502. [Google Scholar] [CrossRef] [Green Version]
- Ranadheera, C.S.; Vidanarachchi, J.K.; Rocha, R.S.; Cruz, A.G.; Ajlouni, S. Probiotic delivery through fermentation: Dairy v/s non-dairy beverages. Fermentation 2017, 3, 67. [Google Scholar] [CrossRef] [Green Version]
- Bhushan, B.; Tomar, S.K.; Chauhan, A. Techno-functional differentiation of two vitamin B12 producing Lactobacillus plantarum strains: An elucidation for diverse future use. Appl. Microbiol. Biotechnol. 2017, 101, 697–709. [Google Scholar] [CrossRef]
- Aspri, M.; Papademas, P.; Tsaltas, D. Review on non-dairy probiotics and their use in non-dairy based products. Fermentation 2020, 6, 30. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Lazaro, M.; Akiyama, M. Flavonoids as anticancer agents: Structure-activity relationship study. Current Medicinal Chemistry. Anti-Cancer Agents 2002, 2, 691–714. [Google Scholar] [CrossRef] [PubMed]
- Gasmalla, M.A.A.; Tessema, H.A.; Salaheldin, A.; Alahmad, K.; Hassanin, H.A.M.; Aboshora, W. Health benefits of milk and functional dairy products. MOJ Food Process. Technol. 2017, 4, 108–111. [Google Scholar]
- Singh, B.P.; Bhushan, B.; Vij, S. Antioxidative, ACE inhibitory and antibacterial activities of soymilk fermented by indigenous strains of lactobacilli. Legume Sci. 2020. [Google Scholar] [CrossRef]
- De-Vuyst, L. Technology aspects related to the application of functional starter cultures, application of functional starter cultures. Food Technol. Biotechnol. 2000, 38, 105–112. [Google Scholar]
- Donkor, O.N.; Henriksson, A.; Vasiljevic, T.; Shah, N.P. Probiotic strains as starter cultures improve angiotensin converting enzyme inhibitory activity in soy yoghurt. J. Food Sci. 2005, 70, 375–381. [Google Scholar] [CrossRef]
- Champagne, C.P.; Green-Johson, J.; Raymond, Y.; Barrete, J.; Buckley, N. Selection of probiotic bacteria for the fermentation of a soy beverage in combination with Streptococcus thermophilus. Food Res. Int. 2009, 42, 612–621. [Google Scholar] [CrossRef]
- Shimakama, Y.; Matsubara, S.; Yuki, N.; Ikeda, M.; Ishikawa, F. Evaluation of Bifidobacteriumbreves strain Yakult fermented soymilk as a probiotic food. Int. J. Food Microbiol. 2003, 81, 131–136. [Google Scholar] [CrossRef]
- Lee, W.J.; Lucey, J.A. Impact of gelation conditions and structural breakdown on the physical and sensory properties of stirred yogurts. J. Dairy Sci. 2006, 89, 2374–2385. [Google Scholar] [CrossRef]
- Donkor, O.N.; Henriksson, A.; Vasiljevic, T.; Shah, N.P. Rheological properties and sensory characteristics of set-type soy yogurt. J. Agric. Food Chem. 2007, 55, 9868–9876. [Google Scholar] [CrossRef]
- Cayot, P.; Schenker, F.; Houze, G.; Sulmont-Rosse, C.; Colas, B. Creaminess in relation to consistency and particle size in stirred fat-free yogurt. Int. Dairy J. 2008, 18, 303–311. [Google Scholar] [CrossRef]
- Pinto, J.T.; Rivlin, R.S. Riboflvin (Vitamin B2). Handbook of Vitamins, 5th ed.; Cancer Metabolism, Glutamine Usage, Ed.; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Singla, R.; Garg, A.; Surana, V.; Aggarwal, S.; Gupta, G.; Singla, S. Vitamin B12 deficiency is endemic in Indian population: A perspective from North India. Indian J. Endocrinol. Metab. 2019, 23, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, B.; Kumkum, C.R.; Kumari, M.; Ahire, J.J.; Dicks, L.M.T.; Mishra, V. Soymilk bio-enrichment by indigenously isolated riboflavin-producing strains of Lactobacillus plantarum. LWTFood Sci. Technol. 2020, 119, 108871. [Google Scholar] [CrossRef]
- Bhushan, B.; Sakhare, S.M.; Narayan, K.S.; Kumari, M.; Mishra, V.; Dicks, L.M.T. Characterization of riboflavin-producing strains of Lactobacillus plantarum as potential probiotic candidate through in vitro assessment and Principal Component Analysis. Probiotics Antimicrob. Proteins 2020. [Google Scholar] [CrossRef]
- Nelson, A.I.; Steinberg, M.P.; Wei, L.S. Illinois process for preparation of soymilk. J. Food Sci. 1976, 41, 57–61. [Google Scholar] [CrossRef]
- Dave, R.I.; Shah, N.P. Evaluation of media for selective enumeration of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, and bifidobacteria. J. Dairy Sci. 1996, 79, 1529–1536. [Google Scholar] [CrossRef]
- Gatade, A.A.; Ranveer, R.C.; Sahoo, A.K. Effect of treatments, cmc and storage conditions on sensorial quality of mango flavored soymilk. J. Microbiol. Biotechnol. Food Sci. 2014, 4, 6–9. [Google Scholar]
- Ferragut, V.; Criz, N.S.; Trujillo, A.; Guamis, B.; Capellas, M. Physical characteristics during storage of soy yogurt made from ultra high-pressure homogenized soy milk. J. Food Eng. 2009, 92, 63–69. [Google Scholar] [CrossRef]
- Kumar, P.; Mishra, H.N. Mango soy fortified set yoghurt: Effect of stabilizer addition on physicochemical, sensory and textural properties. Food Chem. 2004, 87, 501–507. [Google Scholar] [CrossRef]
- Del-Valle, M.J.; Laino, J.E.; de-Giori, G.S.; LeBlanc, J.G. Factors stimulating riboflavin produced by Lactobacillus plantarum CRL 725 grown in a semi-defined medium. J. Basic Microbiol. 2016. [Google Scholar] [CrossRef]
- Russo, P.; Capozzi, V.; Arena, M.P.; Spadaccino, G.; Duenas, M.T.; Lopez, P.; Fiocco, D.; Spano, G. Riboflavin-overproducing strains of Lactobacillus fermentum for riboflavin-enriched bread. Appl. Microbiol. Biotechnol. 2014, 98, 3691–3700. [Google Scholar] [CrossRef] [PubMed]
- Schillinger, U. Antimicrobial activity of L. sake isolated from meat. Appl. Environ. Microbiol. 1989, 55, 1901–1906. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, T.; Das, M. Sensory evaluation of aromatic foods packed in developed starch based films using fuzzy logic. Int. J. Food Stud. 2015, 4, 29–48. [Google Scholar] [CrossRef]
- Rhee, S.K.; Pack, M.Y. Effect of environmental pH on fermentation balance of Lactobacillus bulgaricus. J. Bacteriol. 1980, 144, 217–221. [Google Scholar] [CrossRef] [Green Version]
- Ozturkoglu-Budak, S.; Akal, H.C.; Buran, I.; Yetişemiyen, A. Effect of inulin polymerization degree on various properties of synbiotic fermented milk including Lactobacillus acidophilus La-5 and Bifidobacteriumanimalis Bb-12. J. Dairy Sci. 2019, 102, 6901–6913. [Google Scholar] [CrossRef]
- Kristo, E.; Biliaderis, C.G.; Tzanetakis, N. Modelling of rheological, microbiological and acidification properties of a fermented milk product containing a probiotic strain of Lactobacillus paracasei. Int. Dairy J. 2013, 13, 517–528. [Google Scholar] [CrossRef]
- Tamime, Y. Probiotic Dairy Products; Blackwell: Oxford, UK, 2005; Volume 1. [Google Scholar]
- Steffe, J.F. Rheological Methods in Food Process Engineering; Freeman Press: East Lansing, MI, USA, 1996; pp. 295–349. [Google Scholar]
- Sodini, I.; Lucas, A.; Oliveira, N.M.; Remeuf, F.; Codrrieu, G. Effect of milk base and starter culture on acidification, texture, and probiotic cell counts in fermented milk processing. J. Dairy Sci. 2002, 85, 2479–2488. [Google Scholar] [CrossRef]
- Friedman, H.H.; Whitney, J.E.; Szczesnaik, A.S. The texturometer-a new instrument for objective texture measurement. J. Food Sci. 1963, 28, 390. [Google Scholar] [CrossRef]
- Duboc, P.; Mollet, B. Applications of exopolysaccharides in the dairy industry. Int. Dairy J. 2001, 11, 759–768. [Google Scholar] [CrossRef]
- Welman, D.A.; Maddox, S.I. Exopolysaccharides from lactic acid bacteria: Perspectives and challenges. Trends Biotechnol. 2003, 21, 269–274. [Google Scholar] [CrossRef]
- Yang, M.; Li, L. Physicochemical, textural and sensory characteristics of probiotic soy yogurt prepared from germinated soybean characteristics of probiotic soy yogurt. Food Technol. Biotechnol. 2010, 48, 490–496. [Google Scholar]
- Adachi, M.; Kanamori, J.; Masuda, T.; Yagasaki, K.; Kitamura, K.; Mikami, B.; Utsumi, S. Crystal structure of soybean 11S globulin: Glycinin A3B4 homohexamer. Proc. Natl. Acad. Sci. USA 2003, 100, 7395–7400. [Google Scholar] [CrossRef] [Green Version]
- Brennan, C.S.; Tudorica, C.M. Carbohydrate-based fat replacers in the modification of the rheological, textural and sensory quality of yoghurt: Comparative study of the utilization of barley beta-glucan, guar gum and inulin. Int. J. Food Sci. Technol. 2008, 43, 824–833. [Google Scholar] [CrossRef]
- Oliveira, S.P.R.; Florence, R.C.A.; Perego, P.; Oliveira, N.M.; Converti, A. Use of lactulose as prebiotic and its influence on the growth, acidification profile and viable counts of different probiotics in fermented skim milk. Int. J. Food Microbiol. 2011, 145, 22–27. [Google Scholar] [CrossRef]
- Domagala, J.; Sady, M.; Grega, T.; Bonczar, G. Rheological properties and texture of yogurts when oat-maltodextrin is used as a fat substitute. Int. J. Food Proper. 2006, 9, 1–11. [Google Scholar] [CrossRef]
- Tamime, A.Y.; Robinson, R.K. Yoghurt Science and Technology; CRC Press: New York, NY, USA, 1999; Volume 2. [Google Scholar]
- Capozzi, V.; Russo, P.; Duenas, M.T.; Lopez, P.; Spano, G. Lactic acid bacteria producing B-group vitamins: A great potential for functional cereals products. Appl. Microbiol. Biotechnol. 2012, 96, 1383–1394. [Google Scholar] [CrossRef]
- Yepez, A.; Russo, P.; Spano, G.; Khomenko, I.; Biasioli, F.; Capozzi, V.; Aznar, R. In situ riboflavin fortification of different kefir-like cereal-based beverages using selected Andean LAB strains. Food Microbiol. 2019, 77, 61–68. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.; Prasad, D.N. Application of in vitro methods for selection of Lactobacillus casei strains as potential probiotics. Int. J. Food Microbiol. 2005, 103, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Papadimitriou, K.; Zoumpopoulou, G.; Foligne, B.; Alexandraki, V.; Kazou, M.; Pot, B.; Tsakalidou, E. Discovering probiotic microorganisms: Invitro, in vivo, genetic and omics approaches. Front. Microbiol. 2015, 6, 58. [Google Scholar] [CrossRef] [Green Version]
- Shah, C.; Mokashe, N.; Mishra, V. Preparation, characterization and in vitro antioxidative potential of synbiotic fermented dairy products. J. Food Sci. Technol. 2016, 53, 1984–1992. [Google Scholar] [CrossRef] [Green Version]
- Ahire, J.J.; Mokashe, N.U.; Patil, H.J.; Chaudhari, B.L. Antioxidative potential of folate producing probiotic Lactobacillus helveticus CD6. J. Food Sci. Technol. 2013, 50, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Levit, R.; de-Giori, G.S.; de-LeBlanc, A.D.M.; LeBlanc, J.G. Protective effect of the riboflavin-overproducing strain Lactobacillus plantarum CRL2130 on intestinal mucosit is in mice. Nutrition 2018, 54, 165–172. [Google Scholar] [CrossRef]
- Deponte, M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. BBAGen. Subj. 2013, 1830, 3217–3266. [Google Scholar] [CrossRef] [Green Version]
- Singh, B.P.; Vij, S.; Hati, S.; Singh, D.; Kumari, P.; Minj, J. Antimicrobial activity of bioactive peptides derived from fermentation of soy milk by Lactobacillus plantarum C2 against common food borne pathogens. Int. J. Ferment. Foods. 2015, 4, 91–99. [Google Scholar] [CrossRef]
- Singh, B.P.; Vij, S. Growth and bioactive peptide s production potential of Lactobacillus plantarum strain C2 in soy milk: A LC-MS/MS based revelation for peptides biofunctionality. LWT Food Sci. Technol. 2017, 86, 293–301. [Google Scholar] [CrossRef]
- Lin, T.H.; Pan, T.M. Characterization of an antimicrobial substance produced by Lactobacillus plantarum NTU 102. J. Microbiol. Immunol. Infect. 2017, 52, 409–417. [Google Scholar] [CrossRef] [PubMed]
- Mishra, B.K.; Hati, S.; Das, S.; Prajapati, J.B. Biofunctional Attributes and Storage Study of Soy Milk Fermented by Lactobacillus rhamnosus and Lactobacillus helveticus. Food Technol. Biotechnol. 2019, 57, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Hati, S.; Patel, N.; Mandal, S. Comparative growth behavior and biofunctionality of lactic acid bacteria during fermentation of soy milk and bovine milk. Probiotics Antimicrobi. Proteins 2018, 10, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Prakash, K.S.; Bashir, K.; Mishra, V. Development of Synbiotic Litchi Juice Drink and its Physiochemical, Viability and Sensory Analysis. J. Food Process. Technol. 2017, 8, 12. [Google Scholar]
- Vranac, A.; Akagic, A.; Gasi, F.; Spaho, N.; Kurtovic, M.; Meland, M. Sensory evaluation of blended cloudy apple juices. In Proceedings of the 28th International Scientific-Expert Conference of Agriculture and Food Industry, Sarajevo, Bosnia and Herzegovina, 27–29 September 2017; Volume 67, pp. 493–504. [Google Scholar]
Frequency Sweep Test | ||||||
---|---|---|---|---|---|---|
Strains | Elastic/Storage Modulus G′ (Pa) | Viscous/Loss Modulus G″ (Pa) | Complex Modulus G* (Pa) | Angular Frequency | Deflection Angle | Eta |
(rad/s) | (mrad) | (η) | ||||
Control | 2.68 × 102 | 1.48 × 102 | 6.75 × 102 | 0.628 | 7.68× 10−1 | 0.21456 |
L. rhamnosus GG | 3.33 × 102 | 1.59 × 102 | 5.88 × 102 | 0.628 | 7.92 × 10−1 | 0 = 23,902 |
L. plantarumMTCC 25432 (BBC32B) | 4.67 × 102 | 1.86 × 102 | 1.06 × 103 | 0.628 | 4.97 × 10−1 | 0 = 2710.5 |
L. plantarumMTCC 25433 (BBC33) | 4.75 × 102 | 1.48 × 102 | 7.29 × 102 | 0.628 | 6.29 × 10−1 | 0 = 1963.8 |
L. plantarumMTCC 25432 (BBC32B) and MTCC 25433 (BBC33) | 6.25 × 102 | 2.30 × 101 | 8.00 × 102 | 0.628 | 6.22 × 10−1 | 0 = 967.34 |
Stress Sweep Test | |||||
---|---|---|---|---|---|
Strains | Shear Rate | Shear Stress | Viscosity | Speed | Torque |
Control | 2.65 | 9.89 | 3.44 | 2.47 | 256 |
L. rhamnosus GG | 2.53 | 9.64 | 3.81 | 2.42 | 236 |
L. plantarumMTCC 25432 (BBC32B) | 2.52 | 8.69 | 3.45 | 2.41 | 213 |
L. plantarumMTCC 25433 (BBC33) | 2.51 | 8.74 | 3.48 | 2.4 | 214 |
L. plantarumMTCC 25432 (BBC32B) and MTCC 25433 (BBC33) | 2.56 | 10 | 3.91 | 2.45 | 245 |
Texture Profile Analysis (TPA) of Fermented Soymilk | |||||
---|---|---|---|---|---|
Cultures | Hardness (g) | Cohesiveness | Adhesiveness (gs) | Springiness | Gumminess (g) |
Control | 85.25 | 0.023 | −63.52 | 0.035 | 1.361 |
L. rhamnosus GG | 101.623 | 0.032 | −51.34 | 0.044 | 3.242 |
L. plantarumMTCC 25432 (BBC32B) | 99.975 | 0.05 | −4.897 | 0.265 | 5.028 |
L. plantarumMTCC 25433 (BBC33) | 108.55 | 0.09 | −6.515 | 0.131 | 9.801 |
L. plantarumMTCC 25432 (BBC32B) and MTCC 25433 (BBC33) | 109.559 | 0.057 | −8.06 | 0.501 | 6.257 |
Strains | S. aureus ATCC 6538 | E. faecalis ATCC 14506 | E. coli ATCC 11775 | Klebsiella pneumoniae ATCC 13883 | Pseudomonas aeruginosa ATCC 27853 | Salmonella enterica ATCC 13076 |
---|---|---|---|---|---|---|
Control | 0 | 0 | 0 | 0 | 0 | 0 |
L. rhamnosus GG | 0 | 0 | 0 | 0 | 0 | 0 |
L. plantarumMTCC 25432 (BBC32B) | 10 | 17 | 11 | 9 | 13 | 9 |
L. plantarumMTCC 25433 (BBC33) | 13 | 18 | 13 | 11 | 14 | 8 |
L. plantarumMTCC 25432 (BBC32B) and MTCC 25433 (BBC33) | 15 | 20 | 14 | 11 | 15 | 12 |
Sensory Attributes of Fermented Soymilk Samples | Probiotic Strains | Sensory Scale Factor | ||||
---|---|---|---|---|---|---|
Not Satisfactory | Fair | Good | Very Good | Excellent | ||
Colour | L. rhamnosus GG | 0 | 0 | 7 | 7 | 1 |
L. plantarumMTCC 25432 (BBC32B) | 0 | 0 | 6 | 8 | 1 | |
L. plantarumMTCC 25433 (BBC33) | 0 | 0 | 5 | 10 | 0 | |
L. plantarum MTCC 25432 (BBC32B) and MTCC 25433 (BBC33) | 0 | 0 | 5 | 9 | 1 | |
TasteAroma | L. rhamnosus GG | 2 | 0 | 6 | 6 | 0 |
L. plantarumMTCC 25432 (BBC32B) | 0 | 2 | 8 | 5 | 0 | |
L. plantarumMTCC 25433 (BBC33) | 0 | 2 | 5 | 7 | 1 | |
L. plantarum MTCC 25432 (BBC32B) and MTCC 25433 (BBC33) | 0 | 1 | 7 | 7 | 0 | |
L. rhamnosus GG | 2 | 2 | 5 | 6 | 0 | |
L. plantarumMTCC 25432 (BBC32B) | 0 | 3 | 4 | 7 | 1 | |
L. plantarumMTCC 25433 (BBC33) | 1 | 2 | 7 | 4 | 1 | |
L. plantarum MTCC 25432 (BBC32B) and MTCC 25433 (BBC33) | 0 | 1 | 6 | 8 | 0 | |
Mouth feel | L. rhamnosus GG | 2 | 1 | 7 | 5 | 0 |
L. plantarumMTCC 25432 (BBC32B) | 0 | 3 | 2 | 9 | 1 | |
L. plantarumMTCC 25433 (BBC33) | 0 | 3 | 3 | 9 | 0 | |
L. plantarum MTCC 25432 (BBC32B) and MTCC 25433 (BBC33) | 0 | 1 | 5 | 8 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh Narayan, K.; Gaurkhede, S.; Sharma, V.; Kumar, A.; Bhushan, B.; Mishra, V. Technological and Functional Assessment of Riboflavin Enriched Probiotic SoyCurd. Fermentation 2021, 7, 47. https://doi.org/10.3390/fermentation7020047
Singh Narayan K, Gaurkhede S, Sharma V, Kumar A, Bhushan B, Mishra V. Technological and Functional Assessment of Riboflavin Enriched Probiotic SoyCurd. Fermentation. 2021; 7(2):47. https://doi.org/10.3390/fermentation7020047
Chicago/Turabian StyleSingh Narayan, Kapil, Sakshi Gaurkhede, Virat Sharma, Ankur Kumar, Bharat Bhushan, and Vijendra Mishra. 2021. "Technological and Functional Assessment of Riboflavin Enriched Probiotic SoyCurd" Fermentation 7, no. 2: 47. https://doi.org/10.3390/fermentation7020047
APA StyleSingh Narayan, K., Gaurkhede, S., Sharma, V., Kumar, A., Bhushan, B., & Mishra, V. (2021). Technological and Functional Assessment of Riboflavin Enriched Probiotic SoyCurd. Fermentation, 7(2), 47. https://doi.org/10.3390/fermentation7020047