Inclusion of Probiotics into Fermented Buffalo (Bubalus bubalis) Milk: An Overview of Challenges and Opportunities
Abstract
:1. Introduction
2. Buffalo Milk Production in the World
3. Artisanal Fermentation of Buffalo Milk
3.1. Fermented Buffalo’s Milk Products in the World
3.2. Indigenous Microflora in the Fermented Buffalo Milk, their Probiotic Potentials and Effect on Product Technological Properties
4. Inclusion of Probiotics into the Artisanal Fermentation of Buffalo’s Milk
4.1. Probiotics
4.2. Commonly Used Probiotics
4.3. Incorporation of Probiotics into Buffalo Milk Fermentation for Product Development
4.3.1. Probiotic Buffalo Milk-Based Beverages
4.3.2. Probiotic Buffalo Yoghurt
4.3.3. Probiotic Buffalo Curd
4.3.4. Cheese
4.4. Challenges of Probiotic Inclusions into Fermented Buffalo Milk Products
5. Technological Prospects to Develop Probiotic Fermented Products Using Buffalo Milk
5.1. Selection of Probiotic Strains for the Fermentation of Buffalo’s Milk
5.2. Addition of Prebiotics
5.3. Microencapsulation
5.4. Ultrasonication
5.5. Use of Appropriate Packaging and Storage Conditions
6. Conclusions
Funding
Conflicts of Interest
References
- Zhang, Y.; Colli, L.; Barker, J.S.F. Asian water buffalo: Domestication, history and genetics. Anim. Genet. 2020, 51, 177–191. [Google Scholar] [CrossRef]
- Macgregor, R. The domestic buffalo. Vet. Rec. 1941, 53, 443–450. [Google Scholar]
- Zhang, Y.; Vankan, D.; Barker, J.S.F. Genetic differentiation of water buffalo (Bubalus bubalis) populations in China, Nepal and south-east Asia: Inferences on the region of domestication of the swamp buffalo. Anim. Genet. 2011, 42, 366–377. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations Statistical Database (FAOSTAT). 2018. Available online: http://www.fao.org/faostat/en/#data/QA (accessed on 15 June 2020).
- Barker, J.S.F.; Moore, S.S.; Hetzel, D.J.S.; Evans, D.; Byrne, K. Genetic diversity of Asian water buffalo (Bubalus bubalis): Microsatellite variation and a comparison with protein-coding loci. Anim. Genet. 1997, 28, 103–115. [Google Scholar] [CrossRef]
- Cruz, L.C. Trends in buffalo production in Asia. Ital. J. Anim. Sci. 2007, 6, 9–24. [Google Scholar] [CrossRef]
- Mane, B.G.; Chatli, M.K. Buffalo milk: Saviour of farmers and consumers for livelihood and providing nutrition. J. Agric. Rural Dev. 2015, 2, 5–11. [Google Scholar]
- Hamid, M.; Zaman, M.; Rahman, A.; Hossain, K. Buffalo Genetic Resources and their Conservation in Bangladesh. Res. J. Vet. Sci. 2016, 10, 1–13. [Google Scholar] [CrossRef]
- Wanapat, M.; Chanthakhoun, V. Buffalo production for emerging market as a potential animal protein source for global population. Buffalo Bull. 2015, 34, 169–180, (accessed on 02.07.2020). [Google Scholar]
- Sindhu, J.S.; Arora, S. Buffalo Milk. In Encyclopedia of Dairy Sciences, 2nd ed.; Fuquay, J.W., Ed.; Elsevier Academic Press: Cambridge, MA, USA, 2011; pp. 503–511. [Google Scholar]
- Guo, M.; Hendricks, G. Improving Buffalo Milk. In Improving the Safety and Quality of Milk; Griffiths, M.W., Ed.; Woodhead Publishing: Sawston, UK, 2010; pp. 402–416. [Google Scholar]
- Jayamanne, V.S.; Adams, M. Survival of probiotic bifidobacteria in buffalo curd and their effect on sensory properties. Int. J. Food Sci. Technol. 2004, 39, 719–725. [Google Scholar] [CrossRef]
- Jatmiko, Y.D.; Howarth, G.S.; Barton, M.D. Naturally Fermented Milk and Its Therapeutic Potential in the Treatment of Inflammatory Intestinal Disorders. In Proceedings of the AIP Conference, Malang City, Indonesia, 7–8 March 2018. [Google Scholar]
- Sarkar, S.; Sakar, M.; Majhi, R.; Chatterjee, K.; Sikder, B.; Sur, A. Process standardization for enhancing bio functionality of Dahi. J. Nutr. Health Food Eng. 2019, 9, 1–6. [Google Scholar]
- Collado, M.C.; Surono, I.S.; Meriluoto, J.; Salminen, S. Potential Probiotic Characteristics of Lactobacillus and Enterococcus Strains Isolated from Traditional Dadih Fermented Milk against Pathogen Intestinal Colonization. J. Food Prot. 2007, 70, 700–705. [Google Scholar] [CrossRef] [PubMed]
- Surono, I.S.; Koestomo, F.P.; Novitasari, N.; Zakaria, F.R.; Yulianasari; Koesnanda. Novel probiotic Enterococcus faecium IS-27526 supplementation increased total salivary sIgA level and body weight of pre-school children: A pilot study. Anaerobe 2011, 17, 496–500. [Google Scholar] [CrossRef] [PubMed]
- Venema, K.; Surono, I. Microbiota composition of dadih—A traditional fermented buffalo milk of West Sumatra. Lett. Appl. Microbiol. 2019, 68, 234–240. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melia, S.; Yuherman, Y.; Jaswandi, J.; Purwati, E. Selection of Buffalo Milk Lactic Acid Bacteria with Probiotic Potential. Asian J. Pharm. Clin. Res. 2018, 11, 186–189. [Google Scholar] [CrossRef] [Green Version]
- Rahmawati, I.S.; Suntornsuk, W. Effects of Fermentation and Storage on Bioactive Activities in Milks and Yoghurts. Procedia Chem. 2016, 18, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Kamble, K.D.; Kokate, P.S. Production and Keeping Quality of Yogurt from Buffalo and Cow Milk—A Traditional Milk Product of High Health Value; NISCAIR-CSIR: New Delhi, India, 2015; pp. 279–284. ISBN 0972-5938. [Google Scholar]
- Joint Food and Agricultural Organization of the United Nations and World Health Organization Expert Consultation Report. Health and Nutritional Properties of Probiotics in Food Including Powder Milk with Live Lactic Acid Bacteria. Available online: http://www.who.int/foodsafety/publications/fs_management/probiotics/en/index.html (accessed on 16 August 2020).
- Sheehan, W.J.; Phipatanakul, W. Tolerance to Water Buffalo Milk in a Child with Cow Milk Allergy. Ann. Allergy Asthma Immunol. 2009, 102, 349. [Google Scholar] [CrossRef] [Green Version]
- Braun, P.G.; Preuss, S.E. Nutritional composition and chemico-physical parameters of water buffalo milk and milk products in Germany. Milchwissenschaft 2008, 63, 70–72. [Google Scholar]
- Ahmad, S.; Zhang, T.; Lee, F.; Liu, Y.; Li, X.; Guo, M. Seasonal variations in chemical composition of buffalo milk. Buffalo Bull. 2013, 32, 1324–1329. [Google Scholar]
- Borghese, A.; Mazzi, M. Buffalo Population and Strategies in the World. In Buffalo Production and Research; FAO: Rome, Italy, 2005. [Google Scholar]
- McDermott, J.; Staal, S.; Freeman, H.; Herrero, M.; Van De Steeg, J. Sustaining intensification of smallholder livestock systems in the tropics. Livest. Sci. 2010, 130, 95–109. [Google Scholar] [CrossRef]
- El Debaky, H.A.; Kutchy, N.A.; Ul-Husna, A.; Indriastuti, R.; Akhter, S.; Purwantara, B.; Memili, E. Review: Potential of water buffalo in world agriculture: Challenges and opportunities. Appl. Anim. Sci. 2019, 35, 255–268. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations Statistical Database (FAOSTAT). 2014. Available online: http://www.fao.org/faostat/en/#data/QP (accessed on 24 June 2020).
- Murtaza, M.A.; Pandya, A.J.; Khan, M.M.H. Buffalo Milk. In Handbook of Milk of Non-Bovine Mammals; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; pp. 261–283. [Google Scholar]
- Arora, S.; Khetra, Y. Chapter 42-Buffalo Milk Cheese. In Cheese, 4th ed.; McSweeney, P.L.H., Fox, P.F., Cotter, P.D., Everett, D.W., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 1093–1101. [Google Scholar]
- Iyer, R.; Tomar, S.K.; Singh, R.; Sharma, R. Estimation of folate in milk by microbiological assay using trienzyme extraction method. Milchwissenschaft 2009, 64, 125–127. [Google Scholar]
- Murtaza, M.A.; Pandya, A.J.; Khan, M.M.H. Buffalo Milk Utilization for Dairy Products. In Handbook of Milk of Non-Bovine Mammals; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2017; pp. 284–342. [Google Scholar]
- Patel, R.; Mistry, V. Physicochemical and Structural Properties of Ultrafiltered Buffalo Milk and Milk Powder. J. Dairy Sci. 1997, 80, 812–817. [Google Scholar] [CrossRef]
- Melia, S.; Purwanto, H.; Purwati, E. Nutrition quality and microbial content of buffalo, cow, and goat milk from West Sumatera. J. Ilmu Ternak Vet. 2018, 23, 150–157. [Google Scholar] [CrossRef]
- Lin, M.; Young, C. Folate levels in cultures of lactic acid bacteria. Int. Dairy J. 2000, 10, 409–413. [Google Scholar] [CrossRef]
- El-Salam, M.H.A.; El-Shibiny, S. A comprehensive review on the composition and properties of buffalo milk. Dairy Sci. Technol. 2011, 91, 663–699. [Google Scholar] [CrossRef]
- Ahmad, S.; Gaucher, I.; Rousseau, F.; Beaucher, E.; Piot, M.; Grongnet, J.F.; Gaucheron, F. Effects of acidification on physico-chemical characteristics of buffalo milk: A comparison with cow’s milk. Food Chem. 2008, 106, 11–17. [Google Scholar] [CrossRef]
- Aschaffenburg, R.; Sen, A.; Thompson, M. The caseins of buffalo milk. Comp. Biochem. Physiol. 1968, 27, 621–623. [Google Scholar] [CrossRef]
- Ranjan, P.; Arora, S.; Sharma, G.S.; Sindhu, J.S.; Kansal, V.K.; Sangwan, R.B. Bioavailability of calcium and physicochemical properties of calcium-fortified buffalo milk. Int. J. Dairy Technol. 2005, 58, 185–189. [Google Scholar] [CrossRef]
- Priyashantha, H.; Lundh, Å.; Höjer, A.; Hetta, M.; Johansson, M.; Langton, M. Interactive effects of casein micelle size and calcium and citrate content on rennet-induced coagulation in bovine milk. J. Texture Stud. 2019, 50, 508–519. [Google Scholar] [CrossRef]
- Khedkar, C.D.; Kalyankar, S.D.; Deosarkar, S.S. Buffalo Milk. In Encyclopedia of Food and Health; Caballero, B., Finglas, P.M., Toldrá, F., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 522–528. [Google Scholar]
- Panjagari, N.R.; Singh, R.; Singh, A.K. Indian Traditional Fermented Dairy Products. In Traditional Foods; Springer: New York, NY, USA, 2016; pp. 101–114. [Google Scholar]
- Pandey, K.K.; Sood, S.K.; Kumar, S.; Kumar, S.; Rani, S.; Ganguli, S. Bioutilization of paneer whey waste for production of paneer making powder containing pediocin PA-1 as a biopreservative to enhance shelf life of paneer. LWT 2019, 113, 108243. [Google Scholar] [CrossRef]
- Sserunjogi, M.L.; Abrahamsen, R.K.; Narvhus, J. Current knowledge of ghee and related products. Int. Dairy J. 1998, 8, 677–688. [Google Scholar] [CrossRef]
- Cruz, A.G.; Faria, J.D.A.; Van Dender, A.G. Packaging system and probiotic dairy foods. Food Res. Int. 2007, 40, 951–956. [Google Scholar] [CrossRef]
- Sanchez, P.C. Philippine Fermented Foods: Principles and Technology; The University of the Philippines Press: Quezon City, Philippines, 2008. [Google Scholar]
- Syukur, S.; Aziz, H.; Fachrial, E. Probiotics and strong antimicrobial of buffalo milk fermentation (Dadih) from different places in West Sumatera Indonesia. Res. J. Pharm. Biol. Chem. Sci. 2016, 7, 386–392. [Google Scholar]
- Malik, R.K.; Sheenam, G. Health Benefits of Ethnic Indian Milk Products. In Health Benefits of Fermented Foods and Beverages; CRC Press: Boca Raton, FL, USA, 2015; pp. 297–324. [Google Scholar]
- Aneja, R.P.; Mathur, B.N.; Chandan, R.C.; Banerjee, A.K. Cultured/Fermented Products. In Technology of Indian Milk Products; A Dairy India Publication: New Delhi, India, 2002; pp. 159–182. [Google Scholar]
- Ahmad, S. Buffalo Milk. In Milk and Dairy Products in Human Nutrition; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013; pp. 519–553. [Google Scholar]
- Fernández, M.F.; Boris, S.; Barbes, C. Probiotic properties of human lactobacilli strains to be used in the gastrointestinal tract. J. Appl. Microbiol. 2003, 94, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Hallqvist, J. The Importance of Buffalo Milk in the Curd Manufacture of Sri Lanka. Bachelor’s Thesis, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2019. [Google Scholar]
- Priyashantha, H.; Quintáns, A.P.; Baixauli, R.; Vidanarachchi, J.K. Type of starter culture influences on structural and sensorial properties of low protein fermented gels. J. Texture Stud. 2019, 50, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Adikari, A.M.M.U.; Jayathilake, J.A.M.S.; Parahitiyawa, N.B.; Vidanarachchi, J.K.; Kodithuwakku, K.K.S.P. Biochemical and physiological characterization of Lactobacillus spp. isolated from curd (‘Meekiri’ and ‘Deekiri’). Proc. Peradeniya Univ. 2014, 18, 214. [Google Scholar]
- Dekumpitiya, N.; Gamlakshe, D.; Abeygunawardena, S.I.; Jayaratne, D. Identification of the Microbial Consortium in Sri Lankan Buffalo Milk Curd and their growth in the Presence of Prebiotics. J. Food Sci. Technol. Nepal 2016, 9, 20–30. [Google Scholar] [CrossRef] [Green Version]
- Shuhadha, M.F.F.; Panagoda, G.J.; Madhujith, T.; Jayawardana, N.W.I.A. Evaluation of probiotic attributes of Lactobacillus sp. isolated from cow and buffalo curd samples collected from Kandy. Ceylon Med. J. 2017, 62, 159. [Google Scholar] [CrossRef]
- Disanayaka, J.N.K.; Vidanarachchi, J.K.; Kodithuwakku, S.; Jayathilake, J.A.M.S.; Prasanna, P.H.P. Antifungal Property of Lactobacillus fermentum Isolated from Sri Lankan Homemade Curd on Candida Species: Candida albicans, Candida glabrata, Candida krusei, Candida parapsilosis and Candida tropicalis. In Proceedings of the Faculty of Agriculture Undergraduate Research Symposium 2018, University of Peradeniya, Peradeniya, Sri Lanka, 21 February 2019; p. 74. [Google Scholar]
- Borková, M.; Snášelová, J. Possibilities of different animal milk detection in milk and dairy products—A review. Czech J. Food Sci. 2011, 23, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Randiwela, R.; Mangalika, U.; Adikari, A.; Pathirana, A.; Weeragalla, W. PCR Based Assay for the Detection of Cow’s Milk Adulteration in Buffalo Curd. Int. J. Livest. Res. 2018, 8, 67. [Google Scholar] [CrossRef]
- Sri Lanka Standard Institution (SLSI). Specification for Fermented Milk Products-Curd; Sri Lanka Standard Institution: Colombo, Sri Lanka, 1988; Volume I, p. 824. [Google Scholar]
- Zachar, P.; Šoltés, M.; Kasarda, R.; Novotný, J.; Novikmecová, M.; Marcinčáková, D. Analytical methods for the species identification of milk and milk products. Mljekarstvo 2011, 61, 199–207. [Google Scholar]
- Jayamanne, V.; Samarajeewa, U. Evaluation of the effects of fermentation of buffalo curd and acidity on survival kinetics of Listeria monocytogenes. Trop. Agric. Res. Ext. 2011, 13, 94. [Google Scholar] [CrossRef] [Green Version]
- Naalir, M. Good Times for Kantale Curd Industry. Features, Sunday Observer. 2011. Available online: http://archives.sundayobserver.lk/2011/06/19/fea09.asp (accessed on 14 July 2020).
- Wickramaratne, D.; Gunasena, D. In vitro Antibacterial Activity of Lactobacillus Strains in Spontaneously Fermented Curd from Kanthale, Sri Lanka. In Proceedings of the Sixth AAAF, Colombo, Sri Lanka, 28–29 December 2016; ISBN 978-955-4543-34-8. [Google Scholar]
- Rajapakse, N.; Jeganathan, B.; Wijesinghe, D.G.N.G.; Chandrasekara, A. Assessing the Probiotic Effect of Buffalo Milk Curd. In Proceedings of the Faculty of Agriculture Undergraduate Research Symposium, Peradeniya, Sri Lanka, 23 December 2014; p. 76. Available online: http://researcharchive.wintec.ac.nz/5434/1/Full_Proceedings.pdf (accessed on 23 June 2020).
- Shafakatullah, N.; Chandra, M. Screening of raw buffalo’s milk from Karnataka for potential probiotic strains. Res. J. Recent Sci. 2014, 3, 73–78. [Google Scholar]
- Forhad, M.H.; Rahman, S.M.K.; Rahman, M.S.; Saikot, F.K.; Biswas, K.C. Probiotic properties analysis of isolated lactic acid bacteria from buffalo milk. Arch. Clin. Microbiol. 2015, 7, 5–10. [Google Scholar]
- Kumar, A.; Hussain, S.A.; Raju, P.N.; Singh, A.K.; Singh, R.R.B. Packaging material type affects the quality characteristics of Aloe-probiotic lassi during storage. Food Biosci. 2017, 19, 34–41. [Google Scholar] [CrossRef]
- Shimamura, S.; Abe, F.; Ishibashi, N.; Miyakawa, H.; Yaeshima, T.; Araya, T.; Tomita, M. Relationship Between Oxygen Sensitivity and Oxygen Metabolism of Bifidobacterium Species. J. Dairy Sci. 1992, 75, 3296–3306. [Google Scholar] [CrossRef]
- Yadav, H.; Jain, S.; Sinha, P.R. Effect of Dahi Containing Lactococcus lactis on the Progression of Diabetes Induced by a High-Fructose Diet in Rats. Biosci. Biotechnol. Biochem. 2006, 70, 1255–1258. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Kansal, V.K. Augmentation of immune response in mice fed with Dahi: A fermented milk containing Leuconostoc citrovorum and Lactococcus lactis. Milchwissenschaft 2003, 58, 480–482. [Google Scholar]
- Vijayendra, S.; Gupta, R.C. Associative growth behavior of dahi and yoghurt starter cultures with Bifidobacterium bifidum and Lactobacillus acidophilus in buffalo skim milk. Ann. Microbiol. 2012, 63, 461–469. [Google Scholar] [CrossRef]
- Melia, S.; Purwati, E.; Aritonang, S.N.; Silaen, M.; Yuherman; Jaswandi. Characterization of the Antimicrobial Activity of Lactic Acid Bacteria Isolated from Buffalo Milk in West Sumatera (Indonesia) Against Listeria monocytogenes. Pak. J. Nutr. 2017, 16, 645–650. [Google Scholar] [CrossRef] [Green Version]
- Harun, H.; Wirasti, Y.; Purwanto, B.; Purwati, E. Characterization of lactic acid bacteria and determination of antimicrobial activity in Dadih from Dingin Alahan Panjang District, Solok regency—West Sumatera. Syst. Rev. Pharm. 2020, 11, 583–586. [Google Scholar] [CrossRef]
- Syukur, S.; Fachrial, E.; Jamsari. Isolation, antimicrobial activity and protein bacteriocin characterization of lactic acid bacteria isolated from Dadih in Solok, West Sumatera, Indonesia. Res. J. Pharm. Biol. Chem. Sci. 2014, 5, 1096. [Google Scholar]
- Metchnikoff, E. Lactic acid as Inhibiting Intestinal Putrefaction. In The Prolongation of Life: Optimistic Studies; W. Heinemann: London, UK, 1907; pp. 161–183. [Google Scholar]
- Lilly, D.M.; Stillwell, R.H. Probiotics: Growth-Promoting Factors Produced by Microorganisms. Science 1965, 147, 747–748. [Google Scholar] [CrossRef] [PubMed]
- Afrc, R.F. Probiotics in man and animals. J. Appl. Bacteriol. 1989, 66, 365–378. [Google Scholar] [CrossRef]
- Goldin, B.R.; Gorbach, S.L.; Fuller, R. Probiotics for Humans. In Probiotics: The Scientific Basis; Fuller, R., Ed.; Chapman & Hall: London, UK, 1992; pp. 355–386. [Google Scholar]
- Salminen, S.; Ouwehand, A.; Benno, Y.; Lee, Y.K. Probiotics: How should they be defined? Trends Food Sci. Technol. 1999, 10, 107–110. [Google Scholar] [CrossRef]
- Tannock, G.W.; Munro, K.; Harmsen, H.J.M.; Welling, G.W.; Smart, J.; Gopal, P.K. Analysis of the Fecal Microflora of Human Subjects Consuming a Probiotic Product Containing Lactobacillus rhamnosus DR20. Appl. Environ. Microbiol. 2000, 66, 2578–2588. [Google Scholar] [CrossRef] [Green Version]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Salminen, S. Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506. [Google Scholar] [CrossRef] [Green Version]
- Boylston, T.D.; Vinderola, C.G.; Ghoddusi, H.B.; Reinheimer, J.A. Incorporation of bifidobacteria into cheeses: Challenges and rewards. Int. Dairy J. 2004, 14, 375–387. [Google Scholar] [CrossRef]
- Dagmar, Š.; Španova, A.; Špano, M.; Dráb, V.; Schwarzer, M.; Kozaková, H.; Rittich, B. Efficiency of PCR-based methods in discriminating Bifidobacterium longum ssp. longum and Bifidobacterium longum ssp. infantis strains of human origin. J. Microbiol. Methods 2011, 87, 10–16. [Google Scholar]
- Douglas, L.C.; Sanders, M.E. Probiotics and Prebiotics in Dietetics Practice. J. Am. Diet. Assoc. 2008, 108, 510–521. [Google Scholar] [CrossRef]
- Gorbach, S. Probiotics in the third millennium. Dig. Liver Dis. 2002, 34, S2–S7. [Google Scholar] [CrossRef]
- Senok, A.C.; Ismaeel, A.Y.; Botta, G.A. Probiotics: Facts and myths. Clin. Microbiol. Infect. 2005, 11, 958–966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caplan, M.S.; Frost, B. Myth: Necrotizing enterocolitis: Probiotics will end the disease, and surgical intervention improves the outcome. Semin. Fetal Neonatal Med. 2011, 16, 264–268. [Google Scholar] [CrossRef]
- Ranadheera, C.S.; Evans, C.A.; Adams, M.C.; Baines, S.K. Probiotic viability and physico-chemical and sensory properties of plain and stirred fruit yogurts made from goat’s milk. Food Chem. 2012, 135, 1411–1418. [Google Scholar] [CrossRef] [PubMed]
- Saad, N.; Delattre, C.; Urdaci, M.C.; Schmitter, J.-M.; Bressollier, P. An overview of the last advances in probiotic and prebiotic field. LWT 2013, 50, 1–16. [Google Scholar] [CrossRef]
- Herbel, S.; Vahjen, W.; Wieler, L.H.; Guenther, S. Timely approaches to identify probiotic species of the genus Lactobacillus. Gut Pathog. 2013, 5, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Silva, T.M.S.; Piazentin, A.C.M.; Mendonça, C.M.N.; Converti, A.; Bogsan, C.S.B.; Mora, D.; Oliveira, R.P.D.S. Buffalo milk increases viability and resistance of probiotic bacteria in dairy beverages under in vitro simulated gastrointestinal conditions. J. Dairy Sci. 2020, 103, 7890–7897. [Google Scholar] [CrossRef]
- Coeuret, V.; Gueguen, M.; Vernoux, J.P. In vitro screening of potential probiotic activities of selected lactobacilli isolated from unpasteurized milk products for incorporation into soft cheese. J. Dairy Res. 2004, 71, 451–460. [Google Scholar] [CrossRef]
- Songisepp, E.; Kullisaar, T.; Hütt, P.; Elias, P.; Brilene, T.; Zilmer, M.; Mikelsaar, M. A New Probiotic Cheese with Antioxidative and Antimicrobial Activity. J. Dairy Sci. 2004, 87, 2017–2023. [Google Scholar] [CrossRef] [Green Version]
- Minervini, F.; Siragusa, S.; Faccia, M.; Bello, F.D.; Gobbetti, M.; De Angelis, M. Manufacture of Fior di Latte cheese by incorporation of probiotic lactobacilli. J. Dairy Sci. 2012, 95, 508–520. [Google Scholar] [CrossRef] [Green Version]
- Junaid, M.; Javed, I.; Gulzar, M.; Ayaz, M.; Abdullah, M.; Younas, U.; Nasir, J. Flavored probiotic (Acidophilus) buffalo milk: Development and quality assessment. Buffalo Bull. 2013, 32, 1300–1304. [Google Scholar]
- Macedo, R.F.; Freitas, R.J.S.; Pandey, A.; Soccol, C.R. Production and shelf-life studies of low cost beverage with soymilk, buffalo cheese whey and cow milk fermented by mixed cultures of Lactobacillus casei ssp. shirota and Bifidobacterium adolescentis. J. Basic Microbiol. 1999, 39, 243–251. [Google Scholar] [CrossRef]
- Gul, O.; Mortas, M.; Atalar, I.; Dervisoglu, M.; Kahyaoglu, T. Manufacture and characterization of kefir made from cow and buffalo milk, using kefir grain and starter culture. J. Dairy Sci. 2015, 98, 1517–1525. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Addeo, F.; Alloisio, V.; Chianese, L. Tradition and innovation in the water buffalo dairy products. Ital. J. Anim. Sci. 2007, 6, 51–57. [Google Scholar] [CrossRef]
- Farnworth, E.R.; Mainville, I. Kefir: A Fermented Milk Product. In Handbook of Fermented Functional Foods; CRC Press: Boca Raton, FL, USA, 2003; Volume 2, pp. 89–127. [Google Scholar]
- Ismail, A.A.; El-Nockrashy, S.A.; Khorshid, M.A. A beverage from separated buffalo milk fermented with kefir grains. Int. J. Dairy Technol. 1983, 36, 117–118. [Google Scholar] [CrossRef]
- Ozcan, T.; Sahin, S.; Akpinar-Bayizit, A.; Yilmaz-Ersan, L. Assessment of antioxidant capacity by method comparison and amino acid characterisation in buffalo milk kefir. Int. J. Dairy Technol. 2019, 72, 65–73. [Google Scholar] [CrossRef] [Green Version]
- Tomar, O.; Akarca, G.; Çağlar, A.; Beykaya, M.; Gök, V. The effects of kefir grain and starter culture on kefir produced from cow and buffalo milk during storage periods. Food Sci. Technol. 2020, 40, 238–244. [Google Scholar] [CrossRef] [Green Version]
- Gul, O.; Atalar, I.; Mortas, M.; Dervisoglu, M. Rheological, textural, colour and sensorial properties of kefir produced with buffalo milk using kefir grains and starter culture: A comparison with cows’ milk kefir. Int. J. Dairy Technol. 2018, 71, 73–80. [Google Scholar] [CrossRef]
- Ranadheera, R.; Baines, S.; Adams, M. Importance of food in probiotic efficacy. Food Res. Int. 2010, 43, 1–7. [Google Scholar] [CrossRef]
- Donkor, O.N.; Tsangalis, D.; Shah, N.P. Viability of probiotic bacteria and concentrations of organic acids in commercial yoghurts during refrigerated storage. Food Aust. 2007, 59, 121–126. [Google Scholar]
- Nguyen, H.T.; Ong, L.; Kentish, S.E.; Gras, S.L. Homogenisation improves the microstructure, syneresis and rheological properties of buffalo yoghurt. Int. Dairy J. 2015, 46, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.T.; Ong, L.; Lefévre, C.; Kentish, S.E.; Gras, S. The Microstructure and Physicochemical Properties of Probiotic Buffalo Yoghurt During Fermentation and Storage: A Comparison with Bovine Yoghurt. Food Bioprocess Technol. 2013, 7, 937–953. [Google Scholar] [CrossRef]
- Han, X. Survivability of probiotics in symbiotic low fat buffalo milk yogurt. Afr. J. Biotechnol. 2012, 11, 12331–12338. [Google Scholar] [CrossRef] [Green Version]
- Ehsani, A.; Banihabib, E.K.; Hashemi, M.; Saravani, M.; Yarahmadi, E. Evaluation of Various Properties of Symbiotic Yoghurt of Buffalo Milk. J. Food Process. Preserv. 2016, 40, 1466–1473. [Google Scholar] [CrossRef]
- Santo, A.P.E.D.; Perego, P.; Converti, A.; Oliveira, M.N. Influence of milk type and addition of passion fruit peel powder on fermentation kinetics, texture profile and bacterial viability in probiotic yoghurts. LWT 2012, 47, 393–399. [Google Scholar] [CrossRef]
- Kaushal, D.; Kansal, V.K. Probiotic Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum alleviates age-inflicted oxidative stress and improves expression of biomarkers of ageing in mice. Mol. Biol. Rep. 2011, 39, 1791–1799. [Google Scholar] [CrossRef]
- Jain, S.; Yadav, H.; Sinha, P.R.; Kapila, S.; Naito, Y.; Marotta, F. Anti-allergic effects of probiotic Dahi through modulation of the gut immune system. Turk. J. Gastroenterol. 2010, 21, 244–250. [Google Scholar] [CrossRef]
- Mohania, D.; Kansal, W.K.; Nagpal, R.; Yamashiro, Y.; Marotta, F. Suppression of diet-induced hypercholesterolemia by probiotic Dahi containing Lactobacillus acidophilus and Lactobacillus plantarum. Int. J. Probiotics Prebiotics 2013, 8, 75–84. [Google Scholar]
- Shandilya, U.K.; Sharma, A.; Kapila, R.; Kansal, V.K. Probiotic Dahi containing Lactobacillus acidophilus and Bifidobacterium bifidum modulates immunoglobulin levels and cytokines expression in whey proteins sensitised mice. J. Sci. Food Agric. 2015, 96, 3180–3187. [Google Scholar] [CrossRef]
- Gomes, A.; Braga, S.; Cruz, A.G.; Cadena, R.; Lollo, P.; Carvalho, C.; Amaya-Farfan, J.; Faria, J.; Bolini, H.M.A. Effect of the inoculation level of Lactobacillus acidophilus in probiotic cheese on the physicochemical features and sensory performance compared with commercial cheeses. J. Dairy Sci. 2011, 94, 4777–4786. [Google Scholar] [CrossRef]
- Rolim, F.R.; Neto, O.C.F.; Oliveira, M.E.G.; Oliveira, C.J.; Queiroga, R.C. Cheeses as food matrixes for probiotics: In vitro and in vivo tests. Trends Food Sci. Technol. 2020, 100, 138–154. [Google Scholar] [CrossRef]
- Mushtaq, M.; Gani, A.; Masoodi, F.; Ahmad, M. Himalayan cheese (Kalari/Kradi)—Effect of different probiotic strains on oxidative stability, microbiological, sensory and nutraceutical properties during storage. LWT 2016, 67, 74–81. [Google Scholar] [CrossRef]
- Murtaza, M.A.; Huma, N.; Shabbir, M.A.; Anees-Ur-Rehman, M. Survival of micro-organisms and organic acid profile of probiotic Cheddar cheese from buffalo milk during accelerated ripening. Int. J. Dairy Technol. 2017, 70, 562–571. [Google Scholar] [CrossRef]
- Abesinghe, A.; Islam, N.; Vidanarachchi, J.; Prakash, S.; Silva, K.; Karim, M.A. Effects of ultrasound on the fermentation profile of fermented milk products incorporated with lactic acid bacteria. Int. Dairy J. 2019, 90, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Van Nieuwenhove, C.P.; Oliszewski, R.; Gonzalez, S.N.; Chaia, A.P. Influence of bacteria used as adjunct culture and sunflower oil addition on conjugated linoleic acid content in buffalo cheese. Food Res. Int. 2007, 40, 559–564. [Google Scholar] [CrossRef]
- Sameer, B.; Ganguly, S.; Khetra, Y.; Sabikhi, L. Development and Characterization of Probiotic Buffalo Milk Ricotta Cheese. LWT 2020, 121, 108944. [Google Scholar] [CrossRef]
- Diana, A.B.M.; Janer, C.; Pelaez, C.; Requena, T. Development of a fermented goat’s milk containing probiotic bacteria. Int. Dairy J. 2003, 13, 827–833. [Google Scholar] [CrossRef]
- Prasanna, P.; Grandison, A.; Charalampopoulos, D. Screening human intestinal Bifidobacterium strains for growth, acidification, EPS production and viscosity potential in low-fat milk. Int. Dairy J. 2012, 23, 36–44. [Google Scholar] [CrossRef]
- Akalın, A.; Unal, G.; Dinkci, N.; Hayaloglu, A. Microstructural, textural, and sensory characteristics of probiotic yogurts fortified with sodium calcium caseinate or whey protein concentrate. J. Dairy Sci. 2012, 95, 3617–3628. [Google Scholar] [CrossRef]
- García-Ceja, A.; Mani-López, E.; Palou, E.; López-Malo, A. Viability during refrigerated storage in selected food products and during simulated gastrointestinal conditions of individual and combined lactobacilli encapsulated in alginate or alginate-chitosan. LWT 2015, 63, 482–489. [Google Scholar] [CrossRef]
- Silva, K.C.G.; Cezarino, E.C.; Michelon, M.; Sato, A.C.K. Symbiotic microencapsulation to enhance Lactobacillus acidophilus survival. LWT 2018, 89, 503–509. [Google Scholar] [CrossRef]
- Lacroix, C.; Yildirim, S. Fermentation technologies for the production of probiotics with high viability and functionality. Curr. Opin. Biotechnol. 2007, 18, 176–183. [Google Scholar] [CrossRef] [PubMed]
- Nuraida, L. A review: Health promoting lactic acid bacteria in traditional Indonesian fermented foods. Food Sci. Hum. Wellness 2015, 4, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Collado, M.C.; Surono, I.; Meriluoto, J.; Salminen, S. Indigenous Dadih Lactic Acid Bacteria: Cell-Surface Properties and Interactions with Pathogens. J. Food Sci. 2007, 72, M89–M93. [Google Scholar] [CrossRef] [PubMed]
- Surono, I.S. In Vitro Probiotic Properties of Indigenous Dadih Lactic Acid Bacteria. Asian Australas. J. Anim. Sci. 2003, 16, 726–731. [Google Scholar] [CrossRef]
- Pato, U.; Johan, V.; Khairunnisa, F.; Hasibuan, R.D.H. Antibiotic resistance and antibacterial activity of Dadih originated Lactobacillus casei subsp. casei R-68 against food borne pathogens. Asian J. Microbiol. Biotech. Environ. Sci. 2017, 19, 577–587. [Google Scholar]
- Rashid, H.-U.; Togo, K.; Ueda, M.; Miyamoto, T. Probiotic Characteristics of Lactic Acid Bacteria Isolated from Traditional Fermented Milk ‘Dahi’ in Bangladesh. Pak. J. Nutr. 2007, 6, 647–652. [Google Scholar] [CrossRef]
- Jatmiko, Y.D.; Howarth, G.S.; Barton, M. Assessment of Probiotic Properties of Lactic Acid Bacteria Isolated from Indonesian Naturally Fermented Milk; AIP Publishing: Melville, NY, USA, 2017. [Google Scholar]
- Pato, U.; Ali, M.; Parlindungan, A.K. Taurocholate Deconjugation and Cholesterol Binding by Indigenous Dadih Lactic Acid Bacteria. HAYATI J. Biosci. 2005, 12, 103–107. [Google Scholar] [CrossRef]
- Yuliawati, Y.; Jurnalis, Y.D.; Purwati, E.; Lubis, G. The Effect of Pediococcus pentosaceus on stool frequency, TNF-α level, gut microflora balance in diarrhea-induced mice. Indones. J. Gastroenterol. Hepatol. Dig. Endosc. 2012, 13, 97–102. [Google Scholar]
- Aslinar, A.; Jurnalis, Y.D.; Purwati, E.; Sayoeti, Y. Probiotic Weisella paramesenteroides on enteropathogenic E. coli-induced diarrhea. Paediatr. Indones. 2014, 54, 1–8. [Google Scholar] [CrossRef]
- Dharmawan, J.; Surono, I.S.; Kun, L.Y. Adhesion Properties of Indigenous Dadih Lactic Acid Bacteria on Human Intestinal Mucosal Surface. Asian Australas. J. Anim. Sci. 2006, 19, 751–755. [Google Scholar] [CrossRef]
- Champagne, C.P.; Gardner, N.J.; Roy, D. Challenges in the Addition of Probiotic Cultures to Foods. Crit. Rev. Food Sci. Nutr. 2005, 45, 61–84. [Google Scholar] [CrossRef] [PubMed]
- Khurana, H.; Kanawjia, S. Recent Trends in Development of Fermented Milks. Curr. Nutr. Food Sci. 2007, 3, 91–108. [Google Scholar] [CrossRef] [Green Version]
- Al-Manhel, A.; Niamah, A. Mannan extract from Saccharomyces cerevisiae used as prebiotic in bioyogurt production from buffalo milk. Int. Food Res. J. 2017, 24, 2259–2264. [Google Scholar]
- Ramos, P.E.; Cerqueira, M.A.; Teixeira, J.A.; Vicente, A.A. Physiological protection of probiotic microcapsules by coatings. Crit. Rev. Food Sci. Nutr. 2018, 58, 1864–1877. [Google Scholar] [CrossRef] [PubMed]
- Karki, T.; Shrestha, S.; Bohara, B.; Jyakhwa, U. Characterization and Comparison of Soy Milk and Buffalo Milk Based Synbiotic Product. J. Food Sci. Technol. Nepal 2014, 8, 23–29. [Google Scholar] [CrossRef] [Green Version]
- Meybodi, N.M.; Mortazavian, A.M.; Arab, M.; Nematollahi, A. Probiotic viability in yoghurt: A review of influential factors. Int. Dairy J. 2020, 109, 104793. [Google Scholar] [CrossRef]
- Tripathi, M.; Giri, S. Probiotic functional foods: Survival of probiotics during processing and storage. J. Funct. Foods 2014, 9, 225–241. [Google Scholar] [CrossRef]
- De Araújo, E.M.; Raddatz, G.C.; Cichoski, A.J.; Flores, É.M.M.; Barin, J.S.; Zepka, L.Q.; De Menezes, C.R. Effect of resistant starch (Hi-maize) on the survival of Lactobacillus acidophilus microencapsulated with sodium alginate. J. Funct. Foods 2016, 21, 321–329. [Google Scholar]
- Holkem, A.T.; Raddatz, G.C.; Barin, J.S.; Flores, É.M.M.; Muller, E.I.; Codevilla, C.F.; Jacob-Lopes, E.; Grosso, C.R.F.; De Menezes, C.R. Production of microcapsules containing Bifidobacterium BB-12 by emulsification/internal gelation. LWT 2017, 76, 216–221. [Google Scholar] [CrossRef]
- Mokarram, R.; Mortazavi, S.A.; Najafi, M.B.H.; Shahidi, F. The influence of multi stage alginate coating on survivability of potential probiotic bacteria in simulated gastric and intestinal juice. Food Res. Int. 2009, 42, 1040–1045. [Google Scholar] [CrossRef]
- Shah, N.; Ravula, R. Microencapsulation of probiotic bacteria and their survival in frozen fermented dairy desserts. Aust. J. Dairy Technol. 2000, 55, 139. [Google Scholar]
- Jiménez-Pranteda, M.L.; Poncelet, D.; Nader-Macías, M.E.; Arcos, A.; Aguilera, M.; Monteoliva-Sánchez, M.; Ramos-Cormenzana, A. Stability of lactobacilli encapsulated in various microbial polymers. J. Biosci. Bioeng. 2012, 113, 179–184. [Google Scholar] [CrossRef]
- Peniche, C.; Argüelles-Monal, W.; Peniche, H.; Acosta, N. Chitosan: An Attractive Biocompatible Polymer for Microencapsulation. Macromol. Biosci. 2003, 3, 511–520. [Google Scholar] [CrossRef]
- Adhikari, K.; Mustapha, A.; Grün, I.; Fernando, L. Viability of Microencapsulated Bifidobacteria in Set Yogurt During Refrigerated Storage. J. Dairy Sci. 2000, 83, 1946–1951. [Google Scholar] [CrossRef]
- Tsen, J.-H.; Lin, Y.-P.; Huang, H.-Y.; King, V.A.-E. Studies on the Fermentation of Tomato Juice by Using Κ-Carrageenan Immobilized Lactobacillus acidophilus. J. Food Process. Preserv. 2008, 32, 178–189. [Google Scholar] [CrossRef]
- Borza, A.D.; Annan, N.T.; Moreau, D.L.; Allan-Wojtas, P.M.; Ghanem, A.; Rousseau, D.; Hansen, L.T. Microencapsulation in genipin cross-linked gelatine-maltodextrin improves survival of Bifidobacterium adolescentis during exposure to in vitro gastrointestinal conditions. J. Microencapsul. 2010, 27, 387–399. [Google Scholar] [CrossRef]
- Hyndman, C.L.; Groboillot, A.F.; Poncelet, D.; Champagne, C.P.; Neufeld, R.J. Microencapsulation of Lactococcus lactis within cross-linked gelatin membranes. J. Chem. Technol. Biotechnol. 2007, 56, 259–263. [Google Scholar] [CrossRef]
- Kia, E.M.; Ghasempour, Z.; Ghanbari, S.; Pirmohammadi, R.; Ehsani, A. Development of probiotic yogurt by incorporation of milk protein concentrate (MPC) and microencapsulated Lactobacillus paracasei in gellan-caseinate mixture. Br. Food J. 2018, 120, 1516–1528. [Google Scholar] [CrossRef]
- Loyeau, P.; Spotti, M.; Braber, N.V.; Rossi, Y.; Montenegro, M.; Vinderola, G.; Carrara, C. Microencapsulation of Bifidobacterium animalis subsp. lactis INL1 using whey proteins and dextrans conjugates as wall materials. Food Hydrocoll. 2018, 85, 129–135. [Google Scholar] [CrossRef]
- Shi, L.-E.; Li, Z.-H.; Li, D.-T.; Xu, M.; Chen, H.-Y.; Zhang, Z.-L.; Tang, Z.-X. Encapsulation of probiotic Lactobacillus bulgaricus in alginate-milk microspheres and evaluation of the survival in simulated gastrointestinal conditions. J. Food Eng. 2013, 117, 99–104. [Google Scholar] [CrossRef]
- Ji, R.; Wu, J.; Zhang, J.; Wang, T.; Zhang, X.; Shao, L.; Chen, D.; Wang, J. Extending Viability of Bifidobacterium longum in Chitosan-Coated Alginate Microcapsules Using Emulsification and Internal Gelation Encapsulation Technology. Front. Microbiol. 2019, 10, 1389. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Ji, Y.R.; Lee, S.; Choi, M.-J.; Cho, Y. Microencapsulation of Probiotic Lactobacillus acidophilus KBL409 by Extrusion Technology to Enhance Survival under Simulated Intestinal and Freeze-Drying Conditions. J. Microbiol. Biotechnol. 2019, 29, 721–730. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, P.T.D.; Fries, L.L.M.; Menezes, C.R.D.; Silva, C.D.B.D.; Soriani, H.H.; Bastos, J.D.O.; Motta, M.H.; Ribeiro, R.F. Microencapsulation of probiotics by spray drying: Evaluation of survival in simulated gastrointestinal conditions and availability under different storage temperatures. Ciência Rural 2015, 45, 1342–1347. [Google Scholar] [CrossRef] [Green Version]
- Schell, D.; Beermann, C. Fluidized bed microencapsulation of Lactobacillus reuteri with sweet whey and shellac for improved acid resistance and in-vitro gastro-intestinal survival. Food Res. Int. 2014, 62, 308–314. [Google Scholar] [CrossRef]
- Martín, M.J.; Lara-Villoslada, F.; Ruiz, M.A.; Morales, M.E. Microencapsulation of bacteria: A review of different technologies and their impact on the probiotic effects. Innov. Food Sci. Emerg. Technol. 2015, 27, 15–25. [Google Scholar] [CrossRef]
- Ribeiro, M.C.E.; Chaves, K.S.; Gebara, C.; Infante, F.N.; Grosso, C.R.F.; Gigante, M.L. Effect of microencapsulation of Lactobacillus acidophilus LA-5 on physicochemical, sensory and microbiological characteristics of stirred probiotic yoghurt. Food Res. Int. 2014, 66, 424–431. [Google Scholar] [CrossRef]
- Brinques, G.B.; Ayub, M.A.Z. Effect of microencapsulation on survival of Lactobacillus plantarum in simulated gastrointestinal conditions, refrigeration, and yogurt. J. Food Eng. 2011, 103, 123–128. [Google Scholar] [CrossRef]
- Pavunc, A.L.; Beganović, J.; Kos, B.; Buneta, A.; Beluhan, S.; Šušković, J. Influence of microencapsulation and transglutaminase on viability of probiotic strain Lactobacillus helveticus M92 and consistency of set yoghurt. Int. J. Dairy Technol. 2010, 64, 254–261. [Google Scholar] [CrossRef]
- Ortakci, F.; Sert, S. Stability of free and encapsulated Lactobacillus acidophilus ATCC 4356 in yogurt and in an artificial human gastric digestion system. J. Dairy Sci. 2012, 95, 6918–6925. [Google Scholar] [CrossRef] [Green Version]
- Shoji, A.; Oliveira, A.; Balieiro, J.; Freitas, O.; Thomazini, M.; Heinemann, R.; Okuro, P.; Favaro-Trindade, C. Viability of L. acidophilus microcapsules and their application to buffalo milk yoghurt. Food Bioprod. Process. 2013, 91, 83–88. [Google Scholar] [CrossRef]
- Chávarri, M.; Marañón, I.; Ares, R.; Ibáñez, F.C.; Marzo, F.; Villarán, M.D.C. Microencapsulation of a probiotic and prebiotic in alginate-chitosan capsules improves survival in simulated gastro-intestinal conditions. Int. J. Food Microbiol. 2010, 142, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Awad, T.; Moharram, H.; Shaltout, O.E.; Asker, D.; Youssef, M. Applications of ultrasound in analysis, processing and quality control of food: A review. Food Res. Int. 2012, 48, 410–427. [Google Scholar] [CrossRef]
- Guimarães, J.T.; Balthazar, C.F.; Scudino, H.; Pimentel, T.C.; Esmerino, E.A.; Kumar, M.A.; Freitas, M.Q.; Cruz, A.G. High-intensity ultrasound: A novel technology for the development of probiotic and prebiotic dairy products. Ultrason. Sonochem. 2019, 57, 12–21. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.M.P.; Lee, Y.K.; Zhou, W. Stimulating fermentative activities of bifidobacteria in milk by highintensity ultrasound. Int. Dairy J. 2009, 19, 410–416. [Google Scholar] [CrossRef]
- Wu, H.; Hulbert, G.J.; Mount, J.R. Effects of ultrasound on milk homogenization and fermentation with yogurt starter. Innov. Food Sci. Emerg. Technol. 2000, 1, 211–218. [Google Scholar] [CrossRef]
- Barukčić, I.; Jakopović, K.L.; Herceg, Z.; Karlović, S.; Božanić, R. Influence of high intensity ultrasound on microbial reduction, physico-chemical characteristics and fermentation of sweet whey. Innov. Food Sci. Emerg. Technol. 2015, 27, 94–101. [Google Scholar] [CrossRef]
- Huang, G.; Chen, S.; Tang, Y.; Dai, C.; Sun, L.; Ma, H.; He, R. Stimulation of low intensity ultrasound on fermentation of skim milk medium for yield of yoghurt peptides by Lactobacillus paracasei. Ultrason. Sonochem. 2019, 51, 315–324. [Google Scholar] [CrossRef]
- Puvanenthiran, A.; Williams, R.P.; Augustin, M. Structure and visco-elastic properties of set yoghurt with altered casein to whey protein ratios. Int. Dairy J. 2002, 12, 383–391. [Google Scholar] [CrossRef]
- Abesinghe, A.; Vidanarachchi, J.; Islam, N.; Prakash, S.; Silva, K.; Bhandari, B.; Karim, M. Effects of ultrasonication on the physicochemical properties of milk fat globules of Bubalus bubalis (water buffalo) under processing conditions: A comparison with shear-homogenization. Innov. Food Sci. Emerg. Technol. 2020, 59, 102237. [Google Scholar] [CrossRef]
- Lin, M.-Y.; Yen, C.-L. Antioxidative Ability of Lactic Acid Bacteria. J. Agric. Food Chem. 1999, 47, 1460–1466. [Google Scholar] [CrossRef] [PubMed]
- Mortazavian, A.; Ehsani, M.; Mousavi, S.; Sohrabvandi, S.; Reinheimer, J. Combined effects of temperature-related variables on the viability of probiotic microorganisms in yogurt. Aust. J. Dairy Technol. 2006, 61, 248. [Google Scholar]
- Celik, O.; O’Sullivan, D. Factors influencing the stability of freeze-dried stress-resilient and stress-sensitive strains of bifidobacteria. J. Dairy Sci. 2013, 96, 3506–3516. [Google Scholar] [CrossRef] [PubMed]
Country | Year | ||||||||
---|---|---|---|---|---|---|---|---|---|
2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | |
India | 62,350.00 | 65,352.00 | 67,675.43 | 70,442.62 | 74,709.90 | 76,459.00 | 81,266.30 | 86,261.68 | 91,817.14 |
Pakistan | 22,279.00 | 22,955.00 | 23,652.00 | 24,370.00 | 25,001.00 | 25,744.00 | 26,510.00 | 27,298.00 | 28,109.00 |
China | 3050.00 | 3050.00 | 3080.00 | 3050.00 | 3100.00 | 2990.67 | 3005.20 | 2946.37 | 3003.32 |
Egypt | 2653.24 | 2568.14 | 2564.64 | 2522.83 | 2923.03 | 2394.16 | 2334.29 | 2351.12 | 2120.37 |
Nepal | 1066.87 | 1109.33 | 1153.84 | 1188.43 | 1167.77 | 1167.15 | 1210.44 | 1245.95 | 1338.28 |
Italy | 177.46 | 192.54 | 192.46 | 194.89 | 194.51 | 195.27 | 199.16 | 208.96 | 247.16 |
Myanmar | 302.97 | 305.63 | 171.18 | 175.53 | 179.75 | 184.14 | 188.49 | 192.13 | 193.84 |
Iran | 215.25 | 222.43 | 120.22 | 125.00 | 128.00 | 113.91 | 133.56 | 145.77 | 129.90 |
Sri Lanka | 46.99 | 46.33 | 61.71 | 54.06 | 45.85 | 36.12 | 66.13 | 68.59 | 85.91 |
Turkey | 35.49 | 40.37 | 46.99 | 51.95 | 54.80 | 62.76 | 63.09 | 69.40 | 75.74 |
Indonesia | 129.01 | 93.37 | 100.55 | 82.62 | 95.83 | 96.51 | 96.99 | 99.17 | 71.17 |
Iraq | 64.54 | 27.21 | 67.62 | 43.25 | 30.72 | 31.59 | 33.35 | 33.35 | 49.89 |
Bangladesh | 36.00 | 37.20 | 38.00 | 39.00 | 35.17 | 35.30 | 35.43 | 35.56 | 35.69 |
Viet Nam | 31.65 | 31.66 | 32.00 | 31.00 | 28.09 | 28.12 | 28.10 | 27.92 | 27.46 |
Bulgaria | 7.93 | 8.87 | 8.08 | 8.73 | 8.87 | 9.47 | 9.48 | 10.38 | 11.75 |
Malaysia | 9.20 | 9.50 | 8.90 | 9.00 | 8.34 | 8.22 | 8.25 | 8.26 | 8.19 |
Syria | 6.00 | 6.00 | 6.22 | 6.58 | 6.31 | 6.30 | 6.30 | 6.30 | 6.30 |
Georgia | 6.00 | 6.00 | 6.00 | 6.10 | 6.43 | 6.43 | 6.29 | 6.17 | 6.19 |
Greece | 0.11 | 0.15 | 0.39 | 0.45 | 0.27 | 0.53 | 3.03 | 2.89 | 0.40 |
Bhutan | 0.22 | 0.39 | 0.35 | 0.22 | 0.30 | 0.30 | 0.28 | 0.29 | 0.28 |
Constituents/Components | Buffalo Milk | Cow Milk | References |
---|---|---|---|
Fat (%) | 6.7 | 3.7 | [30] |
Total protein (%) | 4.7 | 3.5 | [30] |
Calcium (mg/100 mL) | 205.0 | 115.0 | [30] |
Water (%) | 83.2 | 87.2 | [30] |
Total solids (%) | 16.3 | 12.8 | [30] |
Folate (μg/L) | 60.0 | 44.0 | [31] |
Size of the casein micelle (nm) | 110–160 | 70–110 | [30] |
Traditional Name | County of Origin | Product Characteristics | References |
---|---|---|---|
Meekiri | Sri Lanka | Traditional buffalo curd fermented in clay pots that resembles a creamy yoghurt. | [45] |
Kesong Puti | Philippines | Soft fresh (unripened) cheese made with rennet and natural fermentation process of LAB. | [46] |
Dadih | West Sumatra, Indonesia | Sour yoghurt obtained by fermenting raw buffalo milk spontaneously in a bamboo tube, for two days, at ambient temperature, with natural LAB. | [47] |
Lassi | India | A refreshing beverage, obtained by blending Dahi with other ingredients such as salt, sugar, spices, fruits and water until it becomes frothy. | [48] |
Dahi | India | Fermented buffalo milk yoghurt, made with various naturally occurring strains of LAB, which are introduced into the fresh milk through back-slopping (from the previous fermentation vat). | [49] |
Chakka | India | A product obtained by partial separation of whey from Dahi. | [49] |
Shrikhand | India | Sweetened concentrated curd produced by further removing whey from Dahi. Served with fruit pulps. | [49] |
Genus | Species |
---|---|
Lactobacillus | L. acidophilus, L. casei, L. crispatus, L. delbrueckii subsp. bulgaricus, L. fermentum, L. gasseri, L. johnsonii, L. paracasei, L. plantarum, L. reuteri, L. rhamnosus, L. helveticus, L. lactis, L. sporogenes, L. amylovorus, L. brevis, L. salivarius |
Bifidobacterium | B. bifidum, B. breve, B. infantis, B. longum B. lactis, B. animalis, B. adolescentis, B. essensis, B. laterosporus |
Propionibacterium | P. acidipropionici, P. freudenreichii, P. jensenii, P. thoenii |
Bacillus | B. alcalophilus, B. cereus, B. clausii, B. coagulans, B. subtilis |
Enterococcus | E. faecium |
Escherichia | E. coli Nissle |
Saccharomyces | S. boulardii, S. cerevisae |
Type of Microorganisms Isolated/Investigated | Beneficial Characteristics Revealed in the Study | Products Associated | References |
---|---|---|---|
Enterococcus faecium IS-27526 | Stimulating the total salivary serum IgA level in underweight preschool children increase of secretory IgA level | Traditional fermented buffalo milk in Indonesia (Dadih) | [16] |
Lactobacillus plantarum IS-10506 | Inhibitory, competitive and displacing properties against pathogens and reduced pathogen adhesion to mucus | Traditional fermented buffalo milk in Indonesia (Dadih) | [130] |
Enterococcus faecium, Lactobacillus plantarum | Ability to auto aggregate, together with cell surface hydrophobicity and co-aggregation abilities with pathogen strains | Traditional fermented buffalo milk in Indonesia (Dadih) | [15] |
Lc. Lactis subsp. Lactis IS-10285, IS-7386, IS-16183, IS-11857, IS-29862, L. brevis IS-27560, IS-26958 and IS-23427, Leu. mesenteroides IS-27526 and L. casei IS-7257 | Possessed a good survival rate at low pH (PH 2 and 3), bile tolerance and lysozyme tolerance | Traditional fermented buffalo milk in West Sumatra (Dadih) | [131] |
Lactobacillus casei subsp. casei R-68, Lactobacillus casei strain Shirota | Inhibited the growth of Staphylococcus aureus FNCC-15, Listeria monocytogenes FNCC-0156 and Escherichia coli FNCC-19 Antibacterial activity was resistant to heat treatment (60–95 °C), amylase, various proteolytic enzymes and various types of antibiotics. | Traditional fermented buffalo milk in Indonesia (Dadih) | [132] |
Lactobacillus fermentum (L23). | Resistance to low pH and 0.3% and 0.5% bile salts, antimicrobial activity against pathogenic bacteria (Escherichia coli O157: H7 and Staphylococcus aureus ATCC 25923), antibiotic resistance and hydrophobicity | Traditional fermented buffalo milk in West Sumatra (Dadih) | [18] |
Lactobacillus delbrueckii subsp. bulgaricus M3 40-3 Streptococcus bovis J2 40-2 | High acid production and tolerance at high acidic medium. High angiotensin I-converting enzyme (ACE) inhibitory activity | Traditional fermented buffalo’s milk in Bangladesh (Dahi) | [133] |
L. plantarum strain S1.30 and SL2.7 L. plantarum strain S1.30 | Tolerated low pH, survived bile salt concentrations and resistant to vancomycin Possessed antimicrobial activity against the selected pathogens and able to adhere to Caco-2 colon cancer cells | Naturally fermented buffalo’s milk namely Dangke and Dadih of Indonesia | [134] |
L. plantarum IS-20506 | Significantly lowered fecal mutagenicity of rats | Indigenous Dadih originated from Bukit Tinggi, West Sumatra | [131] |
Lactobacillus fermentum I-11 and Leuconostoc lactis subsp. lactis I-2775 | Tolerant to acid and oxgall (bile) and deconjugated sodium taurocholate, bound cholesterol | Traditional fermented buffalo’s milk (Dadih) | [135] |
Lactococcus lactis IS-16183 and Lactobacillus rhamnosus IS-7257 | Significantly inhibited the adhesion of Escherichia coli O157:H7 | Traditional fermented buffalo milk in Indonesia (Dadih) | [134] |
Pediococcus pentosaceus | Reduced the stool frequency, lower TNF-α and improve the gut microflora balance in diarrhea-induced mice using enteropathogenic Escherichia coli | Traditional fermented buffalo milk in Indonesia (Dadih) | [136] |
Weisella mesenteroides | Reduced the stool frequency, lower tumor necrosis factor-α and improve the gut microflora balance in diarrhea-induced mice using enteropathogenic Escherichia coli | Traditional fermented buffalo milk in West Sumatra (Dadih) | [137] |
Lb. reuteri IS-27560, Lc. lactis IS-16183, Lb. rhamnosus IS-7257, Enterococcus faecium IS-275 | Adherence to mucus layer and Caco-2 cells, IS 16,183 and IS7257 inhibit the adhesion of Escherichia coli O157:H7 to the human intestinal mucosal surface | Traditional fermented buffalo milk in Indonesia (Dadih) | [138] |
Ultrasonic Conditions | Types of Probiotic Bacteria | Major Effects Observed | References |
---|---|---|---|
100 mL of inoculated milk was sonicated before fermentation at 100 W and 20 kHz for 7, 15 and 30 min, using an ice bath, energy density 420, 900 and 1800 J mL−1 | B. breve ATCC 15700, B. infantis, B. longum (BB-46) and B. animalis subsp. lactis (BB-12) in skim milk | Reduced fermentation time for B. breve, B. infantis and BB-12, Promoted growth of bifidobacteria | [172] |
150 mL of inoculated milk sonicated before fermentation at 20 kHz and 450 W, 225 W and 90 W for 1, 6 and 10 min, using a 13 mm diameter probe; energy density 36–1800 Jm L−1 | Bifidobacterium and Lb. acidophilus in cow milk | Faster acid developmentDecreased fermentation time | [173] |
Sonication of cultures before inoculation at 84 and 102 W for 75 and 150 s with a 12 mm diameter probe and frequency of 20 kHz. Sonication temperature: 37 °C. | Lb. acidophilus (La-5) in thermosonicated whey (480 W, 8 min, 55 °C) | Shorter time of fermentations, Increased viable cell count | [174] |
28 kHz, pulsed US (100 s on and 10 s off), 100 WL−1 for 1 h before fermentation (≈360 J mL−1) and 30 min during fermentation (≈180 J mL−1). | L. paracasei CICC 20241 | Increase of 49.5% in the peptide content and 43.5% of viable cells in the fermented skim milk compared to untreated samples | [175] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abesinghe, A.M.N.L.; Priyashantha, H.; Prasanna, P.H.P.; Kurukulasuriya, M.S.; Ranadheera, C.S.; Vidanarachchi, J.K. Inclusion of Probiotics into Fermented Buffalo (Bubalus bubalis) Milk: An Overview of Challenges and Opportunities. Fermentation 2020, 6, 121. https://doi.org/10.3390/fermentation6040121
Abesinghe AMNL, Priyashantha H, Prasanna PHP, Kurukulasuriya MS, Ranadheera CS, Vidanarachchi JK. Inclusion of Probiotics into Fermented Buffalo (Bubalus bubalis) Milk: An Overview of Challenges and Opportunities. Fermentation. 2020; 6(4):121. https://doi.org/10.3390/fermentation6040121
Chicago/Turabian StyleAbesinghe, A.M.N.L., Hasitha Priyashantha, P.H.P. Prasanna, Maheshika S. Kurukulasuriya, C.S. Ranadheera, and J.K. Vidanarachchi. 2020. "Inclusion of Probiotics into Fermented Buffalo (Bubalus bubalis) Milk: An Overview of Challenges and Opportunities" Fermentation 6, no. 4: 121. https://doi.org/10.3390/fermentation6040121
APA StyleAbesinghe, A. M. N. L., Priyashantha, H., Prasanna, P. H. P., Kurukulasuriya, M. S., Ranadheera, C. S., & Vidanarachchi, J. K. (2020). Inclusion of Probiotics into Fermented Buffalo (Bubalus bubalis) Milk: An Overview of Challenges and Opportunities. Fermentation, 6(4), 121. https://doi.org/10.3390/fermentation6040121