Application of Non-Saccharomyces Yeasts Isolated from Kombucha in the Production of Alcohol-Free Beer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Yeast Strains
2.3. Flocculation Test
2.4. Sugar Utilization
2.5. Hop Resistance
2.6. Phenolic Off-Flavor Test
2.7. Propagation
2.8. Wort Production
2.9. Fermentation
2.10. Analyses of the Produced Beers
2.11. Sensory Evaluation
2.12. Statistical Analyses
3. Results and Discussion
3.1. Yeast Characterization
3.2. Fermentation Performance
3.3. Amino Acid Metabolism
3.4. Volatile Compounds
3.5. Sensory
3.6. Concluding Remarks
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Puerari, C.; Strejc, J.; Souza, A.C.; Karabín, M.; Schwan, R.F.; Brányik, T. Optimization of alcohol-free beer production by lager and cachaça yeast strains using response surface methodology. J. Inst. Brew. 2016, 122, 69–75. [Google Scholar] [CrossRef]
- Müller, M.; Bellut, K.; Tippmann, J.; Becker, T. Physical Methods for Dealcoholization of Beverage Matrices and their Impact on Quality Attributes. ChemBioEng Rev. 2017, 4, 310–326. [Google Scholar] [CrossRef]
- De Francesco, G.; Turchetti, B.; Sileoni, V.; Marconi, O.; Perretti, G. Screening of new strains of Saccharomycodes ludwigii and Zygosaccharomyces rouxii to produce low-alcohol beer. J. Inst. Brew. 2015, 121, 113–121. [Google Scholar] [CrossRef]
- Brányik, T.; Silva, D.P.; Baszczyňski, M.; Lehnert, R.; Almeida, E.; Silva, J.B. A review of methods of low alcohol and alcohol-free beer production. J. Food Eng. 2012, 108, 493–506. [Google Scholar] [CrossRef]
- Perpète, P.; Collin, S. How to improve the enzymatic worty flavour reduction in a cold contact fermentation. Food Chem. 2000, 70, 457–462. [Google Scholar] [CrossRef]
- Perpète, P.; Collin, S. Influence of beer ethanol content on the wort flavour perception. Food Chem. 2000, 71, 379–385. [Google Scholar] [CrossRef]
- Verbelen, P.J.; De Schutter, D.P.; Delvaux, F.; Verstrepen, K.J.; Delvaux, F.R. Immobilized yeast cell systems for continuous fermentation applications. Biotechnol. Lett. 2006, 28, 1515–1525. [Google Scholar] [CrossRef] [PubMed]
- Strejc, J.; Siříšťová, L.; Karabín, M.; Almeida e Silva, J.B.; Brányik, T. Production of alcohol-free beer with elevated amounts of flavouring compounds using lager yeast mutants. J. Inst. Brew. 2013, 119, 149–155. [Google Scholar] [CrossRef]
- Michel, M.; Meier-Dörnberg, T.; Jacob, F.; Methner, F.J.; Wagner, R.S.; Hutzler, M. Review: Pure non-Saccharomyces starter cultures for beer fermentation with a focus on secondary metabolites and practical applications. J. Inst. Brew. 2016, 569–587. [Google Scholar] [CrossRef]
- Pires, E.J.; Teixeira, J.A.; Brányik, T.; Vicente, A.A. Yeast: The soul of beer’s aroma—A review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl. Microbiol. Biotechnol. 2014, 98, 1937–1949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verstrepen, K.J.; Derdelinckx, G.; Dufour, J.P.; Winderickx, J.; Thevelein, J.M.; Pretorius, I.S.; Delvaux, F.R. Flavor-active esters: Adding fruitiness to beer. J. Biosci. Bioeng. 2003, 96, 110–118. [Google Scholar] [CrossRef]
- Holt, S.; Mukherjee, V.; Lievens, B.; Verstrepen, K.J.; Thevelein, J.M. Bioflavoring by non-conventional yeasts in sequential beer fermentations. Food Microbiol. 2018, 72, 55–66. [Google Scholar] [CrossRef] [PubMed]
- Saerens, S.; Swiegers, J.H. Production of Low-Alcohol or Alcohol-Free Beer with Pichia kluyveri Yeast Strains. U.S. Patent US9,580,675, 28 February 2017. [Google Scholar]
- Li, H.; Liu, Y.; Zhang, W. Method for Manufacturing Alcohol-Free Beer through Candida shehatae. China Patent CN102220198, 6 February 2013. [Google Scholar]
- Sohrabvandi, S.; Razavi, S.H.; Mousavi, S.M.; Mortazavian, A.; Rezaei, K. Application of Saccharomyces rouxii for the production of non-alcoholic beer. Food Sci. Biotechnol. 2009, 18, 1132–1137. [Google Scholar] [CrossRef]
- Jayabalan, R.; Malbaša, R.V.; Lončar, E.S.; Vitas, J.S.; Sathishkumar, M. A review on kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Compr. Rev. Food Sci. Food Saf. 2014, 13, 538–550. [Google Scholar] [CrossRef]
- Gibson, B.; Geertman, J.-M.A.; Hittinger, C.T.; Krogerus, K.; Libkind, D.; Louis, E.J.; Magalhães, F.; Sampaio, J.P. New yeasts—New brews: Modern approaches to brewing yeast design and development. FEMS Yeast Res. 2017, 1–32. [Google Scholar] [CrossRef] [PubMed]
- Bendiak, D.; van der Aar, P.; Barbero, F.; Benzing, P.; Berndt, R.; Carrick, K.; Dull, C.; Dunn-Default, S.; Eto, M.; Gonzalez, M.; et al. Yeast Flocculation by Absorbance Method. J. Am. Soc. Brew. Chem. 1996, 54, 245–248. [Google Scholar]
- D’Hautcourt, O.; Smart, K.A. Measurement of Brewing Yeast Flocculation. J. Am. Soc. Brew. Chem. 1999, 57, 123–128. [Google Scholar] [CrossRef]
- Meier-Dörnberg, T.; Hutzler, M.; Michel, M.; Methner, F.-J.; Jacob, F. The Importance of a Comparative Characterization of Saccharomyces Cerevisiae and Saccharomyces Pastorianus Strains for Brewing. Fermentation 2017, 3, 41. [Google Scholar] [CrossRef]
- Salvadó, Z.; Arroyo-López, F.N.; Guillamón, J.M.; Salazar, G.; Quero, A.; Barrio, E. Temperature Adaptation Markedly Determines Evolution within the Genus Saccharomyces. Appl. Environ. Microbiol. 2011, 77, 2292–2302. [Google Scholar] [CrossRef] [PubMed]
- Le, S.; Husson, F. Sensominer: A package for sensory data analysis. J. Sens. Stud. 2008, 23, 14–25. [Google Scholar] [CrossRef]
- Kunze, W.; Pratt, S. Technology Brewing & Malting, 4th ed.; VLB: Berlin, Germany, 2010; ISBN 9783921690642. [Google Scholar]
- Nogueira, A.; le Quéré, J.M.; Drilleau, J.F.; Wosiacki, G. Fermentation behavior of apiculate yeast Hanseniaspora valbyensis in ciderprocessing conditions. In Proceedings of the International Conference of Agricultural Engineering, XXXVII Brazilian Congress of Agricultural Engineering, International Livestock Environment Symposium—ILES, Iguassu Falls City, Brazil, 31 August–4 September 2008; International Commission of Agricultural Engineering (CIGR), Institut für Landtechnik: Bonn, Germany, 2008. [Google Scholar]
- Chakravorty, S.; Bhattacharya, S.; Chatzinotas, A.; Chakraborty, W.; Bhattacharya, D.; Gachhui, R. Kombucha tea fermentation: Microbial and biochemical dynamics. Int. J. Food Microbiol. 2016, 220, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Rautio, J.; Londesborough, J. Maltose Transport by Brewer’s Yeasts in Brewer’s Wort. J. Inst. Brew. 2003, 109, 251–261. [Google Scholar] [CrossRef]
- Day, R.E.; Rogers, P.J.; Dawes, I.W.; Vincent, J.; Higgins, V.J. Molecular Analysis of Maltotriose Transport and Utilization by Saccharomyces cerevisiae. Appl. Environ. Microbiol. 2002, 68, 5326–5335. [Google Scholar] [CrossRef] [PubMed]
- Hazelwood, L.A.; Walsh, M.C.; Pronk, J.T.; Daran, J.M. Involvement of vacuolar sequestration and active transport in tolerance of Saccharomyces cerevisiae to hop iso-α-acids. Appl. Environ. Microbiol. 2010, 76, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Michel, M.; Kopecká, J.; Meier-Dörnberg, T.; Zarnkow, M.; Jacob, F.; Hutzler, M. Screening for new brewing yeasts in the non-Saccharomyces sector with Torulaspora delbrueckii as model. Yeast 2016, 33, 129–144. [Google Scholar] [CrossRef] [PubMed]
- Sakamoto, K.; Konings, W.N. Beer spoilage bacteria and hop resistance. Int. J. Food Microbiol. 2003, 89, 105–124. [Google Scholar] [CrossRef]
- Meaden, P.G.; Taylor, N.R. Cloning of a Yeast Gene Which Causes Phenolic Off-Flavours in Beer. J. Inst. Brew. 1991, 97, 353–357. [Google Scholar] [CrossRef]
- Coghe, S.; Benoot, K.; Delvaux, F.; Vanderhaegen, B.; Delvaux, F.R. Ferulic Acid Release and 4-Vinylguaiacol Formation during Brewing and Fermentation: Indications for Feruloyl Esterase Activity in Saccharomyces cerevisiae. J. Agric. Food Chem. 2004, 52, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Hutzler, M.; Koob, J.; Riedl, R.; Schneiderbanger, H.; Mueller-Auffermann, K.; Jacob, F. Yeast identification and characterization. In Brewing Microbiology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 65–104. [Google Scholar]
- Scholtes, C.; Nizet, S.; Collin, S. Guaiacol and 4-methylphenol as specific markers of torrefied malts. Fate of volatile phenols in special beers through aging. J. Agric. Food Chem. 2014, 62, 9522–9528. [Google Scholar] [CrossRef] [PubMed]
- Vidgren, V.; Londesborough, J. 125th anniversary review: Yeast flocculation and sedimentation in brewing. J. Inst. Brew. 2011, 117, 475–487. [Google Scholar] [CrossRef]
- Rossouw, D.; Bagheri, B.; Setati, M.E.; Bauer, F.F. Co-flocculation of yeast species, a new mechanism to govern population dynamics in microbial ecosystems. PLoS ONE 2015, 10, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Vriesekoop, F.; Krahl, M.; Hucker, B.; Menz, G. 125th Anniversary review: Bacteria in brewing: The good, the bad and the ugly. J. Inst. Brew. 2012, 118, 335–345. [Google Scholar] [CrossRef]
- Ehrlich, F. Über die Bedingungen der Fuselölbildung und über ihren Zusammenhang mit dem Eiweißaufbau der Hefe. Eur. J. Inorg. Chem. 1907, 40, 1027–1047. [Google Scholar] [CrossRef]
- O’Connor-Cox, E.S.C.; Ingledew, W.M. Wort Nitrogenous Sources-Their Use by Brewing Yeasts: A Review. Am. Soc. Brew. Chem. J. 1989, 47, 102–108. [Google Scholar]
- Pierce, J. The Role of Nitrogen in Brewing. J. Inst. Brew. 1987, 93, 378–381. [Google Scholar] [CrossRef]
- Pugh, T.A.; Maurer, J.M.; Pringle, A.T. The impact of wort nitrogen limitation on yeast fermentation performance and diacetyl. Tech. Q. Master Brew. Assoc. Am. 1997, 34, 185–189. [Google Scholar]
- Nordström, K. Formation of Ethyl Acetate in Fermentation with Brewer’s Yeast: V. Effect of Some Vitamins and Mineral Nutrients. J. Inst. Brew. 1963, 69, 142–153. [Google Scholar] [CrossRef]
- Nordström, K. Formation of esters from alcohols by brewer’s yeast. J. Inst. Brew. 1964, 70, 328–336. [Google Scholar] [CrossRef]
- Šmogrovičová, D.; Dömény, Z. Beer volatile by-product formation at different fermentation temperature using immobilised yeasts. Process Biochem. 1999, 34, 785–794. [Google Scholar] [CrossRef]
- Preiss, R.; Tyrawa, C.; Van Der Merwe, G. Traditional Norwegian Kveik Yeasts: Underexplored Domesticated Saccharomyces cerevisiae Yeasts. bioRxiv 2017. [Google Scholar] [CrossRef]
- Sterckx, F.L.; Missiaen, J.; Saison, D.; Delvaux, F.R. Contribution of monophenols to beer flavour based on flavour thresholds, interactions and recombination experiments. Food Chem. 2011, 126, 1679–1685. [Google Scholar] [CrossRef] [PubMed]
- Meilgaard, M.C. Flavor chemistry in beer: Part II: Flavor and flavor threshold of 239 aroma volatiles. Master Brew. Assoc. Am. Tech. Q. 1975, 12, 151–168. [Google Scholar]
- Olaniran, A.O.; Hiralal, L.; Mokoena, M.P.; Pillay, B. Flavour-active volatile compounds in beer: Production, regulation and control. J. Inst. Brew. 2017, 123, 13–23. [Google Scholar] [CrossRef]
- Krogerus, K.; Gibson, B.R. 125th Anniversary Review: Diacetyl and its control during brewery fermentation. J. Inst. Brew. 2013, 119, 86–97. [Google Scholar] [CrossRef]
- Meilgaard, M.C. Flavor chemistry in beer. Part I: Flavor interaction between principal volatiles. Master Brew. Assoc. Am. Tech. Q. 1975, 12, 107–117. [Google Scholar]
- Blanco, C.A.; Andrés-Iglesias, C.; Montero, O. Low-alcohol Beers: Flavor Compounds, Defects, and Improvement Strategies. Crit. Rev. Food Sci. Nutr. 2016, 56, 1379–1388. [Google Scholar] [CrossRef] [PubMed]
- Perpète, P.; Collin, S. Contribution of 3-methylthiopropionaldehyde to the worty flavor of Alcohol-free beers. J. Agric. Food Chem. 1999, 47, 2374–2378. [Google Scholar] [CrossRef] [PubMed]
- Brányik, T.; Vicente, A.A.; Dostálek, P.; Teixeira, J.A. A review of flavour formation in continuous beer fermentations. J. Inst. Brew. 2008, 114, 3–13. [Google Scholar] [CrossRef] [Green Version]
- Baxter, E.D.; Hughes, P.S. Flavour determinants of beer quality. In Beer: Quality, Safety and Nutritional Aspects; Royal Society of Chemistry: London, UK, 2001; pp. 40–73. ISBN 9781847550224. [Google Scholar]
- Peppard, T.L.; Halsey, S.A. Malt Flavour—Transformation of Carbonyl Compounds By Yeast during Fermentation. J. Inst. Brew. 1981, 87, 386–390. [Google Scholar] [CrossRef]
Strain Designation | Species | Origin |
---|---|---|
KBI 5.4 | Zygosaccharomyces kombuchaensis | UCC Culture Collection (Kombucha, Australia) |
KBI 7.1 | Hanseniaspora vineae | UCC Culture Collection (Kombucha, USA) |
KBI 22.1 | Hanseniaspora valbyensis | UCC Culture Collection (Kombucha, Australia) |
KBI 22.2 | Torulaspora delbrueckii | UCC Culture Collection (Kombucha, Australia) |
KBI 25.2 | Zygosaccharomyces bailii | UCC Culture Collection (Kombucha, USA) |
TUM SL 17 | Saccharomycodes ludwigii | FZW BLQ 1, Weihenstephan, Germany |
WLP001 | Saccharomyces cerevisiae | California Ale Yeast®, Whitelabs, San Diego, CA, USA |
TUM 68 2 | Saccharomyces cerevisiae | FZW BLQ 1, Weihenstephan, Germany |
Attribute | WLP001 | TUM SL 17 | KBI 22.1 | KBI 7.1 | KBI 22.2 | KBI 25.2 | KBI 5.4 |
---|---|---|---|---|---|---|---|
Maltose | + | − | − | − | − | − | − |
Maltotriose | + | − | − | − | − | − | − |
Glucose | + | + | + | + | + | + | + |
Fructose 1 | + | + | + | + | + | + | + |
Sucrose | + | + | − | − | + | + | + |
Melibiose | − | − | − | − | + | − | − |
Raffinose | + | + | − | − | + | − | + |
Cellobiose | − | + | + | + | − | − | − |
POF | − | − | − | − | − | − | − |
Flocculation (%) | 83 ± 3 d | 60 ± 7 c | 11 ± 8 a | 41 ± 4 b | 17 ± 0 a | 45 ± 0 bc | 44 ± 3 bc |
Wort Composition | Unit | Value |
---|---|---|
Extract | °P | 6.63 ± 0.01 |
pH | - | 5.73 ± 0.01 |
Maltose | g/L | 26.60 ± 0.25 |
Maltotriose | g/L | 5.09 ± 0.04 |
Glucose | g/L | 5.46 ± 0.01 |
Sucrose | g/L | 1.70 ± 0.04 |
Fructose | g/L | 1.29 ± 0.02 |
Total amino acids | mg/100 mL | 98.31 ± 0.86 |
Free amino nitrogen | mg/L | 110 ± 5 |
Beer Analyses | WLP001 | TUM SL 17 | KBI 22.1 | KBI 7.1 | KBI 22.2 | KBI 25.2 | KBI 5.4 |
---|---|---|---|---|---|---|---|
S. cerevisiae | S. ludwigii | H. valbyensis | H. vineae | T. delbrueckii | Z. bailii | Z. kombuchaensis | |
Ethanol (%v/v) | 2.61 ± 0.10 d | 0.50 ± 0.01 c | 0.35 ± 0.01 ab | 0.34 ± 0.02 a | 0.50 ± 0.01 c | 0.42 ± 0.07 abc | 0.48 ± 0.01 bc |
Final real extract (°P) | 2.13 ± 0.02 | 5.67 ± 0.06 | 5.93 ± 0.00 | 5.91 ± 0.04 | 5.61 ± 0.09 | 5.76 ± 0.03 | 5.75 ± 0.01 |
pH | 4.18 ± 0.02 a | 4.76 ± 0.04 cd | 4.84 ± 0.02 e | 4.78 ± 0.03 de | 4.69 ± 0.02 c | 4.71 ± 0.02 cd | 4.61 ± 0.02 b |
FAN (mg/L) | 48 ± 3 a | 90 ± 6 b | 91 ± 0 b | 91 ± 0 b | 83 ± 0 b | 83 ± 17 b | 93 ± 1 b |
Amino Acid | Wort | WLP001 | TUM SL 17 | KBI 22.1 | KBI 7.1 | KBI 22.2 | KBI 25.2 | KBI 5.4 |
---|---|---|---|---|---|---|---|---|
S. cerevisiae | S. ludwigii | H. valbyensis | H. vineae | T. delbrueckii | Z. bailii | Z. kombuchaensis | ||
Aspartic acid | 3.16 ± 0.08 b | <0.5 a | 2.45 ± 0.08 b | 3.10 ± 0.13 b | 3.29 ± 0.49 b | 2.73 ± 0.51 b | 3.31 ± 0.05 b | 3.24 ± 0.04 b |
Glutamic acid | 3.13 ± 0.02 b | <0.5 a | 3.91 ± 0.03 c | 3.21 ± 0.15 b | 2.91 ± 0.01 b | 3.04 ± 0.11 b | 3.26 ± 0.02 b | 3.14 ± 0.05 b |
Asparagine | 6.36 ± 0.12 d | <0.5 a | 1.04 ± 0.07 ab | 4.14 ± 0.15 bcd | 2.63 ± 0.81 abc | 5.58 ± 0.89 cd | 5.23 ± 0.05 cd | 4.14 ± 1.24 bcd |
Serine | 4.34 ± 0.04 bc | 0.73 ± 0.21 a | 2.21 ± 0.10 ab | 2.99 ± 0.06 abc | 6.00 ± 0.25 c | 3.91 ± 0.40 abc | 3.64 ± 0.03 abc | 5.08 ± 1.53 bc |
Glutamine | 3.12 ± 0.03 d | 0.59 ± 0.01 a | 1.23 ± 0.01 ab | 1.34 ± 0.06 b | 2.28 ± 0.08 c | 2.81 ± 0.34 cd | 2.76 ± 0.00 cd | 2.64 ± 0.01 cd |
Histidine | 3.37 ± 0.12 c | 1.51 ± 0.09 a | 2.23 ± 0.20 ab | 2.98 ± 0.06 bc | 3.01 ± 0.10 bc | 3.18 ± 0.31 c | 3.05 ± 0.02 c | 3.26 ± 0.03 c |
Glycine | 2.31 ± 0.05 b | 1.39 ± 0.11 a | 2.33 ± 0.12 b | 2.27 ± 0.04 b | 2.57 ± 0.26 b | 2.27 ± 0.01 b | 2.03 ± 0.03 b | 2.06 ± 0.05 b |
Threonine | 4.07 ± 0.17 c | 0.55 ± 0.04 a | 1.62 ± 0.03 ab | 2.25 ± 0.06 b | 3.75 ± 0.20 c | 3.70 ± 0.54 c | 3.71 ± 0.01 c | 3.78 ± 0.09 c |
Alanine | 6.36 ± 0.02 bc | 4.10 ± 0.42 a | 7.10 ± 0.10 c | 6.55 ± 0.23 bc | 5.82 ± 0.06 bc | 5.86 ± 0.52 bc | 5.20 ± 0.01 ab | 5.21 ± 0.07 ab |
Arginine | 10.70 ± 0.04 b | 1.07 ± 0.22 a | 7.99 ± 0.14 b | 9.73 ± 0.28 b | 8.16 ± 0.37 b | 7.31 ± 3.36 ab | 8.22 ± 0.02 b | 9.39 ± 0.15 b |
Tyrosine | 5.65 ± 0.02 b | 1.68 ± 0.14 a | 5.02 ± 0.01 b | 5.06 ± 0.17 b | 5.35 ± 0.16 b | 5.19 ± 0.49 b | 4.63 ± 0.04 b | 5.09 ± 0.09 b |
Valine | 7.59 ± 0.05 b | 2.86 ± 0.28 a | 6.09 ± 0.03 b | 5.90 ± 0.27 b | 6.42 ± 0.01 b | 6.69 ± 0.95 b | 6.50 ± 0.02 b | 6.57 ± 0.01 b |
Methionine | 1.72 ± 0.02 c | <0.5 a | 0.79 ± 0.06 abc | <0.5 a | 0.93 ± 0.02 abc | 1.17 ± 0.54 abc | 1.07 ± 0.05 abc | 1.28 ± 0.06 bc |
Isoleucine | 5.00 ± 0.04 b | <0.5 a | 3.81 ± 0.03 b | 3.52 ± 0.16 b | 4.04 ± 0.00 b | 4.23 ± 0.82 b | 4.38 ± 0.03 b | 4.31 ± 0.08 b |
Tryptophan | 2.71 ± 0.05 c | 1.62 ± 0.03 a | 2.47 ± 0.03 bc | 2.36 ± 0.05 b | 2.46 ± 0.04 bc | 2.67 ± 0.10 c | 2.44 ± 0.04 bc | 2.67 ± 0.06 c |
Phenylalanine | 7.95 ± 0.09 b | 1.48 ± 0.08 a | 6.10 ± 0.00 b | 4.94 ± 1.27 b | 6.04 ± 0.00 b | 7.11 ± 0.93 b | 5.48 ± 0.06 b | 6.58 ± 0.07 b |
Leucine | 9.61 ± 0.07 b | <0.5 a | 6.79 ± 0.09 b | 6.75 ± 0.04 b | 6.89 ± 0.04 b | 8.19 ± 1.48 b | 6.92 ± 0.05 b | 7.91 ± 0.17 b |
Lysine | 5.77 ± 0.02 bc | 0.55 ± 0.00 a | 3.57 ± 0.08 b | 6.24 ± 0.99 bc | 5.20 ± 0.02 bc | 5.00 ± 0.76 bc | 5.56 ± 0.02 bc | 5.46 ± 0.06 bc |
Total AA | 98.31 ± 0.86 f | 23.25 ± 1.60 a | 72.14 ± 0.21 b | 80.10 ± 2.69 cd | 82.98 ± 1.17 de | 73.24 ± 0.33 bc | 82.85 ± 0.34 de | 87.32 ± 0.69 e |
AA consumption (%) | - | 76.4 | 26.6 | 18.5 | 15.6 | 25.5 | 15.7 | 11.2 |
Component | WLP001 | TUM SL 17 | KBI 22.1 | KBI 7.1 | KBI 22.2 | KBI 25.2 | KBI 5.4 |
---|---|---|---|---|---|---|---|
S. cerevisiae | S. ludwigii | H. valbyensis | H. vineae | T. delbrueckii | Z. bailii | Z. kombuchaensis | |
N-Propanol | 13.7 ± 3.1 b | 2.6 ± 0.9 a | 2.1 ± 0.1 a | 2.2 ± 0.0 a | 2.9 ± 0.5 a | 2.7 ± 0.1 a | 2.1 ± 0.0 a |
Isobutanol | 17.9 ± 1.8 b | 6.4 ± 0.1 a | 4.8 ± 0.1 a | 4.6 ± 0.3 a | 4.9 ± 0.1 a | 5.7 ± 0.1 a | 7.1 ± 0. 5 a |
Isoamyl alcohols | 50.8 ± 3.0 c | 12.1 ± 0.4 ab | 16.5 ± 1.1 b | 13.4 ± 0.1 ab | 10.4 ± 0.3 a | 14.8 ± 0.2 ab | 12.9 ± 0.5 ab |
Σ Higher alcohols (HA) | 82.4 ± 7.9 b | 21.1 ± 0.4 a | 23.3 ± 1.1 a | 20.2 ± 0.4 a | 18.1 ± 0.1 a | 23.1 ± 0.0 a | 22.0 ± 1.0 a |
Ethyl acetate | 4.05 ± 0.21 b | 0.80 ± 0.01 a | 0.90 ± 0.05 a | 6.00 ± 0.14 c | 0.77 ± 0.02 a | 1.00 ± 0.00 a | 1.00 ± 0.00 a |
Isoamyl acetate | 0.20 ± 0.00 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 | <0.1 |
Σ Esters (E) | 4.25 ± 0.21 b | 0.80 ± 0.01 a | 0.90 ± 0.05 a | 6.00 ± 0.14 b | 0.77 ± 0.02 a | 1.00 ± 0.00 a | 1.00 ± 0.00 a |
Diacetyl, total | 0.04 ± 0.01 a | 0.03 ± 0.00 a | 0.21 ± 0.03 b | 0.05 ± 0.01 a | 0.06 ± 0.01 a | 0.03 ± 0.00 a | 0.15 ± 0.04 b |
Ethyl formate | 1.05 ± 0.07 | 1.01 ± 0.13 | 0.78 ± 0.06 | 0.76 ± 0.03 | 0.90 ± 0.05 | 0.56 ± 0.03 | 0.72 ± 0.07 |
Acetaldehyde | 7.8 ± 0.4 c | 8.5 ± 0.7 c | 3.3 ± 0.4 a | 4.1 ± 0.4 ab | 9.1 ± 0.4 c | 4.9 ± 1.3 ab | 6.8 ± 2.6 bc |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bellut, K.; Michel, M.; Zarnkow, M.; Hutzler, M.; Jacob, F.; De Schutter, D.P.; Daenen, L.; Lynch, K.M.; Zannini, E.; Arendt, E.K. Application of Non-Saccharomyces Yeasts Isolated from Kombucha in the Production of Alcohol-Free Beer. Fermentation 2018, 4, 66. https://doi.org/10.3390/fermentation4030066
Bellut K, Michel M, Zarnkow M, Hutzler M, Jacob F, De Schutter DP, Daenen L, Lynch KM, Zannini E, Arendt EK. Application of Non-Saccharomyces Yeasts Isolated from Kombucha in the Production of Alcohol-Free Beer. Fermentation. 2018; 4(3):66. https://doi.org/10.3390/fermentation4030066
Chicago/Turabian StyleBellut, Konstantin, Maximilian Michel, Martin Zarnkow, Mathias Hutzler, Fritz Jacob, David P. De Schutter, Luk Daenen, Kieran M. Lynch, Emanuele Zannini, and Elke K. Arendt. 2018. "Application of Non-Saccharomyces Yeasts Isolated from Kombucha in the Production of Alcohol-Free Beer" Fermentation 4, no. 3: 66. https://doi.org/10.3390/fermentation4030066
APA StyleBellut, K., Michel, M., Zarnkow, M., Hutzler, M., Jacob, F., De Schutter, D. P., Daenen, L., Lynch, K. M., Zannini, E., & Arendt, E. K. (2018). Application of Non-Saccharomyces Yeasts Isolated from Kombucha in the Production of Alcohol-Free Beer. Fermentation, 4(3), 66. https://doi.org/10.3390/fermentation4030066