Editorial for Special Issue “Hydrogelated Matrices: Structural, Functional and Applicative Aspects”
1. Introduction and Summary
2. Overview
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Moench, S.A.; Lemke, P.; Weisser, J.; Stoev, I.D.; Rabe, K.S.; Domínguez, C.M.; Niemeyer, C.M. Quantitative Characterization of RCA-Based DNA Hydrogels—Towards Rational Materials Design. Chem. Eur. J. 2024, 30, e202401788. [Google Scholar] [CrossRef] [PubMed]
- Di Gregorio, E.; Rosa, E.; Ferrauto, G.; Diaferia, C.; Gallo, E.; Accardo, A.; Terreno, E. Development of cationic peptide-based hydrogels loaded with iopamidol for CEST-MRI detection. J. Mater. Chem. B 2023, 11, 7435–7441. [Google Scholar] [CrossRef] [PubMed]
- Aswathy, S.H.; Narendrakumar, U.; Manjubala, I. Commercial hydrogels for biomedical applications. Heliyon 2020, 6, e03719. [Google Scholar] [CrossRef]
- Ghosh, S.; Sepay, N.; Banerji, B. Crystal to Hydrogel Transformation in S-Benzyl-L-Cysteine-Containing Cyclic Dipeptides—Nanostructure Elucidation and Applications. Chem. Eur. J. 2024, 30, e202401874. [Google Scholar] [CrossRef]
- Rosa, E.; Diaferia, C.; Gianolio, E.; Sibillano, T.; Gallo, E.; Smaldone, G.; Stornaiuolo, M.; Giannini, C.; Morelli, G.; Accardo, A. Multicomponent Hydrogel Matrices of Fmoc-FF and Cationic Peptides for Application in Tissue Engineering. Macromol. Biosci. 2022, 22, 2200128. [Google Scholar] [CrossRef] [PubMed]
- López-Díaz, A.; Vázquez, A.S.; Vázquez, E. Hydrogels in Soft Robotics: Past, Present, and Future. ACS Nano 2024, 18, 20817–20826. [Google Scholar] [CrossRef] [PubMed]
- Das, B.K.; Samanta, R.; Ahmed, S.; Pramanik, B. Cover Feature: Disulphide Cross-Linked Ultrashort Peptide Hydrogelator for Water Remediation. Chem. Eur. J. 2023, 29, e202301626. [Google Scholar] [CrossRef]
- Liu, X.; Luo, Y.; Xu, F.; Wu, X.; Liu, D.; Wang, B. Design and characterization of high-performance energetic hydrogels with enhanced mechanical and explosive properties. Sci. Rep. 2024, 14, 30104. [Google Scholar] [CrossRef] [PubMed]
- Neumann, M.; di Marco, G.; Iudin, D.; Viola, M.; van Nostrum, C.F.; van Ravensteijn, B.G.P.; Vermonden, T. Stimuli-Responsive Hydrogels: The Dynamic Smart Biomaterials of Tomorrow. Macromolecules 2023, 56, 8377–8392. [Google Scholar] [CrossRef]
- Diaferia, C.; Rosa, E.; Gallo, E.; Smaldone, G.; Stornaiuolo, M.; Morelli, G.; Accardo, A. Self-supporting hydrogels based on fmoc-derivatized cationic hexapeptides for potential biomedical applications. Biomedicine 2021, 6, 678. [Google Scholar] [CrossRef]
- Chen, Q.; Wu, S. Stimuli-Responsive Polymers for Tubal Actuators. Chem. Eur. J. 2025, 31, e202403429. [Google Scholar] [CrossRef]
- Dasgupta, A.; Mondal, J.H.; Debapratim, D. Peptide hydrogels. RSC Adv. 2013, 3, 9117–9149. [Google Scholar] [CrossRef]
- Rosa, E.; Gallo, E.; Sibillano, T.; Giannini, C.; Rizzuti, S.; Gianolio, E.; Scognamiglio, P.L.; Morelli, G.; Accardo, A.; Diaferia, C. Incorporation of PEG Diacrylates (PEGDA) Generates Hybrid Fmoc-FF Hydrogel Matrices. Gels 2022, 8, 831. [Google Scholar] [CrossRef]
- Ginesi, R.E.; Murray, N.R.; Dalgliesh, R.M.; Doutch, J.; Draper, E.R. Using Solution History to Control Hydrogel Properties of a Perylene Bisimide. Chem. Eur. J. 2023, 27, e202301042. [Google Scholar] [CrossRef]
- Rosa, E.; Di Gregorio, E.; Ferrauto, G.; Diaferia, C.; Gallo, E.; Terreno, E.; Accardo, A. Hybrid PNA-peptide hydrogels as injectable CEST-MRI agents. J. Mater. Chem. B 2024, 12, 6371–6383. [Google Scholar] [CrossRef]
- Giuri, D.; D’Agostino, D.; Ravarino, P.; Faccio, D.; Falini, G.; Tomasini, C. Water Remediation from Pollutant Agents by the Use of an Environmentally Friendly Supramolecular Hydrogel. ChemNanoMat 2022, 8, e202200093. [Google Scholar] [CrossRef]
- Quispe-Siccha, R.; Medina-Sandoval, O.; Estrada-Tinoco, A.; Pedroza-Pérez, J.; Martínez-Tovar, A.; Olarte-Carrillo, I.; Cerón-Maldonado, R.; Reding-Bernal, A.; López-Alvarenga, J. Development of Polyvinyl Alcohol Hydrogels for Controlled Glucose Release in Biomedical Applications. Gels 2024, 10, 668. [Google Scholar] [CrossRef] [PubMed]
- Ramírez-Chavarría, R.; Pérez-Pacheco, A.; Terán, E.; Quispe-Siccha, R. Study of Polyvinyl Alcohol Hydrogels Applying Physical-Mechanical Methods and Dynamic Models of Photoacoustic Signals. Gels 2023, 9, 727. [Google Scholar] [CrossRef] [PubMed]
- Ivanova, N.; Ermenlieva, N.; Simeonova, L.; Vilhelmova-Ilieva, N.; Bratoeva, K.; Stoyanov, G.; Andonova, V. In Situ Gelling Behavior and Biopharmaceutical Characterization of Nano-Silver-Loaded Poloxamer Matrices Designed for Nasal Drug Delivery. Gels 2024, 10, 385. [Google Scholar] [CrossRef] [PubMed]
- Raduly, F.; Raditoiu, V.; Raditoiu, A.; Grapin, M.; Constantin, M.; Răut, I.; Nicolae, C.; Frone, A. Ag0–Ginger Nanocomposites Integrated into Natural Hydrogelated Matrices Used as Antimicrobial Delivery Systems Deposited on Cellulose Fabrics. Gels 2024, 10, 106. [Google Scholar] [CrossRef] [PubMed]
- Voycheva, C.; Slavkova, M.; Popova, T.; Tzankova, D.; Stefanova, D.; Tzankova, V.; Ivanova, I.; Tzankov, S.; Spassova, I.; Kovacheva, D.; et al. Thermosensitive Hydrogel-Functionalized Mesoporous Silica Nanoparticles for Parenteral Application of Chemotherapeutics. Gels 2023, 9, 769. [Google Scholar] [CrossRef] [PubMed]
- Jitaru, S.; Enache, A.; Cojocaru, C.; Drochioiu, G.; Petre, B.; Gradinaru, V. Self-Assembly of a Novel Pentapeptide into Hydrogelated Dendritic Architecture: Synthesis, Properties, Molecular Docking and Prospective Applications. Gels 2024, 10, 86. [Google Scholar] [CrossRef]
- Gallo, E.; Diaferia, C.; Giordano, S.; Rosa, E.; Carrese, B.; Piccialli, G.; Borbone, N.; Morelli, G.; Oliviero, G.; Accardo, A. Ultrashort Cationic Peptide Fmoc-FFK as Hydrogel Building Block for Potential Biomedical Applications. Gels 2024, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Buzzaccaro, S.; Ruzzi, V.; Gelain, F.; Piazza, R. A Light Scattering Investigation of Enzymatic Gelation in Self-Assembling Peptides. Gels 2023, 9, 347. [Google Scholar] [CrossRef]
- Machado, D.; Fonseca, M.; Vedor, R.; Sousa, S.; Barbosa, J.; Gomes, A. Akkermansia muciniphila Encapsulated in Calcium-Alginate Hydrogelated Matrix: Viability and Stability over Aerobic Storage and Simulated Gastrointestinal Conditions. Gels 2023, 9, 869. [Google Scholar] [CrossRef]
- Loi, G.; Scocozza, F.; Aliberti, F.; Rinvenuto, L.; Cidonio, G.; Marchesi, N.; Benedetti, L.; Ceccarelli, G.; Conti, M. 3D Co-Printing and Substrate Geometry Influence the Differentiation of C2C12 Skeletal Myoblasts. Gels 2023, 9, 595. [Google Scholar] [CrossRef] [PubMed]
- Enache, A.; Grecu, I.; Samoila, P.; Cojocaru, C.; Harabagiu, V. Magnetic Ionotropic Hydrogels Based on Carboxymethyl Cellulose for Aqueous Pollution Mitigation. Gels 2023, 9, 358. [Google Scholar] [CrossRef] [PubMed]
- Materni, A.; Pasquale, C.; Longo, E.; Frosecchi, M.; Benedicenti, S.; Bozzo, M.; Amaroli, A. Prevention of Dry Socket with Ozone Oil-Based Gel after Inferior Third Molar Extraction: A Double-Blind Split-Mouth Randomized Placebo-Controlled Clinical Trial. Gels 2023, 9, 289. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Bae, W.; Jin, L.; Park, S.; Jeon, M.; Kim, W.; Jang, H. Cross-Linked Gel Polymer Electrolyte Based on Multiple Epoxy Groups Enabling Conductivity and High Performance of Li-Ion Batteries. Gels 2023, 9, 384. [Google Scholar] [CrossRef]
- Castro, L.; Caço, A.; Pereira, C.; Sousa, S.; Brassesco, M.; Machado, M.; Ramos, Ó.; Alexandre, E.; Saraiva, J.; Pintado, M. Modification of Acorn Starch Structure and Properties by High Hydrostatic Pressure. Gels 2023, 9, 757. [Google Scholar] [CrossRef]
- Kim, S.; Lee, W.; Park, H.; Kim, K. Tumor Microenvironment-Responsive 6-Mercaptopurine-Releasing Injectable Hydrogel for Colon Cancer Treatment. Gels 2023, 9, 319. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallo, E.; Diaferia, C. Editorial for Special Issue “Hydrogelated Matrices: Structural, Functional and Applicative Aspects”. Gels 2025, 11, 146. https://doi.org/10.3390/gels11020146
Gallo E, Diaferia C. Editorial for Special Issue “Hydrogelated Matrices: Structural, Functional and Applicative Aspects”. Gels. 2025; 11(2):146. https://doi.org/10.3390/gels11020146
Chicago/Turabian StyleGallo, Enrico, and Carlo Diaferia. 2025. "Editorial for Special Issue “Hydrogelated Matrices: Structural, Functional and Applicative Aspects”" Gels 11, no. 2: 146. https://doi.org/10.3390/gels11020146
APA StyleGallo, E., & Diaferia, C. (2025). Editorial for Special Issue “Hydrogelated Matrices: Structural, Functional and Applicative Aspects”. Gels, 11(2), 146. https://doi.org/10.3390/gels11020146