Gel-Based PVA/SiO2/p-Si Heterojunction for Electronic Device Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Scanning Electron Microscope and X-ray Diffraction Pattern
2.2. Dielectric Characterization
2.3. The Current–Voltage (I–V) Characteristic
3. Conclusions
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tian, M.; Qiao, M.; Shen, C.; Meng, F.; Frank, L.A.; Krasitskaya, V.V.; Wang, T.; Zhang, X.; Song, R.; Li, Y.; et al. Highly-Sensitive Graphene Field Effect Transistor Biosensor Using PNA and DNA Probes for RNA Detection. Appl. Surf. Sci. 2020, 527, 146839. [Google Scholar] [CrossRef]
- Li, W.; Zhou, S.; Zhang, L.; Yang, Z.; Chen, H.; Chen, W.; Qin, J.; Shen, X.; Zhao, S. A Red Emitting Fluorescent Probe for Sensitively Monitoring Hydrogen Polysulfides in Living Cells and Zebrafish. Sens. Actuators B Chem. 2019, 284, 30–35. [Google Scholar] [CrossRef]
- Nicollian, E.H.; Brews, J.R. MOS (Metal Oxide Semiconductor) Physics and Technology; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Karataş, Ş. Studies on Electrical and the Dielectric Properties in MS Structures. J. Non-Cryst. Solids 2008, 354, 3606–3611. [Google Scholar] [CrossRef]
- Deuling, H.; Klausmann, E.; Goetzberger, A. Interface States in Si-SiO2 Interfaces. Solid State Electron. 1972, 15, 559–571. [Google Scholar] [CrossRef]
- Yıldız, D.E.; Dökme, I.İ.; Yildiz, D.E.; Dökme, I.İ. Frequency and Gate Voltage Effects on the Dielectric Properties and Electrical Conductivity of Al/SiO2/p-Si Metal-Insulator-Semiconductor Schottky Diodes. J. Appl. Phys. 2011, 110, 14507. [Google Scholar] [CrossRef]
- Demirezen, S.; Tanrıkulu, E.E.; Altındal, Ş. The Study on Negative Dielectric Properties of Al/PVA (Zn-Doped)/p-Si (MPS) Capacitors. Indian J. Phys. 2019, 93, 739–747. [Google Scholar] [CrossRef]
- Yildiz, D.E.; Apaydın, D.H.; Toppare, L.; Cirpan, A. Dielectric and Electrical Properties of an Organic Device Containing Benzotriazole and Fluorene Bearing Copolymer. J. Appl. Polym. Sci. 2013, 128, 1659–1664. [Google Scholar] [CrossRef]
- Ersöz Demir, G.; Yücedağ, İ.; Azizian-Kalandaragh, Y.; Altındal, Ş. Temperature and Interfacial Layer Effects on the Electrical and Dielectric Properties of Al/(CdS-PVA)/p-Si (MPS) Structures. J. Electron. Mater. 2018, 47, 6600–6606. [Google Scholar] [CrossRef]
- Kar, S.; Varma, S. Determination of Silicon-silicon Dioxide Interface State Properties from Admittance Measurements under Illumination. J. Appl. Phys. 1985, 58, 4256–4266. [Google Scholar] [CrossRef]
- Kar, S.; Narasimhan, R.L. Characteristics of the Si-SiO2 Interface States in Thin (70–230 Å) Oxide Structures. J. Appl. Phys. 1987, 61, 5353–5359. [Google Scholar] [CrossRef]
- Demirezen, S.; Kaya, A.; Yerişkin, S.A.; Balbaşı, M.; Uslu, İ. Frequency and Voltage Dependent Profile of Dielectric Properties, Electric Modulus and Ac Electrical Conductivity in the PrBaCoO Nanofiber Capacitors. Results Phys. 2016, 6, 180–185. [Google Scholar] [CrossRef]
- Dökme, İ.; Altındal, Ş.; Gökçen, M. Frequency and Gate Voltage Effects on the Dielectric Properties of Au/SiO2/n-Si Structures. Microelectron. Eng. 2008, 85, 1910–1914. [Google Scholar] [CrossRef]
- Kar, S.; Dahlke, W.E. Interface States in MOS Structures with 20–40 Å Thick SiO2 Films on Nondegenerate Si. Solid State Electron. 1972, 15, 221–237. [Google Scholar] [CrossRef]
- Kanbur, H.; Altındal, Ş.; Tataroğlu, A. The Effect of Interface States, Excess Capacitance and Series Resistance in the Al/SiO2/p-Si Schottky Diodes. Appl. Surf. Sci. 2005, 252, 1732–1738. [Google Scholar] [CrossRef]
- Hill, W.A.; Coleman, C.C. A Single-Frequency Approximation for Interface-State Density Determination. Solid State Electron. 1980, 23, 987–993. [Google Scholar] [CrossRef]
- Nangia, R.; Shukla, N.K.; Sharma, A. Dielectric Properties of Al/PVA/p-Si (MPS) Structure as a Function of Frequency and Voltage. Mater. Today Proc. 2019, 17, 254–260. [Google Scholar] [CrossRef]
- Ashery, A.; Elnasharty, M.M.M.; Khalil, A.A.I.; Azab, A.A. Negative Resistance, Capacitance in Mn/SiO2/p-Si MOS Structure. Mater. Res. Express 2020, 7, 85901. [Google Scholar] [CrossRef]
- Arslan, E.; Şafak, Y.; Taşçioǧlu, I.; Uslu, H.; Özbay, E. Frequency and Temperature Dependence of the Dielectric and AC Electrical Conductivity in (Ni/Au)/AlGaN/AlN/GaN Heterostructures. Microelectron. Eng. 2010, 87, 1997–2001. [Google Scholar] [CrossRef]
- Aydin, M.; Al-ghamdi, A.; Al-Hartomy, O.; El-Tantawy, F.; Yakuphanoglu, F. Improved Electrical and Photosensing Properties of CuPc Phtalocyanine/p-Silicon Diode by Nanostructure. J. Optoelectron. Adv. Mater. 2012, 14, 798–803. [Google Scholar]
- Uslu, H.; Altındal, Ş.; Tunç, T.; Uslu, İ.; Mammadov, T.S. The Illumination Intensity and Applied Bias Voltage on Dielectric Properties of Au/Polyvinyl Alcohol (Co, Zn-Doped)/n-Si Schottky Barrier Diodes. J. Appl. Polym. Sci. 2011, 120, 322–328. [Google Scholar] [CrossRef]
- Kyritsis, A.; Pissis, P.; Grammatikakis, J. Dielectric Relaxation Spectroscopy in Poly(Hydroxyethyl Acrylates)/Water Hydrogels. J. Polym. Sci. Part B Polym. Phys. 1995, 33, 1737–1750. [Google Scholar] [CrossRef]
- Yücedağ, İ.; Altındal, Ş.; Tataroğlu, A. On the Profile of Frequency Dependent Series Resistance and Dielectric Constant in MIS Structure. Microelectron. Eng. 2007, 84, 180–186. [Google Scholar] [CrossRef]
- Thakur, Y.; Dong, R.; Lin, M.; Wu, S.; Cheng, Z.; Hou, Y.; Bernholc, J.; Zhang, Q.M. Optimizing Nanostructure to Achieve High Dielectric Response with Low Loss in Strongly Dipolar Polymers. Nano Energy 2015, 16, 227–234. [Google Scholar] [CrossRef]
- Fiat, S.; Polat, İ.; Bacaksiz, E.; Kompitsas, M.; Çankaya, G. The Influence of Annealing Temperature and Tellurium (Te) on Electrical and Dielectrical Properties of Al/p-CIGSeTe/Mo Schottky Diodes. Curr. Appl. Phys. 2013, 13, 1112–1118. [Google Scholar] [CrossRef]
- Ashery, A.; Elnasharty, M.M.M.; Farag, A.A.M.; Salem, M.A.; Nasralla, N. Electrical Performance and Photosensitive Properties of Cu/SiO2/Si –MOS Based Junction Prepared by Liquid Phase Epitaxy. Superlattices Microstruct. 2017, 109, 662–674. [Google Scholar] [CrossRef]
- Rhimi, T.; Leroy, G.; Duponchel, B.; Khirouni, K.; Guermazi, S.; Toumi, M. AC and DC Conductivity Study of LiH2PO4 Compound Using Impedance Spectroscopy. Ionics 2018, 24, 1305–1312. [Google Scholar] [CrossRef]
- Ashery, A.; Elnasharty, M.M.M.; Hameed, T.A. Investigation of Electrical and Dielectric Properties of Epitaxially Grown Au/n-GaAs/p-Si/Al Heterojunction. Opt. Quantum Electron. 2020, 52, 490. [Google Scholar] [CrossRef]
- Tuan, T.T.A.; Kuo, D.-H.; Li, C.-C.; Yen, W.-C. Schottky Barrier Characteristics of Pt Contacts to All Sputtering-Made n-Type GaN and MOS Diodes. J. Mater. Sci. Mater. Electron. 2014, 25, 3264–3270. [Google Scholar] [CrossRef]
- Anh Tuan, T.T.; Kuo, D.-H. Characteristics of RF Reactive Sputter-Deposited Pt/SiO2/n-InGaN MOS Schottky Diodes. Mater. Sci. Semicond. Process. 2015, 30, 314–320. [Google Scholar] [CrossRef]
- Ramesh, C.K.; Reddy, V.R.; Choi, C.-J. Electrical Characteristics of Molybdenum Schottky Contacts on N-Type GaN. Mater. Sci. Eng. B 2004, 112, 30–33. [Google Scholar] [CrossRef]
- Rajagopal Reddy, V.; Koteswara Rao, P. Annealing Temperature Effect on Electrical and Structural Properties of Cu/Au Schottky Contacts to n-Type GaN. Microelectron. Eng. 2008, 85, 470–476. [Google Scholar] [CrossRef]
- Tuan, T.T.A.; Kuo, D.-H.; Li, C.-C.; Li, G.-Z. Effect of Temperature Dependence on Electrical Characterization of P-n GaN Diode Fabricated by RF Magnetron Sputtering. Mater. Sci. Appl. 2015, 06, 809–817. [Google Scholar] [CrossRef]
- Barış, B. Analysis of Device Parameters for Au/Tin Oxide/n-Si(100) Metal–Oxide–Semiconductor (MOS) Diodes. Phys. B Condens. Matter 2014, 438, 65–69. [Google Scholar] [CrossRef]
- Çınar, K.; Çaldıran, Z.; Coşkun, C.; Aydoğan, Ş. Electrochemical Growth of GaTe onto the P-Type Si Substrate and the Characterization of the Sn/GaTe Schottky Diode as a Function of Temperature. Thin Solid Film. 2014, 550, 40–45. [Google Scholar] [CrossRef]
- Ashery, A.; Farag, A.A.M.; Moussa, M.A.; Turky, G.M. Electrical Performance of Nanocrystalline Graphene Oxide/SiO2-Based Hybrid Heterojunction Device. Mater. Sci. Semicond. Process. 2021, 121, 105415. [Google Scholar] [CrossRef]
- Reddy, V.R. Electrical Properties of Au/Polyvinylidene Fluoride/n-InP Schottky Diode with Polymer Interlayer. Thin Solid Film. 2014, 556, 300–306. [Google Scholar] [CrossRef]
T (k) | ɸb eV | Rsh Ω | Rs Ω | n |
---|---|---|---|---|
300 | 0.77 | 1.09 × 105 | 3.38 × 103 | 3.14 |
325 | 0.83 | 1.01 × 105 | 2.44 × 103 | 3.04 |
350 | 0.89 | 7.19 × 104 | 2.01 × 103 | 2.82 |
375 | 0.96 | 6.43 × 104 | 1.80 × 103 | 2.8 |
400 | 1.03 | 1.73 × 104 | 1.31 × 103 | 2.74 |
425 | 1.1 | 1.54 × 104 | 1.40 × 103 | 2.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ashery, A.; Gaballah, A.E.H.; Turky, G.M.; Basyooni-Murat Kabatas, M.A. Gel-Based PVA/SiO2/p-Si Heterojunction for Electronic Device Applications. Gels 2024, 10, 537. https://doi.org/10.3390/gels10080537
Ashery A, Gaballah AEH, Turky GM, Basyooni-Murat Kabatas MA. Gel-Based PVA/SiO2/p-Si Heterojunction for Electronic Device Applications. Gels. 2024; 10(8):537. https://doi.org/10.3390/gels10080537
Chicago/Turabian StyleAshery, Adel, Ahmed E. H. Gaballah, Gamal M. Turky, and Mohamed A. Basyooni-Murat Kabatas. 2024. "Gel-Based PVA/SiO2/p-Si Heterojunction for Electronic Device Applications" Gels 10, no. 8: 537. https://doi.org/10.3390/gels10080537
APA StyleAshery, A., Gaballah, A. E. H., Turky, G. M., & Basyooni-Murat Kabatas, M. A. (2024). Gel-Based PVA/SiO2/p-Si Heterojunction for Electronic Device Applications. Gels, 10(8), 537. https://doi.org/10.3390/gels10080537