Ecdysteroid UDP-Glucosyltransferase Expression in Beauveria bassiana Increases Its Pathogenicity against Early Instar Silkworm Larvae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Screening of Antibiotics
2.2. Construction of Transgenic Fungal Expression Vector
2.3. Construction and Selective Culture of Transgenic B. bassiana
2.4. Identification of Transgenic B. bassiana
2.5. Validity Detection of Transgenic Beauveria bassiana
2.6. Data Collection and Visualization
3. Results
3.1. Screening of Antibiotics and Determination of Culture Conditions
3.2. Generation of Transgenic Beauveria bassiana
3.3. Validity Detection of Transgenic Beauveria bassiana
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wang, C.; Fan, M.; Li, Z.; Butt, T.M. Molecular monitoring and evaluation of the application of the insect-pathogenic fungus Beauveria bassiana in southeast China. J. Appl. Microbiol. 2004, 96, 861–870. [Google Scholar] [CrossRef]
- Clarkson, J.M.; Charnley, A.K. New insights into the mechanisms of fungal pathogenesis in insects. Trends Microbiol. 1996, 4, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Pell, J.K.; Hannam, J.J.; Steinkraus, D.C. Conservation biological control using fungal entomopathogens. Biocontrol 2010, 55, 187–198. [Google Scholar] [CrossRef]
- Amsellem, Z.; Cohen, B.A.; Gressel, J. Engineering hypervirulence in a mycoherbicidal fungus for efficient weed control. Nat. Biotechnol. 2002, 20, 1035–1039. [Google Scholar] [CrossRef]
- St Leger, R.; Joshi, L.; Bidochka, M.J.; Roberts, D.W. Construction of an improved mycoinsecticide overexpressing a toxic protease. Proc. Natl. Acad. Sci. USA 1996, 93, 6349–6354. [Google Scholar] [CrossRef] [PubMed]
- Valero-Jimenez, C.A.; Wiegers, H.; Zwaan, B.J.; Koenraadt, C.J.; van Kan, J.A. Genes involved in virulence of the entomopathogenic fungus Beauveria bassiana. J. Invertebr. Pathol. 2016, 133, 41–49. [Google Scholar] [CrossRef]
- Feng, M.G.; Poprawski, T.J.; Khachatourians, G.G. Production, pormulation and application of the entomopathogenic fungus Beauveria Bassiana for insect control—current status. Biocontrol Sci. Technol. 1994, 4, 3–34. [Google Scholar] [CrossRef]
- Lecuona, R.E.; Turica, M.; Tarocco, F.; Crespo, D.C. Microbial control of Musca domestica (Diptera: Muscidae) with selected strains of Beauveria bassiana. J. Med. Entomol. 2005, 42, 332–336. [Google Scholar] [CrossRef]
- Osherov, N.; May, G.S. The molecular mechanisms of conidial germination. Fems Microbiol. Lett. 2001, 199, 153–160. [Google Scholar] [CrossRef]
- Fargues, J.; Smits, N.; Vidal, C.; Vey, A.; Vega, F.; Mercadier, G.; Quimby, P. Effect of liquid culture media on morphology, growth, propagule production, and pathogenic activity of the Hyphomycete, Metarhizium flavoviride. Mycopathologia 2002, 154, 127–138. [Google Scholar] [CrossRef]
- Leopold, J.; Samsinakova, A. Quantitative estimation of chitinase and several other enzymes in fungus Beauveria-Bassiana. J. Invertebr. Pathol. 1970, 15, 34–42. [Google Scholar] [CrossRef]
- Charnley, A.K. Fungal pathogens of insects: Cuticle degrading enzymes and toxins. Adv. Bot. Res. 2003, 40, 241–321. [Google Scholar] [CrossRef]
- Wang, C.; Hu, G.; St Leger, R.J. Differential gene expression by Metarhizium anisopliae growing in root exudate and host (Manduca sexta) cuticle or hemolymph reveals mechanisms of physiological adaptation. Fungal Genet. Biol. 2005, 42, 704–718. [Google Scholar] [CrossRef] [PubMed]
- Hajek, A.E.; Stleger, R.J. Interactions between fungal pathogens and insect hosts. Annu. Rev. Entomol. 1994, 39, 293–322. [Google Scholar] [CrossRef]
- Gillespie, J.P.; Bailey, A.M.; Cobb, B.; Vilcinskas, A. Fungi as elicitors of insect immune responses. Arch. Insect Biochem. 2000, 44, 49–68. [Google Scholar] [CrossRef]
- Kiguchi, K. Time-Table for the development of the silkworm, Bombyx-Mori. JARQ-Jpn. Agr. Res. Q. 1983, 17, 41–46. [Google Scholar]
- Xing, D.X.; Shen, G.W.; Li, Q.R.; Xiao, Y.; Yang, Q.; Xia, Q.Y. Quality formation mechanism of stiff silkworm, Bombyx batryticatus using UPLC-Q-TOF-MS-based metabolomics. Molecules 2019, 24, 3780. [Google Scholar] [CrossRef]
- Yan, Q.S.; Ouyang, X.G.; Li, C.B.; Pang, Y. Insect baculovirus-encoded ecdysteroid udp-glucosyltransferases. Prog. Biochem. Biophys. 1999, 26, 241–242. [Google Scholar]
- Chaturvedi, P.; Mishra, M.; Akhtar, N.; Gupta, P.; Mishra, P.; Tuli, R. Sterol glycosyltransferases-identification of members of gene family and their role in stress in Withania somnifera. Mol. Biol. Rep. 2012, 39, 9755–9764. [Google Scholar] [CrossRef]
- Oreilly, D.R.; Miller, L.K. A Baculovirus blocks insect molting by producing ecdysteroid udp-glucosyltransferase. Science 1989, 245, 1110–1112. [Google Scholar] [CrossRef]
- Chaturvedi, P.; Misra, P.; Tuli, R. Sterol glycosyltransferases—The enzymes that modify sterols. Appl. Biochem. Biotech. 2011, 165, 47–68. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Tiwari, M.; Singh, S.P.; Singh, R.; Singh, S.; Shirke, P.A.; Trivedi, P.K.; Misra, P. Sterol glycosyltransferases required for adaptation of Withania somnifera at high temperature. Physiol. Plantarum 2017, 160, 297–311. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Estrada, K.; Castillo, N.; Lara, J.A.; Arro, M.; Boronat, A.; Ferrer, A.; Altabella, T. Tomato udp-glucose sterol glycosyltransferases: A family of developmental and stress regulated genes that encode cytosolic and membrane-associated forms of the enzyme. Front. Plant Sci. 2017, 8, 984. [Google Scholar] [CrossRef] [PubMed]
- Pandey, V.; Dhar, Y.V.; Gupta, P.; Bag, S.K.; Atri, N.; Asif, M.H.; Trivedi, P.K.; Misra, P. Comparative interactions of withanolides and sterols with two members of sterol glycosyltransferases from Withania somnifera. BMC Bioinform. 2015, 16, 120. [Google Scholar] [CrossRef] [PubMed]
- Evans, O.P.; O’Reilly, D.R. Purification and kinetic analysis of a baculovirus ecdysteroid UDP-glucosyltransferase. Biochem. J. 1998, 332, 807–808. [Google Scholar] [CrossRef]
- Shikata, M.; Shibata, H.; Sakurai, M.; Sano, Y.; Hashimoto, Y.; Matsumoto, T. The ecdysteroid UDP-glucosyltransferase gene of Autographa californica nucleopolyhedrovirus alters the moulting and metamorphosis of a non-target insect, the silkworm, Bombyx mori (Lepidoptera, Bombycidae). J. Gen. Virol. 1998, 79, 1547–1551. [Google Scholar] [CrossRef]
- Shen, G.W.; Wu, J.X.; Wang, Y.; Liu, H.L.; Zhang, H.Y.; Ma, S.Y.; Peng, C.Y.; Lin, Y.; Xia, Q.Y. The expression of ecdysteroid UDP-glucosyltransferase enhances cocoon shell ratio by reducing ecdysteroid titre in last-instar larvae of silkworm, Bombyx mori. Sci. Rep. 2018, 8, 17710. [Google Scholar] [CrossRef]
- Reis, B.M.; Henning, V.M.; JoséLima, A.F.; Elíbio, R.; Augusto, S. High frequency gene conversion among benomyl resistant transformants in the entomopathogenic fungus Metarhizium anisopliae. Fems Microbiol. Lett. 2010, 142, 123–127. [Google Scholar]
- Mishra, N.C.; Tatum, E.L. Non-mendelian Inheritance of DNA-Induced inositol independence in neurospora. Proc. Natl. Acad. Sci. USA 1973, 70, 3875–3879. [Google Scholar] [CrossRef]
- Hu, G.; St Leger, J. Field studies using a recombinant mycoinsecticide (Metarhizium anisopliae) reveal that it is rhizosphere competent. Appl. Environ. Microbiol. 2002, 68, 6383–6387. [Google Scholar] [CrossRef]
- Fang, W.G.; Leng, B.; Xiao, Y.H.; Jin, K.; Ma, J.C.; Fan, Y.H.; Feng, J.; Yang, X.Y.; Zhang, Y.J.; Pei, Y. Cloning of Beauveria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence. Appl. Environ. Microbiol. 2005, 71, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Fang, W.G.; Feng, J.; Fan, Y.H.; Zhang, Y.J.; Bidochka, M.J.; Leger, R.J.S.; Pei, Y. Expressing a fusion protein with protease and chitinase activities increases the virulence of the insect pathogen Beauveria bassiana. J. Invertebr. Pathol. 2009, 102, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Ying, S.H.; Chen, Y.; Shen, Z.C.; Feng, M.G. Integration of insecticidal protein Vip3Aa1 into Beauveria bassiana enhances fungal virulence to spodoptera litura larvae by cuticle and per Os infection. Appl. Environ. Microbiol. 2010, 76, 4611–4618. [Google Scholar] [CrossRef] [PubMed]
- Peng, G.X.; Jin, K.; Liu, Y.C.; Xia, Y.X. Enhancing the utilization of host trehalose by fungal trehalase improves the virulence of fungal insecticide. Appl. Microbiol. Biotechnol. 2015, 99, 8611–8618. [Google Scholar] [CrossRef]
- Xia, Q.Y.; Wang, J.; Zhou, Z.Y.; Li, R.Q.; Fan, W.; Cheng, D.J.; Cheng, T.C.; Qin, J.J.; Duan, J.; Xu, H.F.; et al. The genome of a lepidopteran model insect, the silkworm Bombyx mori. Insect Biochem. Mol. Biol. 2008, 38, 1036–1045. [Google Scholar] [CrossRef]
- Suetsugu, Y.; Futahashi, R.; Kanamori, H.; Kadono-Okuda, K.; Sasanuma, S.; Narukawa, J.; Ajimura, M.; Jouraku, A.; Namiki, N.; Shimomura, M.; et al. Large scale full-length cDNA sequencing reveals a unique genomic landscape in a lepidopteran model insect, Bombyx mori. G3-Genes. Genom. Genet. 2013, 3, 1481–1492. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, Y.; Sekimizu, K. Silkworm as an experimental animal for research on fungal infections. Microbiol. Immunol. 2019, 63, 41–50. [Google Scholar] [CrossRef]
- Qiuxiang, O.; Jones, K.K. What Goes Up Must Come Down: Transcription Factors Have Their Say in Making Ecdysone Pulses. In Current Topics in Developmental Biology; Shi, Y.B., Ed.; Elsevier: Morristown, NL, USA, 2013; Volume 103, Chapter 2; pp. 35–71. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, X.; Xing, D.; Liu, D.; Xu, H.; Hou, L.; Lin, P.; Xia, Q.; Lin, Y.; Shen, G. Ecdysteroid UDP-Glucosyltransferase Expression in Beauveria bassiana Increases Its Pathogenicity against Early Instar Silkworm Larvae. J. Fungi 2023, 9, 987. https://doi.org/10.3390/jof9100987
Mao X, Xing D, Liu D, Xu H, Hou L, Lin P, Xia Q, Lin Y, Shen G. Ecdysteroid UDP-Glucosyltransferase Expression in Beauveria bassiana Increases Its Pathogenicity against Early Instar Silkworm Larvae. Journal of Fungi. 2023; 9(10):987. https://doi.org/10.3390/jof9100987
Chicago/Turabian StyleMao, Xueqin, Dongxu Xing, Die Liu, Haoran Xu, Luyu Hou, Ping Lin, Qingyou Xia, Ying Lin, and Guanwang Shen. 2023. "Ecdysteroid UDP-Glucosyltransferase Expression in Beauveria bassiana Increases Its Pathogenicity against Early Instar Silkworm Larvae" Journal of Fungi 9, no. 10: 987. https://doi.org/10.3390/jof9100987
APA StyleMao, X., Xing, D., Liu, D., Xu, H., Hou, L., Lin, P., Xia, Q., Lin, Y., & Shen, G. (2023). Ecdysteroid UDP-Glucosyltransferase Expression in Beauveria bassiana Increases Its Pathogenicity against Early Instar Silkworm Larvae. Journal of Fungi, 9(10), 987. https://doi.org/10.3390/jof9100987