Overexpression of the Aspergillus fumigatus Small GTPase, RsrA, Promotes Polarity Establishment during Germination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Growth Conditions
2.2. Analysis of Growth and Germination Rates
2.3. Stress Analyses
2.4. Genetic Manipulations
2.5. Fluorescence Microscopy
2.6. RNA Extraction and RT-qPCR
2.7. Murine Model of Invasive Pulmonary Aspergillosis
3. Results
3.1. RsrA Regulates Growth and Polarity Establishment in A. fumigatus
3.2. Overexpression of RsrA Alters the Spatial Regulation of Polarity Establishment
3.3. A. fumigatus RsrA Localizes to Septa
3.4. RsrA Is Dispensable for A. fumigatus Virulence
3.5. RsrA and RasA Interact Genetically to Control Polarity Establishment
3.6. RsrA Gene Expression, but Not Protein Localization, Is Dependent on RasA
4. Discussion
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Brown, G.D.; Denning, D.W.; Gow, N.A.R.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med. 2012, 4, 165rv113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drubin, D.G.; Nelson, W.J. Origins of cell polarity. Cell 1996, 84, 335–344. [Google Scholar] [CrossRef] [Green Version]
- Fortwendel, J.R. Orchestration of morphogenesis in filamentous fungi: Conserved roles for Ras signaling networks. Fungal Biol. Rev. 2015, 29, 54–62. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fortwendel, J.R. Ras-mediated signal transduction and virulence in human pathogenic fungi. Fungal Genom. Biol. 2012, 2, 105. [Google Scholar] [CrossRef] [PubMed]
- Fortwendel, J.R.; Juvvadi, P.R.; Rogg, L.E.; Asfaw, Y.G.; Burns, K.A.; Randell, S.H.; Steinbach, W.J. Plasma membrane localization is required for RasA-mediated polarized morphogenesis and virulence of Aspergillus fumigatus. Eukaryot. Cell 2012, 11, 966–977. [Google Scholar] [CrossRef] [Green Version]
- Fortwendel, J.R.; Fuller, K.K.; Stephens, T.J.; Bacon, W.C.; Askew, D.S.; Rhodes, J.C. Aspergillus fumigatus RasA regulates asexual development and cell wall integrity. Eukaryot. Cell 2008, 7, 1530–1539. [Google Scholar] [CrossRef] [Green Version]
- Fortwendel, J.R.; Panepinto, J.C.; Seitz, A.E.; Askew, D.S.; Rhodes, J.C. Aspergillus fumigatus rasA and rasB regulate the timing and morphology of asexual development. Fungal Genet. Biol. 2004, 41, 129–139. [Google Scholar] [CrossRef]
- Fortwendel, J.R.; Juvvadi, P.R.; Pinchai, N.; Perfect, B.Z.; Alspaugh, J.A.; Perfect, J.R.; Steinbach, W.J. Differential effects of inhibiting chitin and 1,3-{beta}-D-glucan synthesis in ras and calcineurin mutants of Aspergillus fumigatus. Antimicrob. Agents Chemother. 2009, 53, 476–482. [Google Scholar] [CrossRef] [Green Version]
- Fortwendel, J.R.; Juvvadi, P.R.; Rogg, L.E.; Steinbach, W.J. Regulatable Ras activity is critical for proper establishment and maintenance of polarity in Aspergillus fumigatus. Eukaryot. Cell 2011, 10, 611–615. [Google Scholar] [CrossRef] [Green Version]
- Al Abdallah, Q.; Norton, T.S.; Hill, A.M.; LeClaire, L.L.; Fortwendel, J.R. A fungus-specific protein domain is essential for RasA-mediated morphogenetic signaling in Aspergillus fumigatus. mSphere 2016, 1, e00234-16. [Google Scholar] [CrossRef] [Green Version]
- Al Abdallah, Q.; Martin-Vicente, A.; Souza, A.C.O.; Ge, W.; Fortwendel, J.R. C-terminus proteolysis and palmitoylation cooperate for optimal plasma membrane localization of RasA in Aspergillus fumigatus. Front. Microbiol. 2018, 9, 562. [Google Scholar] [CrossRef] [PubMed]
- Martin-Vicente, A.; Souza, A.C.O.; Al Abdallah, Q.; Ge, W.; Fortwendel, J.R. SH3-class Ras guanine nucleotide exchange factors are essential for Aspergillus fumigatus invasive growth. Cell Microbiol. 2019, 21, e13013. [Google Scholar] [CrossRef] [Green Version]
- Boguski, M.S.; McCormick, F. Proteins regulating Ras and its relatives. Nature 1993, 366, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Van Dam, T.J.; Rehmann, H.; Bos, J.L.; Snel, B. Phylogeny of the CDC25 homology domain reveals rapid differentiation of Ras pathways between early animals and fungi. Cell Signal 2009, 21, 1579–1585. [Google Scholar] [CrossRef] [PubMed]
- Bender, A. Genetic evidence for the roles of the bud-site-selection genes BUD5 and BUD2 in control of the Rsr1p (Bud1p) GTPase in yeast. Proc. Natl. Acad. Sci. USA 1993, 90, 9926–9929. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bender, A.; Pringle, J.R. Multicopy suppression of the cdc24 budding defect in yeast by CDC42 and three newly identified genes including the ras-related gene RSR1. Proc. Natl. Acad. Sci. USA 1989, 86, 9976–9980. [Google Scholar] [CrossRef] [Green Version]
- Ruggieri, R.; Bender, A.; Matsui, Y.; Powers, S.; Takai, Y.; Pringle, J.R.; Matsumoto, K. RSR1, a ras-like gene homologous to Krev-1 (smg21A/rap1A): Role in the development of cell polarity and interactions with the Ras pathway in Saccharomyces cerevisiae. Mol. Cell Biol. 1992, 12, 758–766. [Google Scholar] [CrossRef] [Green Version]
- Park, H.-O.; Chant, J.; Herskowitz, I. BUD2 encodes a GTPase-activating protein for Budl/Rsrl necessary for proper bud-site selection in yeast. Nature 1993, 365, 269–274. [Google Scholar] [CrossRef] [PubMed]
- Kang, P.J.; Beven, L.; Hariharan, S.; Park, H.-O. The Rsr1/Bud1 GTPase interacts with itself and the Cdc42 GTPase during bud-site selection and polarity establishment in budding yeast. Mol. Biol. Cell 2010, 21, 3007–3016. [Google Scholar] [CrossRef] [Green Version]
- Park, H.-O.; Sanson, A.; Herskowitz, I. Localization of Bud2p, a GTPase-activating protein necessary for programming cell polarity in yeast to the presumptive bud site. Genes Dev. 1999, 13, 1912–1917. [Google Scholar] [CrossRef] [Green Version]
- Kang, P.J.; Sanson, A.; Lee, B.; Park, H.-O. A GDP/GTP exchange factor involved in linking a spatial landmark to cell polarity. Science 2001, 292, 1376–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chant, J.; Herskowitz, I. Genetic control of bud site selection in yeast by a set of gene products that constitute a morphogenetic pathway. Cell 1991, 65, 1203–1212. [Google Scholar] [CrossRef]
- Park, H.-O.; Bi, E.; Pringle, J.R.; Herskowitz, I. Two active states of the Ras-related Bud1/Rsr1 protein bind to different effectors to determine yeast cell polarity. Proc. Natl. Acad. Sci. USA 1997, 94, 4463–4468. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, H.-O.; Kang, P.J.; Rachfal, A.W. Localization of the Rsr1/Bud1 GTPase involved in selection of a proper growth site in yeast. J. Biol. Chem. 2002, 277, 26721–26724. [Google Scholar] [CrossRef] [Green Version]
- Kang, P.J.; Miller, K.E.; Guegueniat, J.; Beven, L.; Park, H.-O. The shared role of the Rsr1 GTPase and Gic1/Gic2 in Cdc42 polarization. Mol. Biol. Cell 2018, 29, 2359–2369. [Google Scholar] [CrossRef]
- Kozminski, K.G.; Beven, L.; Angerman, E.; Tong, A.H.; Boone, C.; Park, H.-O. Interaction between a Ras and a Rho GTPase couples selection of a growth site to the development of cell polarity in yeast. Mol. Biol. Cell 2003, 14, 4958–4970. [Google Scholar] [CrossRef] [Green Version]
- Lee, M.E.; Lo, W.C.; Miller, K.E.; Chou, C.S.; Park, H.-O. Regulation of Cdc42 polarization by the Rsr1 GTPase and Rga1, a Cdc42 GTPase-activating protein, in budding yeast. J. Cell Sci. 2015, 128, 2106–2117. [Google Scholar] [CrossRef] [Green Version]
- Miller, K.E.; Lo, W.-C.; Chou, C.-S.; Park, H.-O. Temporal regulation of cell polarity via the interaction of the Ras GTPase Rsr1 and the scaffold protein Bem1. Mol. Biol. Cell 2019, 30, 2543–2557. [Google Scholar] [CrossRef]
- Pulver, R.; Heisel, T.; Gonia, S.; Robins, R.; Norton, J.; Haynes, P.; Gale, C.A. Rsr1 focuses Cdc42 activity at hyphal tips and promotes maintenance of hyphal development in Candida albicans. Eukaryot. Cell 2013, 12, 482–495. [Google Scholar] [CrossRef] [Green Version]
- Hausauer, D.L.; Gerami-Nejad, M.; Kistler-Anderson, C.; Gale, C.A. Hyphal guidance and invasive growth in Candida albicans require the Ras-like GTPase Rsr1p and its GTPase-activating protein Bud2p. Eukaryot. Cell 2005, 4, 1273–1286. [Google Scholar] [CrossRef] [Green Version]
- Bauer, Y.; Knechtle, P.; Wendland, J.; Helfer, H.; Philippsen, P. A Ras-like GTPase is involved in hyphal growth guidance in the filamentous fungus Ashbya gossypii. Mol. Biol. Cell 2004, 15, 4622–4632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ito, S.; Matsui, Y.; Toh-E, A.; Harashima, T.; Inoue, H. Isolation and characterization of the krev-1 gene, a novel member of ras superfamily in Neurospora crassa: Involvement in sexual cycle progression. Mol. Gen. Genet. 1997, 255, 429–437. [Google Scholar] [CrossRef]
- Shimizu, K.; Keller, N.P. Genetic involvement of a cAMP-dependent protein kinase in a G protein signaling pathway regulating morphological and chemical transitions in Aspergillus nidulans. Genetics 2001, 157, 591–600. [Google Scholar] [PubMed]
- Da Silva Ferreira, M.E.; Kress, M.R.V.Z.; Savoldi, M.; Goldman, M.H.S.; Hartl, A.; Heinekamp, T.; Brakhage, A.A.; Goldman, G.H. The akuBKU80 mutant deficient for nonhomologous end joining is a powerful tool for analyzing pathogenicity in Aspergillus fumigatus. Eukaryot. Cell 2006, 5, 207–211. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calvo, A.M.; Bok, J.; Brooks, W.; Keller, N.P. veA is required for toxin and sclerotial production in Aspergillus parasiticus. Appl. Environ. Microbiol. 2004, 70, 4733–4739. [Google Scholar] [CrossRef] [Green Version]
- Yelton, M.M.; Hamer, J.E.; Timberlake, W.E. Transformation of Aspergillus nidulans by using a trpC plasmid. Proc. Natl. Acad. Sci. USA 1984, 81, 1470–1474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al Abdallah, Q.; Ge, W.; Fortwendel, J.R. A simple and universal system for gene manipulation in Aspergillus fumigatus: In vitro-assembled Cas9-Guide RNA ribonucleoproteins coupled with microhomology repair templates. mSphere 2017, 2, e00446-17. [Google Scholar] [CrossRef] [Green Version]
- Rybak, J.M.; Ge, W.; Wiederhold, N.P.; Parker, J.E.; Kelly, S.L.; Rogers, P.D.; Fortwendel, J.R. Mutations in hmg1, challenging the paradigm of clinical triazole resistance in Aspergillus fumigatus. mBio 2019, 10, 00437-19. [Google Scholar] [CrossRef] [Green Version]
- Paul, S.; Klutts, J.S.; Moye-Rowley, W.S. Analysis of Promoter function in Aspergillus fumigatus. Eukaryot. Cell 2012, 11, 1167–1177. [Google Scholar] [CrossRef] [Green Version]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Brown, S.S.; Spudich, J.A. Mechanism of action of cytochalasin: Evidence that it binds to actin filament ends. J. Cell Biol. 1981, 88, 487–491. [Google Scholar] [CrossRef]
- Morishita, T.; Mitsuzawa, H.; Nakafuku, M.; Nakamura, S.; Hattori, S.; Anraku, Y. Requirement of Saccharomyces cerevisiae Ras for completion of mitosis. Science 1995, 270, 1213–1215. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Q.; Li, M.; Zhao, X.F.; Gao, X.D. A role for the rap GTPase YlRsr1 in cellular morphogenesis and the involvement of YlRsr1 and the ras GTPase YlRas2 in bud site selection in the dimorphic yeast Yarrowia lipolytica. Eukaryot. Cell 2014, 13, 580–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Helmschrott, C.; Sasse, A.; Samantaray, S.; Krappmann, S.; Wagener, J. Upgrading fungal gene expression on demand: Improved systems for doxycycline-dependent silencing in Aspergillus fumigatus. Appl. Environ. Microbiol. 2013, 79, 1751–1754. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pichová, A.; Vondráková, D.; Breitenbach, M. Mutants in the Saccharomyces cerevisiae RAS2 gene influence life span, cytoskeleton, and regulation of mitosis. Can. J. Microbiol. 1997, 43, 774–781. [Google Scholar] [CrossRef] [PubMed]
- Waugh, M.S.; Nichols, C.B.; DeCesare, C.M.; Cox, G.M.; Heitman, J.; Alspaugh, J.A. Ras1 and Ras2 contribute shared and unique roles in physiology and virulence of Cryptococcus neoformans. Microbiology 2002, 148, 191–201. [Google Scholar] [CrossRef] [Green Version]
- Harispe, L.; Portela, C.; Scazzocchio, C.; Peñalva, M.A.; Gorfinkiel, L. Ras GTPase-activating protein regulation of actin cytoskeleton and hyphal polarity in Aspergillus nidulans. Eukaryot. Cell 2008, 7, 141–153. [Google Scholar] [CrossRef] [Green Version]
- Fukui, Y.; Kozasa, T.; Kaziro, Y.; Takeda, T.; Yamamoto, M. Role of a ras homolog in the life cycle of Schizosaccharomyces pombe. Cell 1986, 44, 329–336. [Google Scholar] [CrossRef]
- Boyce, K.J.; Hynes, M.J.; Andrianopoulos, A. The Ras and Rho GTPases genetically interact to co-ordinately regulate cell polarity during development in Penicillium marneffei. Mol. Microbiol. 2005, 55, 1487–1501. [Google Scholar] [CrossRef]
- Ballou, E.R.; Kozubowski, L.; Nichols, C.B.; Alspaugh, J.A. Ras1 acts through duplicated Cdc42 and Rac proteins to regulate morphogenesis and pathogenesis in the human fungal pathogen Cryptococcus neoformans. PLoS Genet. 2013, 9, e1003687. [Google Scholar] [CrossRef] [Green Version]
- Mosch, H.U.; Roberts, R.L.; Fink, G.R. Ras2 signals via the Cdc42/Ste20/mitogen-activated protein kinase module to induce filamentous growth in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 1996, 93, 5352–5356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yaar, L.; Mevarech, M.; Koltint, Y. A Candida albicans RAS-related gene (CaRSRl) is involved in budding, cell morphogenesis and hypha development. Microbiology 1997, 143, 3033–3044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chant, J.; Corrado, K.; Pringle, J.R.; Herskowitz, I. Yeast BUD5, encoding a putative GDP-GTP exchange factor, is necessary for bud site selection and interacts with bud formation gene BEM1. Cell 1991, 65, 1213–1224. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Bender, A.; Cerione, R.A. Interactions among proteins involved in bud-site selection and bud-site assembly in Saccharomyces cerevisiae. J. Biol. Chem. 1995, 270, 626–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimada, Y.; Wiget, P.; Gulli, M.-P.; Bi, E.; Peter, M. The nucleotide exchange factor Cdc24p may be regulated by auto-inhibition. EMBO J. 2004, 23, 1051–1062. [Google Scholar] [CrossRef]
- Nichols, C.B.; Perfect, Z.H.; Alspaugh, J.A. A Ras1-Cdc24 signal transduction pathway mediates thermotolerance in the fungal pathogen Cryptococcus neoformans. Mol. Microbiol. 2007, 63, 1118–1130. [Google Scholar] [CrossRef] [PubMed]
- Quadri, R.; Galli, M.; Galati, E.; Rotondo, G.; Gallo, G.R.; Panigada, D.; Plevani, P.; Muzi-Falconi, M. Haspin regulates Ras localization to promote Cdc24-driven mitotic depolarization. Cell Discov. 2020, 6, 42. [Google Scholar] [CrossRef]
- Nozaki, S.; Furuya, K.; Niki, H. The Ras1-Cdc42 pathway is involved in hyphal development of Schizosaccharomyces japonicus. FEMS Yeast Res. 2018, 18, 4. [Google Scholar] [CrossRef]
- Chang, E.C.; Barr, M.; Wang, Y.; Jung, V.; Xu, H.P.; Wigler, M.H. Cooperative interaction of S. pombe proteins required for mating and morphogenesis. Cell 1994, 79, 131–141. [Google Scholar] [CrossRef]
- Chen, C.; Ha, Y.-S.; Min, J.-Y.; Memmott, S.D.; Dickman, M.B. Cdc42 is required for proper growth and development in the fungal pathogen Colletotrichum trifolii. Eukaryot. Cell 2006, 5, 155–166. [Google Scholar] [CrossRef] [Green Version]
Strain | Genetic Background | Source or Reference |
---|---|---|
KU80ΔpyrG | CEA17 | Fungal Genetics Stock Center [34] |
ΔakuB-pyrG+ | KU80ΔpyrG | [11] |
ΔrsrA | KU80ΔpyrG | This study |
ΔrsrA + GFP-rsrA | ΔrsrA | This study |
PhspA-rsrA | ΔakuB-pyrG+ | This study |
TetOn-rasA | ΔakuB-pyrG+ | This study |
ΔrsrA/pTetOn-rasA | ΔrsrA | This study |
ΔrasA | ΔakuB-pyrG+ | This study |
ΔrsrA + GFP-rsrA/ΔrasA | ΔrsrA + GFP-rsrA | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin-Vicente, A.; Souza, A.C.O.; Nywening, A.V.; Ge, W.; Fortwendel, J.R. Overexpression of the Aspergillus fumigatus Small GTPase, RsrA, Promotes Polarity Establishment during Germination. J. Fungi 2020, 6, 285. https://doi.org/10.3390/jof6040285
Martin-Vicente A, Souza ACO, Nywening AV, Ge W, Fortwendel JR. Overexpression of the Aspergillus fumigatus Small GTPase, RsrA, Promotes Polarity Establishment during Germination. Journal of Fungi. 2020; 6(4):285. https://doi.org/10.3390/jof6040285
Chicago/Turabian StyleMartin-Vicente, Adela, Ana C. O. Souza, Ashley V. Nywening, Wenbo Ge, and Jarrod R. Fortwendel. 2020. "Overexpression of the Aspergillus fumigatus Small GTPase, RsrA, Promotes Polarity Establishment during Germination" Journal of Fungi 6, no. 4: 285. https://doi.org/10.3390/jof6040285
APA StyleMartin-Vicente, A., Souza, A. C. O., Nywening, A. V., Ge, W., & Fortwendel, J. R. (2020). Overexpression of the Aspergillus fumigatus Small GTPase, RsrA, Promotes Polarity Establishment during Germination. Journal of Fungi, 6(4), 285. https://doi.org/10.3390/jof6040285