Exploring the Bioactive Secondary Metabolites of Two Argentine Trichoderma afroharzianum Strains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Materials
2.2. Fungal Strains
2.3. Identification of Trichoderma
2.3.1. Phenotypic Characterization
2.3.2. Genome Sequences and Species Identification
2.3.3. Phylogenetic and Taxonomic Characterization of Trichoderma Strains
2.4. Extraction of Secondary Metabolites
2.5. Antimicrobial Activity of Extracts
2.5.1. Microorganisms
2.5.2. Determination of the Minimum Inhibitory Concentration
2.6. Antibiofilm Assay
2.6.1. Biofilm Formation Inhibition in Bacteria
2.6.2. Inhibition of Biofilm Formation in Candida
2.6.3. Biofilm Formation Inhibition Percentage and IC50 Determination
2.7. Antioxidant Activity Assay
2.8. Cytotoxicity Assays
2.8.1. Non-Tumor Cells
2.8.2. Tumor Cells
2.9. HPLC/MS Analysis
2.10. Bioinformatic Analysis of Secondary Metabolite Biosynthesis Pathways
2.11. Statistical Analysis
3. Results
3.1. Morphological Identification and Molecular Analysis of T. afroharzianum
3.2. Antimicrobial Activity
3.3. Biofilm Inhibition
3.4. Antioxidant Activity
3.5. Cytotoxic Activity
3.6. Metabolite Identification by HPLC/MS
3.7. Secondary Metabolite Biosynthesis in Trichoderma 10BR1 and UEPA AR12
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AMP | Ampicillin |
AMB | Amphotericin B |
ATCC | American Type Culture Collection |
CEFOBI | Centro de Estudios Fotosintéticos y Bioquímicos |
CEREMIC | Mycological Reference Center |
CFU | Colony-Forming Units |
CSE | Culture Supernatant Extract |
CSE10BR1 | Culture Supernatant Extract from strain 10BR1 |
CSEAR12 | Culture Supernatant Extract from strain AR12 |
DMSO | Dimethyl Sulfoxide |
DMEM | Dulbecco’s Modified Eagle Medium |
DPPH | 2,2-Diphenyl-1-picrylhydrazyl |
EC | Extract Control |
FBS | Fetal Bovine Serum |
GC | Growth Control |
HPLC/MS | High-Performance Liquid Chromatography/Mass Spectrometry |
MIC | Minimum Inhibitory Concentration |
MOPS | 3-(N-morpholino)propanesulfonic acid |
MRSP | Methicillin-Resistant Staphylococcus pseudintermedius |
MSSP | Methicillin-Sensitive Staphylococcus pseudintermedius |
MTT | 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide |
NRPS | Non-Ribosomal Peptide Synthetase |
OD | Optical Density |
PBS | Phosphate-Buffered Saline |
PDA | Potato Dextrose Agar |
PDB | Potato Dextrose Broth |
PGP | Plant-Growth Promotion |
SC | Sterility Control |
SD | Standard Deviation |
SI | Selectivity Index |
STR | Short Tandem Repeat |
T1PKS | Type I Polyketide Synthase |
TTC | Triphenyltetrazolium Chloride |
YPD | Yeast Extract Peptone Dextrose medium |
References
- Corrêa, R.C.G.; Heleno, S.A.; Alves, M.J.; Ferreira, I.C.F.R. Bacterial resistance: Antibiotics of last generation used in clinical practice and the arise of natural products as new therapeutic alternatives. Curr. Pharm. Des. 2020, 26, 815–837. [Google Scholar] [CrossRef] [PubMed]
- Tarín-Pelló, A.; Suay-García, B.; Pérez-Gracia, M.T. Antibiotic resistant bacteria: Current situation and treatment options to accelerate the development of a new antimicrobial arsenal. Expert Rev. Anti Infect. Ther. 2022, 20, 1095–1108. [Google Scholar] [CrossRef]
- Demisie, S.; Oh, D.C.; Abera, A.; Tasew, G.; Satessa, G.D.; Fufa, F.; Shenkutie, A.M.; Wolday, D.; Tafess, K. Bioprospecting secondary metabolites with antimicrobial properties from soil bacteria in high-temperature ecosystems. Microb. Cell Fact. 2024, 23, 332. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; Zahra, A.; Kamthan, M.; Husain, F.M.; Albalawi, T.; Zubair, M.; Alatawy, R.; Abid, M.; Noorani, M.S. Microbial biofilms: Applications, clinical consequences, and alternative therapies. Microorganisms 2023, 11, 1934. [Google Scholar] [CrossRef]
- Dashtbani-Roozbehani, A.; Brown, M.H. Efflux pump mediated antimicrobial resistance by Staphylococci in health-related environments: Challenges and the quest for inhibition. Antibiotics 2021, 10, 1502. [Google Scholar] [CrossRef]
- Hota, S.; Patil, S.R.; Mane, P.M. Enterococcus: Understanding their resistance mechanisms, therapeutic challenges, and emerging threats. Cureus 2025, 17, e79628. [Google Scholar] [CrossRef]
- Smith, B.L.; Fernando, S.; King, M.D. Publisher correction: Escherichia coli resistance mechanism AcrAB-TolC efflux pump interactions with commonly used antibiotics: A molecular dynamics study. Sci. Rep. 2024, 14, 29940. [Google Scholar] [CrossRef]
- Czajka, K.M.; Venkataraman, K.; Brabant-Kirwan, D.; Santi, S.A.; Verschoor, C.; Appanna, V.D.; Singh, R.; Saunders, D.P.; Tharmalingam, S. Molecular mechanisms associated with antifungal resistance in pathogenic Candida species. Cells 2023, 12, 2655. [Google Scholar] [CrossRef] [PubMed]
- Almatroudi, A. Biofilm resilience: Molecular mechanisms driving antibiotic resistance in clinical contexts. Biology 2025, 14, 165. [Google Scholar] [CrossRef]
- Sahoo, K.; Meshram, S. Biofilm formation in chronic Infections: A comprehensive review of pathogenesis, clinical implications, and novel therapeutic approaches. Cureus 2024, 16, e70629. [Google Scholar] [CrossRef]
- Wu, P.; Yao, L.; Xu, L.; Xue, J.; Wei, X. Bisacremines A-D, dimeric acremines produced by a soil-derived Acremonium persicinum strain. J. Nat. Prod. 2015, 78, 2161–2166. [Google Scholar] [CrossRef]
- Al-Enazi, N.M.; Awaad, A.S.; Al-Othman, M.R.; Al-Anazi, N.K.; Alqasoumi, S.I. Isolation, identification and anti-candidal activity of filamentous fungi from Saudi Arabia soil. Saudi Pharm. J. 2018, 26, 253–257. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Q.; Zhang, S.; Sun, M.L.; Su, H.N.; Li, H.Y.; Kun-Liu; Zhang, Y.Z.; Chen, X.L.; Cao, H.Y.; Song, X.Y. Antibacterial activity of peptaibols from Trichoderma longibrachiatum SMF2 against gram-negative Xanthomonas oryzae pv. oryzae, the causal agent of bacterial leaf blight on rice. Front. Microbiol. 2022, 13, 1034779. [Google Scholar] [CrossRef] [PubMed]
- Conrado, R.; Gomes, T.C.; Roque, G.S.C.; De Souza, A.O. Overview of bioactive fungal secondary metabolites: Cytotoxic and antimicrobial compounds. Antibiotics 2022, 11, 1604. [Google Scholar] [CrossRef]
- Gauchan, D.P.; Kandel, P.; Tuladhar, A.; Acharya, A.; Kadel, U.; Baral, A.; Shahi, A.B.; García-Gil, M.R. Evaluation of antimicrobial, antioxidant and cytotoxic properties of bioactive compounds produced from endophytic fungi of Himalayan yew (Taxus wallichiana) in Nepal. F1000Research 2020, 9, 379. [Google Scholar] [CrossRef]
- Zin, N.A.; Badaluddin, N.A. Biological functions of Trichoderma spp. for agriculture applications. Ann. Agric. Sci. 2020, 65, 168–178. [Google Scholar] [CrossRef]
- Agostini, R.B.; Ariel, F.; Rius, S.P.; Vargas, W.A.; Campos-Bermudez, V.A. Trichoderma root colonization triggers epigenetic changes in jasmonic and salicylic acid pathway-related genes. J. Exp. Bot. 2022, 74, 2016–2028. [Google Scholar] [CrossRef]
- Khan, R.A.A.; Najeeb, S.; Hussain, S.; Xie, B.; Li, Y. Bioactive secondary metabolites from Trichoderma spp. against phytopathogenic fungi. Microorganisms 2020, 8, 817. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.L.; Tang, W.L.; Huang, Q.R.; Li, Y.Z.; Wei, M.L.; Jiang, L.L.; Liu, C.; Yu, X.; Zhu, H.W.; Chen, G.Z.; et al. Trichoderma: A treasure house of structurally diverse secondary metabolites with medicinal importance. Front. Microbiol. 2021, 12, 723828. [Google Scholar] [CrossRef]
- Zhao, J.; Liu, T.; Zhang, D.; Wu, H.; Zhang, T.; Dong, D. Biocontrol potential of Trichoderma afroharzianum TM24 against grey mould on tomato plants. Curr. Microbiol. 2021, 78, 4115–4126. [Google Scholar] [CrossRef]
- Philip, B.; Behiry, S.I.; Salem, M.Z.; Amer, M.A.; El-Samra, I.A.; Abdelkhalek, A.; Heflish, A. Trichoderma afroharzianum TRI07 metabolites inhibit Alternaria alternata growth and induce tomato defense-related enzymes. Sci. Rep. 2024, 14, 1874. [Google Scholar] [CrossRef]
- Evren, G.; Korkom, Y.; Saboori, A.; Cakmak, I. Exploring the potential of Trichoderma secondary metabolites against Tetranychus urticae (Acari: Tetranychidae). J. Invertebr. Pathol. 2025, 211, 108299. [Google Scholar] [CrossRef] [PubMed]
- Gang, S.; Sharma, S.; Saraf, M.; Buck, M.; Schumacher, J. Analysis of indole-3-acetic acid (IAA) production in Klebsiella by LC-MS/MS and the salkowski method. Bio-Protocol 2019, 9, e3230. [Google Scholar] [CrossRef] [PubMed]
- Anil, K.; Lakshmi, T. Phosphate solubilization potential and phosphatase activity of rhizospheric Trichoderma spp. Braz. J. Microbiol. 2010, 41, 787–795. [Google Scholar] [CrossRef]
- Roy, D.; Gunri, S.K.; Pal, K.K. Isolation, screening and characterization of efficient cellulose-degrading fungal and bacterial strains and preparation of their consortium under in vitro studies. 3 Biotech 2024, 14, 131. [Google Scholar] [CrossRef] [PubMed]
- Santone, A. Aislamiento e Identificación de Biocontroladores Autóctonos de Cepas Fitopatógenas. Ph.D. Thesis, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina, 2024. Available online: https://rephip.unr.edu.ar/items/a752d6ff-a92c-40e1-8c99-1ca21279a95e (accessed on 29 May 2025).
- Hoog, G.S.; Guarro, J.; Gené, J.; Figueras, M.J. Atlas of Clinical Fungi, 2nd ed.; Centraalbureau voor Schimmelcultures: Reus, Spain, 2000; Universitat Rovira i Virgili; 1126p. [Google Scholar]
- Lacaz, C.S.; Porto, E.; Martins, J.E.C.; Heins-Vaccari, E.M.; Melo, N.T. Tratado de Micologia Médica, 9th ed.; Sarvier: São Paulo, Brazil, 2002; 1104p. [Google Scholar]
- Sidrim, J.J.C.; Rocha, M.F.G. Micologia Médica à luz de Autores Contemporâneos, 2nd ed.; Guanabara Koogan: Rio de Janeiro, Brazil, 2010; 396p. [Google Scholar]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
- Larkin, M.A.; Blackshields, G.; Brown, N.P.; Chenna, R.; McGettigan, P.A.; McWilliam, H.; Valentin, F.; Wallace, I.M.; Wilm, A.; Lopez, R.; et al. Clustal W and Clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts, 4th ed.; CLSI Document M27-A4; CLSI: Wayne, PA, USA, 2020. [Google Scholar]
- Clinical and Laboratory Standards Institute (CLSI). Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 12th ed.; CLSI Standard M07; CLSI: Wayne, PA, USA, 2021. [Google Scholar]
- O’Toole, G.A.; Pratt, L.A.; Watnick, P.I.; Newman, D.K.; Weaver, V.B.; Kolter, R. Genetic approaches to study of biofilms. Methods Enzymol. 1999, 310, 91–109. [Google Scholar] [CrossRef]
- Pierce, C.G.; Uppuluri, P.; Tristan, A.R.; Wormley, F.L., Jr.; Mowat, E.; Ramage, G.; Lopez-Ribot, J.L. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat. Protoc. 2008, 3, 1494–1500. [Google Scholar] [CrossRef]
- Mollaei, S.; Khanehbarndaz, O.; Gerami-Khashal, Z.; Ebadi, M. Molecular identification and phytochemical screening of endophytic fungi isolated from Lithospermum officinale L. roots: A new source of shikonin. Phytochemistry 2019, 168, 112116. [Google Scholar] [CrossRef]
- Ferretti, A.C.; Tonucci, F.M.; Hidalgo, F.; Almada, E.; Larocca, M.C.; Favre, C. AMPK and PKA interaction in the regulation of survival of liver cancer cells subjected to glucose starvation. Oncotarget 2016, 7, 17815–17828. [Google Scholar] [CrossRef] [PubMed]
- Stracquadanio, C.; Quiles, J.M.; Meca, G.; Cacciola, S.O. Antifungal activity of bioactive metabolites produced by Trichoderma asperellum and Trichoderma atroviride in liquid medium. J. Fungi 2020, 6, 263. [Google Scholar] [CrossRef]
- Hu, X.; Roberts, D.P.; Xie, L.; Maul, J.E.; Yu, C.; Li, Y.; Zhang, Y.; Qin, L.; Liao, X. Components of a rice-oilseed rape production system augmented with Trichoderma sp. Tri-1 control Sclerotinia sclerotiorum on oilseed rape. Phytopathology 2015, 105, 1325–1333. [Google Scholar] [CrossRef] [PubMed]
- Indrayanto, G.; Putra, G.S.; Suhud, F. Validation of in vitro bioassay methods: Application in herbal drug research. Profiles Drug Subst. Excip. Relat. Methodol. 2021, 46, 273–307. [Google Scholar] [CrossRef]
- Parker, R.S.; Cutler, H.G.; Jacyno, J.M.; Hill, R.A. Biological activity of 6-pentyl-2H-pyran-2-one and its analogs. J. Agric. Food Chem. 1997, 45, 2774–2776. [Google Scholar] [CrossRef]
- Ahluwalia, V.; Kumar, J.; Rana, V.S.; Sati, O.P.; Walia, S. Comparative evaluation of two Trichoderma harzianum strains for major secondary metabolite production and antifungal activity. Nat. Prod. Res. 2015, 29, 914–920. [Google Scholar] [CrossRef]
- Papaianni, M.; Ricciardelli, A.; Fulgione, A.; d’Errico, G.; Zoina, A.; Lorito, M.; Woo, S.L.; Vinale, F.; Capparelli, R. Antibiofilm activity of a Trichoderma metabolite against Xanthomonas campestris pv. campestris, alone and in association with a phage. Microorganisms 2020, 8, 620. [Google Scholar] [CrossRef]
- Lim, J.S.; Hong, J.H.; Lee, D.Y.; Li, X.; Lee, D.E.; Choi, J.U.; Lee, K.Y.; Kim, K.H.; Cho, Y.C. 6-Pentyl-α-Pyrone from Trichoderma gamsii exert antioxidant and anti-inflammatory properties in lipopolysaccharide-stimulated mouse macrophages. Antioxidants 2023, 12, 2028. [Google Scholar] [CrossRef]
- Vinale, F.; Sivasithamparam, K.; Ghisalberti, E.L.; Marra, R.; Barbetti, M.J.; Li, H.; Woo, S.L.; Lorito, M. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol. Mol. Plant Pathol. 2008, 72, 80–86. [Google Scholar] [CrossRef]
- Wulansari, D.; Jamal, Y.; Praptiwi, T.; Agusta, A. Pachybasin, a major metabolite from culture broth of endophytic coelomyceteous AFKR-18 fungus isolated from a yellow moonsheed plant, Arcangelisia flava (L.) Merr. Hayati 2014, 21, 95–100. [Google Scholar] [CrossRef]
- Ghoran, S.H.; Taktaz, F.; Ayatollahi, S.A.; Kijjoa, A. Anthraquinones and their analogues from marine-derived fungi: Chemistry and biological activities. Mar. Drugs 2022, 20, 474. [Google Scholar] [CrossRef]
- Xie, Z.L.; Li, H.J.; Wang, L.Y.; Liang, W.L.; Liu, W.; Lan, W.J. Trichodermaerin, a new diterpenoid lactone from the marine fungus Trichoderma erinaceum associated with the sea star Acanthaster planci. Nat. Prod. Commun. 2013, 8, 67–68. [Google Scholar] [CrossRef] [PubMed]
- Freitas, A.L.; Silva, J.C.; Vandenberghe, L.P.; Rogez, H.; Moura, F.G. Bioactive coating containing harzianic acid: Control of Fusarium oxysporum and preservation of tomato quality. Food Control 2024, 162, 110445. [Google Scholar] [CrossRef]
- De Filippis, A.; Nocera, F.P.; Tafuri, S.; Ciani, F.; Staropoli, A.; Comite, E.; Bottiglieri, A.; Gioia, L.; Lorito, M.; Woo, S.L.; et al. Antimicrobial activity of harzianic acid against Staphylococcus pseudintermedius. Nat. Prod. Res. 2021, 35, 5440–5445. [Google Scholar] [CrossRef]
- Vinale, F.; Flematti, G.; Sivasithamparam, K.; Lorito, M.; Marra, R.; Skelton, B.W.; Ghisalberti, E.L. Harzianic acid, an antifungal and plant growth promoting metabolite from Trichoderma harzianum. J. Nat. Prod. 2009, 72, 2032–2035. [Google Scholar] [CrossRef]
- Li, M.F.; Li, G.H.; Zhang, K.Q. Non-volatile metabolites from Trichoderma spp. Metabolites 2019, 9, 58. [Google Scholar] [CrossRef]
- Bakrim, S.; Benkhaira, N.; Bourais, I.; Benali, T.; Lee, L.H.; El Omari, N.; Sheikh, R.A.; Goh, K.W.; Ming, L.C.; Bouyahya, A. Health benefits and pharmacological properties of stigmasterol. Antioxidants 2022, 11, 1912. [Google Scholar] [CrossRef]
- Zhou, P.; Wu, Z.; Tan, D.; Yang, J.; Zhou, Q.; Zeng, F.; Zhang, M.; Bie, Q.; Chen, C.; Xue, Y.; et al. Atrichodermones A-C, three new secondary metabolites from the solid culture of an endophytic fungal strain, Trichoderma atroviride. Fitoterapia 2017, 123, 18–22. [Google Scholar] [CrossRef]
- Song, Y.P.; Miao, F.P.; Fang, S.T.; Yin, X.L.; Ji, N.Y. Halogenated and nonhalogenated metabolites from the marine-alga-endophytic fungus Trichoderma asperellum cf44-2. Mar. Drugs 2018, 16, 266. [Google Scholar] [CrossRef]
- Birari, B.; Ingle, S.; Mane, S.; Bramhankar, S. Fungicidal profiling of Trichoderma asperellum mutants released volatile and non-volatile compounds against Fusarium oxysporum f. sp. ciceri. Arch. Phytopathol. Pflanzenschutz 2025, 58, 59–91. [Google Scholar] [CrossRef]
- Chen, S.; Yong, T.; Zhang, Y.; Su, J.; Jiao, C.; Xie, Y. Anti-tumor and anti-angiogenic ergosterols from Ganoderma lucidum. Front. Chem. 2017, 5, 85. [Google Scholar] [CrossRef] [PubMed]
- Luhata, L.P.; Usuki, T. Antibacterial activity of β-sitosterol isolated from the leaves of Odontonema strictum (Acanthaceae). Bioorg. Med. Chem. Lett. 2021, 48, 128248. [Google Scholar] [CrossRef]
- Sen, A.; Dhavan, P.; Shukla, K.K.; Singh, S.; Tejovathi, G. Analysis of IR, NMR and antimicrobial activity of β-sitosterol isolated from Momordica charantia. Sci. Secur. J. Biotechnol. 2012, 1, 9–13. [Google Scholar]
- Xie, Y.; Peng, Q.; Ji, Y.; Xie, A.; Yang, L.; Mu, S.; Li, Z.; He, T.; Xiao, Y.; Zhao, J.; et al. Isolation and identification of antibacterial bioactive compounds from Bacillus megaterium L2. Front. Microbiol. 2021, 12, 645484. [Google Scholar] [CrossRef] [PubMed]
- Xuan, Q.C.; Huang, R.; Miao, C.P.; Chen, Y.W.; Zhai, Y.Z.; Song, F.; Wang, T.; Wu, S.H. Secondary metabolites of endophytic fungus Trichoderma sp. YM 311505 of Azadirachta indica. Chem. Nat. Compd. 2014, 50, 139–141. [Google Scholar] [CrossRef]
- Fernandes, K.R.; de Souza, A.Q.L.; dos Santos, L.A.; Nogueira, F.C.S.; Evaristo, J.A.M.; Carneiro, G.R.A.; da Silva, G.F.; da Cruz, J.C.; Sousa, T.F.; da Silva, S.R.S.; et al. Asperelines produced by the endophytic fungus Trichoderma asperelloides from the aquatic plant Victoria amazonica. Rev. Bras. Farmacogn. 2021, 31, 667–675. [Google Scholar] [CrossRef]
- Cai, F.; Druzhinina, I.S. In honor of John Bissett: Authoritative guidelines on molecular identification of Trichoderma. Fungal Divers. 2021, 107, 1–69. [Google Scholar] [CrossRef]
- Chaverri, P.; Rocha, F.B.; Jaklitsch, W.; Gazis, R.; Degenkolb, T.; Samuels, G.J. Systematics of the T. harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 2015, 107, 558–590. [Google Scholar] [CrossRef]
- Awad, N.E.; Kassem, H.A.; Hamed, M.A.; El-Feky, A.M.; Elnaggar, M.A.A.; Mahmoud, K.; Ali, M.A. Isolation and characterization of the bioactive metabolites from the soil-derived fungus Trichoderma viride. Mycology 2018, 9, 70–80, Erratum in Mycology 2018, 9, 316. [Google Scholar] [CrossRef]
- Katoch, M.; Singh, D.; Kapoor, K.K.; Vishwakarma, R.A. Trichoderma lixii (IIIM-B4), an endophyte of Bacopa monnieri L. producing peptaibols. BMC Microbiol. 2019, 19, 98. [Google Scholar] [CrossRef] [PubMed]
- Siebatcheu, E.C.; Wetadieu, D.; Youassi Youassi, O.; Bedine Boat, M.A.; Bedane, K.G.; Tchameni, N.S.; Sameza, M.L. Secondary metabolites from an endophytic fungus Trichoderma erinaceum with antimicrobial activity towards Pythium ultimum. Nat. Prod. Res. 2023, 37, 657–662. [Google Scholar] [CrossRef]
- Nongthombam, K.S.; Mutum, S.S.; Pandey, R.R. In vitro biological activities of an endophytic fungus, Trichoderma sp. L2D2 isolated from Anaphalis contorta. Indian J. Microbiol. 2024, 64, 1757–1768. [Google Scholar] [CrossRef]
- Leylaie, S.; Zafari, D. Antiproliferative and antimicrobial activities of secondary metabolites and phylogenetic study of endophytic Trichoderma species from Vinca plants. Front. Microbiol. 2018, 9, 1484. [Google Scholar] [CrossRef]
- Ouyang, X.; Hoeksma, J.; Beenker, W.A.G.; van der Beek, S.; den Hertog, J. Harzianic acid exerts antimicrobial activity against Gram-positive bacteria and targets the cell membrane. Front. Microbiol. 2024, 15, 1332774. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Zang, X.; Cheng, W.; Zhang, Z.; Zhou, J.; Chen, M.; Tang, Y. Harzianic acid from Trichoderma afroharzianum is a natural product inhibitor of acetohydroxyacid synthase. J. Am. Chem. Soc. 2021, 143, 9575–9584. [Google Scholar] [CrossRef] [PubMed]
- Staropoli, A.; Cuomo, P.; Salvatore, M.M.; De Tommaso, G.; Iuliano, M.; Andolfi, A.; Tenore, G.C.; Capparelli, R.; Vinale, F. Harzianic acid activity against Staphylococcus aureus and its role in calcium regulation. Toxins 2023, 15, 237. [Google Scholar] [CrossRef]
- Odibaa, J.O.; Musaa, A.M.; Hassana, H.S.; Yahayaa, S.M.; Okolo, E.I. Antimicrobial activity of isolated Stigmast-5-en-3β-ol (β-Sitosterol) from Honeybee Propolis from North-Western, Nigeria. Int. J. Pharm. Sci. Res. 2014, 5, 908–918. [Google Scholar]
- Yusuf, A.J.; Abdullahi, M.I.; Aleku, G.A.; Ibrahim, I.A.A.; Alebiosu, C.O.; Yahaya, M.; Adamu, H.W.; Sanusi, A.; Mailafiya, M.M.; Abubakar, H. Antimicrobial activity of Stigmasterol from the stem bark of Neocarya macrophylla. J. Med. Plants Econ. Dev. 2018, 2, 1–5. [Google Scholar] [CrossRef]
- Valitova, J.; Renkova, A.; Beckett, R.; Minibayeva, F. Stigmasterol: An enigmatic plant stress sterol with versatile functions. Int. J. Mol. Sci. 2024, 25, 8122. [Google Scholar] [CrossRef]
- Scarselletti, R.; Faull, J.L. In vitro activity of 6-pentyl-α-pyrone, a metabolite of Trichoderma harzianum, in the inhibition of Rhizoctonia solani and Fusarium oxysporum f. sp. lycopersici. Mycol. Res. 1994, 98, 1207–1209. [Google Scholar] [CrossRef]
- Poole, P.R.; Ward, B.G.; Whitaker, G. The effects of topical treatments with 6-pentyl-2-pyrone and structural analogs on stem end post-harvest rots in kiwi fruit due to Botrytis cinerea. J. Agric. Food Chem. 1998, 77, 81–86. [Google Scholar] [CrossRef]
- Mendoza-Mendoza, A.; Esquivel-Naranjo, E.U.; Soth, S.; Andrade-Linares, D.R.; Monteiro, G.; Casas-Flores, S. Uncovering the multifaceted properties of 6-pentyl-α-pyrone for control of plant pathogens. Front. Plant Sci. 2024, 15, 1420068. [Google Scholar] [CrossRef]
- Li, J.; Xie, S.; Gao, Q.; Deng, Z. Evaluation of the potential of endophytic Trichoderma sp. isolated from medicinal plant Ampelopsis japonica against MRSA and bioassay-guided separation of the anti-MRSA compound. Braz. J. Microbiol. 2024, 55, 543–556. [Google Scholar] [CrossRef]
- Abdelgawad, M.A.; Hamed, A.A.; Nayl, A.A.; Ghareeb, M.A.; El-Gendy, A.O.; Shata, A.; Elkhateeb, A. The chemical profiling, docking study, and antimicrobial and antibiofilm activities of the endophytic fungi Aspergillus sp. AP5. Molecules 2022, 27, 1704. [Google Scholar] [CrossRef] [PubMed]
- Kaur, N.; Arora, D.S. Prospecting the antimicrobial and antibiofilm potential of Chaetomium globosum, an endophytic fungus from Moringa oleifera. AMB Express 2020, 10, 206. [Google Scholar] [CrossRef]
- Myronenko, L.G.; Peretyatko, O.G.; Iagniuk, J.A.; Martynov, A.V. Influence of Gentamicin on enterococci biofilm formation. Ann. Mechnikov Inst. 2017, 3, 51–55. [Google Scholar] [CrossRef]
- Saravanakumar, K.; Chelliah, R.; Ramakrishnan, S.R.; Kathiresan, K.; Oh, D.H.; Wang, M.H. Antibacterial and antioxidant potentials of non-cytotoxic extract of Trichoderma atroviride. Microb. Pathog. 2018, 115, 338–342. [Google Scholar] [CrossRef]
- Narendran, R.; Kathiresan, K. Antimicrobial activity of crude extracts from mangrove-derived Trichoderma species against human and fish pathogens. Biocatal. Agric. Biotechnol. 2016, 6, 189–194. [Google Scholar] [CrossRef]
- Effiong, M.E.; Umeokwochi, C.P.; Afolabi, I.S.; Chinedu, S.N. Comparative antioxidant activity and phytochemical content of five extracts of Pleurotus ostreatus (oyster mushroom). Sci. Rep. 2024, 14, 3794. [Google Scholar] [CrossRef]
- Kumar, G.; Mukherjee, S.; Patnaik, R. Identification of Withanolide-M and Stigmasterol as potent neuroprotectant and dual inhibitor of inducible/neuronal nitric oxide synthase by structure-based virtual screening. J. Biol. Eng. Res. Rev. 2017, 4, 9–13. [Google Scholar]
- Haque, M.N.; Hannan, M.A.; Dash, R.; Choi, S.M.; Moon, I.S. The potential LXRβ agonist stigmasterol protects against hypoxia/reoxygenation injury by modulating mitophagy in primary hippocampal neurons. Phytomedicine 2021, 81, 153415. [Google Scholar] [CrossRef]
- Khan, Z.; Nath, N.; Rauf, A.; Emran, T.B.; Mitra, S.; Islam, F.; Chandran, D.; Barua, J.; Khandaker, M.U.; Idris, A.M.; et al. Multifunctional roles and pharmacological potential of β-sitosterol: Emerging evidence toward clinical applications. Chem. Biol. Interact. 2022, 365, 110117. [Google Scholar] [CrossRef] [PubMed]
- Rush, T.A.; Shrestha, H.K.; Gopalakrishnan Meena, M.; Spangler, M.K.; Ellis, J.C.; Labbé, J.L.; Abraham, P.E. Bioprospecting Trichoderma: A systematic roadmap to screen genomes and natural products for biocontrol applications. Front. Fungal Biol. 2021, 2, 716511. [Google Scholar] [CrossRef] [PubMed]
- Robertsen, H.L.; Musiol-Kroll, E.M. Actinomycete-derived polyketides as a source of antibiotics and lead structures for the development of new antimicrobial drugs. Antibiotics 2019, 8, 157. [Google Scholar] [CrossRef]
- Yin, Y.; Tan, Q.; Wu, J.; Chen, T.; Yang, W.; She, Z.; Wang, B. The polyketides with antimicrobial activities from a mangrove endophytic fungus Trichoderma lentiforme ML-P8-2. Mar. Drugs 2023, 21, 566. [Google Scholar] [CrossRef]
- Ranjan, A.; Rajput, V.D.; Prazdnova, E.V.; Gurnani, M.; Bhardwaj, P.; Sharma, S.; Sushkova, S.; Mandzhieva, S.S.; Minkina, T.; Sudan, J.; et al. Nature’s antimicrobial arsenal: Non-ribosomal peptides from PGPB for plant pathogen biocontrol. Fermentation 2023, 9, 597. [Google Scholar] [CrossRef]
- Gershenzon, J.; Dudareva, N. The function of terpene natural products in the natural world. Nat. Chem. Biol. 2007, 3, 408–414. [Google Scholar] [CrossRef]
- Tholl, D. Biosynthesis and biological functions of terpenoids in plants. Adv. Biochem. Eng. Biotechnol. 2015, 148, 63–106. [Google Scholar] [CrossRef]
- Agus, H.H. Terpene toxicity and oxidative stress. In Toxicology, 1st ed.; Patel, V.B., Preedy, V.R., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 33–42. [Google Scholar] [CrossRef]
- Robinson, S.L.; Christenson, J.K.; Wackett, L.P. Biosynthesis and chemical diversity of β-lactone natural products. Nat. Prod. Rep. 2019, 36, 458–475. [Google Scholar] [CrossRef]
- Nie, Q.; Sun, C.; Liu, S.; Gao, X. Exploring bioactive fungal RiPPs: Advances, challenges, and future prospects. Biochemistry 2024, 63, 2948–2957. [Google Scholar] [CrossRef]
- Rocha, F.; Nunes Calumby, R.J.; Svetaz, L.; Sortino, M.; Teixeira Ribeiro Vidigal, M.C.; Campos-Bermudez, V.A.; Rius, S.P. Effects of Larrea nitida nanodispersions on the growth inhibition of phytopathogens. AMB Express 2023, 13, 98. [Google Scholar] [CrossRef] [PubMed]
Strains | Extracts (µg/mL) | Amp | Amb | |
---|---|---|---|---|
CSE10BR1 | CSEAR12 | |||
Bacteria: | ||||
S. aureus (ATCC 25923) | 31.25 | 15.6 | 0.25 | - |
E. faecalis (ATCC 29212) | 250 | 125 | 0.25 | - |
E. coli (ATCC 25922) | 500 | 500 | 2 | - |
E. coli (ATCC 35218) | 500 | 500 | 32 | - |
Salmonella Typhimurium (ATCC 14028s) | 250 | 250 | 0.5 | - |
Fungi: | ||||
C. albicans (ATCC 10231) | 1000 | 1000 | - | 0.125 |
C. parapsilosis (ATCC 22019) | >1000 | 1000 | - | 0.125 |
C. tropicalis (ATCC 200956) | 1000 | 500 | - | 1 |
C. krusei (ATCC 6258) | 500 | 250 | - | 0.5 |
C. glabrata (ATCC 2950) | 1000 | >1000 | - | 1 |
C. albicans (CCC 191-13) | 1000 | 1000 | - | 0.5 |
C. albicans (CCC 132-15) | >1000 | 1000 | - | 0.25 |
Microorganism | Extracts (µg/mL) | |
---|---|---|
CSE10BR1 | CSEAR12 | |
E. coli | 40.65 | <15.6 |
E. faecalis | 262.4 | 28.23 |
C. albicans | 241.5 | 48.50 |
C. parapsilosis | 792.6 | 71.12 |
N° | m/z | Adduct | Metabolites 1 | Molecular Formula | Biological Activity | References 2 |
---|---|---|---|---|---|---|
1 | 165.0 | M + H | 6-(pent-1-enyl)pyran-2-one | C10 H12 O2 | Antifungal | [42,43] |
2 | 167.0 | M + H | 6-pentyl-2-pyrone | C10 H14 O2 | Antifungal, antibiofilm, antioxidant, plant growth promoter | [18,44,45,46] |
3 | 239.0 | M + H | 1-hydroxy-3-methyl-anthraquinone (Pachybasin) | C15 H10 O3 | Antimicrobial, antioxidant | [47,48] |
4 | 257.0 | M + H | 1,8-di-OH-3-methyl-anthraquinone | C15 H12 O4 | Antifungal | [43] |
5 | 271.1 | M + H | 6-methyl-1,3,8-trihydroxyanthraquinone | C15 H10 O5 | Antifungal, antioxidant | [43,48] |
6 | 282.0 | M + H | Harzianopyridone | C14 H19 N O5 | Antifungal | [43] |
7 | 283.0 | M + H | Koninginin E/B | C16 H26 O4 | Antifungal | [18] |
8 | 285.0 | M + H | Koninginin A | C16 H28 O4 | Antifungal | [18] |
9 | 317.2 | M + H | Trichodermaerin | C20 H28 O3 | Antitumor | [49] |
10 | 365.0 | M + H | Harzianic acid | C19 H27 N O6 | Antimicrobial, antibiofilm, plant growth promoter | [50,51,52] |
11 | 353.0 | M + H | Saturnispol C | C22 H24 O4 | - | [53] |
12 | 395.5 | M + H | Stigmasterol | C29 H48 O | Antifungal, antibacterial, antioxidant, antitumor, anti-inflammatory, antidiabetic, immunomodulatory, antiparasitic, and neuroprotective activities | [54] |
13 | 496.0 | M + H | Trichotetronine | C28 H32 O8 | - | [53] |
14 | 295.2 | M − H | Atrichodermone C | C15 H24 O2 | Cytotoxic, anti-inflammatory | [55] |
15 | 299.2 | M − H | Methylcordysinin A | C12 H20 N2 O3 | - | [56] |
16 | 397.3 | M − H | Ergosta-7,22-dien-3-ol | C28 H46 O | Antifungal, Antitumor | [57,58] |
17 | 413.4 | M − H | β-sitosterol | C29 H50 O | Antibacterial, antifungal, antioxidant, anti-inflammatory, antihypertensive | [18,59,60,61] |
18 | 489.3 | M − H | 3,5,9-trihydroxyergosta-7,22-dien-6-one | C28 H44 O4 | Antimicrobial | [62] |
19 | 935.6 | M − H | Aspereline A | C45 H80 N10 O11 | Antibacterial | [63] |
20 | 951.6 | M − H | Aspereline E | C45 H80 N10 O12 | Antibacterial | [63] |
21 | 977.6 | M − H | Aspereline H | C47 H82 N10 O12 | Antibacterial | [63] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calumby, R.J.N.; Santone, A.; Butassi, E.; Svetaz, L.A.; Melhem, M.d.S.C.; Rius, S.P.; Campos-Bermudez, V.A. Exploring the Bioactive Secondary Metabolites of Two Argentine Trichoderma afroharzianum Strains. J. Fungi 2025, 11, 457. https://doi.org/10.3390/jof11060457
Calumby RJN, Santone A, Butassi E, Svetaz LA, Melhem MdSC, Rius SP, Campos-Bermudez VA. Exploring the Bioactive Secondary Metabolites of Two Argentine Trichoderma afroharzianum Strains. Journal of Fungi. 2025; 11(6):457. https://doi.org/10.3390/jof11060457
Chicago/Turabian StyleCalumby, Rodrigo José Nunes, Antonella Santone, Estefanía Butassi, Laura Andrea Svetaz, Márcia de Souza Carvalho Melhem, Sebastián Pablo Rius, and Valeria Alina Campos-Bermudez. 2025. "Exploring the Bioactive Secondary Metabolites of Two Argentine Trichoderma afroharzianum Strains" Journal of Fungi 11, no. 6: 457. https://doi.org/10.3390/jof11060457
APA StyleCalumby, R. J. N., Santone, A., Butassi, E., Svetaz, L. A., Melhem, M. d. S. C., Rius, S. P., & Campos-Bermudez, V. A. (2025). Exploring the Bioactive Secondary Metabolites of Two Argentine Trichoderma afroharzianum Strains. Journal of Fungi, 11(6), 457. https://doi.org/10.3390/jof11060457