Population Structure and Genetic Diversity Among Shagya Arabian Horse Genealogical Lineages in Bulgaria Based on Microsatellite Genotyping
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal Welfare and Ethical Statement
2.2. Sample Collection
2.3. DNA Extraction and Fragment Analysis
2.4. Statistical Analyses
2.4.1. Genetic Diversity Within and Among Sire Lineages
2.4.2. Population Structure and Individuals Assignment
3. Results
3.1. Polymorphism of Microsatellite Markers
3.2. Levels of Heterozygosity and F-Statistics
3.3. Hardy–Weinberg Equilibrium (HWE)
3.4. Genetic Differentiation and Distance Among Shagya Arabian Sire Lines
3.5. Genetic Structure and Genetic Relationships Among Shagya Arabian Sire Lines
4. Discussion
4.1. Genetic Diversity Within and Among Shagya Arabian Sire Lineages
4.2. Genetic Relatedness and Genetic Differentiation Among Shagya Arabian Sire Lineages
4.3. Population Structure and Shagya Arabian Sire Line Assignment
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Druml, T.; Horna, M.; Grilz-Seger, G.; Dobretsberger, M.; Brem, G. Association of body shape with amount of Arabian genetic contribution in the Lipizzan horse. Arch. Anim. Breed. 2018, 61, 79–85. [Google Scholar] [CrossRef]
- Hendricks, B.L. International Encyclopedia of Horse Breeds; University of Oklahoma Press: Norman, OK, USA, 1995; p. 486. [Google Scholar]
- ISG-Shagya-Araber. 2024. Available online: http://isg-shagya-araber.de/index.php?entstehungsgeschichte-der-isg-2 (accessed on 17 June 2019).
- Petrov, A. Contribution to Horse-Breeding Study in Bulgaria—Kabiuk; Government Press: Sofia, Bulgaria, 1927. [Google Scholar]
- Sabeva, I. Origin and Development of Arabian and Shagya Breeds in Bulgaria; June Express: Shumen, Bulgaria, 2009; p. 246. [Google Scholar]
- Abdul-Muneer, P.M. Application of microsatellite markers in conservation genetics and fisheries management: Recent advances in population structure analysis and conservation strategies. Genet. Res. Int. 2014, 691759, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Putman, A.I.; Carbone, I. Challenges in analysis and interpretation of microsatellite data for population genetic studies. Ecol. Evol. 2014, 4, 4399–4428. [Google Scholar] [CrossRef]
- Vieira, M.L.C.; Santini, L.; Diniz, A.L.; Munhoz, C.D.F. Microsatellite markers: What they mean and why they are so useful. Genet. Mol. Biol. 2016, 39, 312–328. [Google Scholar] [CrossRef]
- Rasoarahona, R.; Wattanadilokchatkun, P.; Panthum, T.; Thong, T.; Singchat, W.; Ahmad, S.F.; Chaiyes, A.; Han, K.; Kraichak, E.; Muangmai, N.; et al. Optimizing microsatellite marker panels for genetic diversity and population genetic studies: An ant colony algorithm approach with polymorphic information content. Biology 2023, 12, 1280. [Google Scholar] [CrossRef] [PubMed]
- Aberle, K.S.; Distl, O. Domestication of the horse: Results based on microsatellite and mitochondrial DNA markers. Arch. Anim. Breed. 2004, 47, 517–535. [Google Scholar] [CrossRef]
- Balloux, F.; Lugon-Moulin, N. The estimation of population differentiation with microsatellite markers. Mol. Ecol. 2002, 11, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, E.P.; Dooley, J.J.; Splan, R.K.; Bradley, D.G. Microsatellite diversity, pedigree relatedness and the contributions of founder lineages to thoroughbred horses. Anim. Genet. 2001, 32, 360–364. [Google Scholar] [CrossRef]
- Wallner, B.; Piumi, F.; Brem, G.; Müller, M.; Achmann, R. Isolation of Y chromosome-specific microsatellites in the horse and cross-species amplification in the genus. Equus. J. Hered. 2004, 95, 158–164. [Google Scholar] [CrossRef]
- Katsoulakou, M.E.; Papachristou, D.; Kostaras, N.; Laliotis, G.; Bizelis, I.; Cothran, E.G.; Juras, R.; Koutsouli, P. Genetic variability of small horse populations from Greek islands. BSJ Agri. 2023, 6, 117–125. [Google Scholar] [CrossRef]
- Sanger, F.; Nicklen, S.; Coulson, A.R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 1977, 74, 5463–5467. [Google Scholar] [CrossRef] [PubMed]
- Ellegren, H. Microsatellites: Simple sequences with complex evolution. Nat. Rev. Genet. 2004, 5, 435–445. [Google Scholar] [CrossRef] [PubMed]
- Haasl, R.J.; Payseur, B.A. Multi-locus inference of population structure: A comparison between single nucleotide polymorphisms and microsatellites. Heredity 2011, 106, 158–171. [Google Scholar] [CrossRef]
- Ablondi, M.; Vasini, M.; Beretti, V.; Superchi, P.; Sabbioni, A. Exploring genetic diversity in an Italian Horse native breed to develop strategies for preservation and management. J. Anim. Breed. Genet. 2018, 135, 450–459. [Google Scholar] [CrossRef]
- Baena, M.M.; Gervásio, I.C.; Rocha, R.D.F.B.; Procópio, A.M.; De Moura, R.S.; Meirelles, S.L.C. Population structure and genetic diversity of Mangalarga Marchador horses. Livest. Sci. 2020, 239, 104109. [Google Scholar] [CrossRef]
- Ivanković, A.; Bittante, G.; Konjačić, M.; Kelava Ugarković, N.; Pećina, M.; Ramljak, J. Evaluation of the Conservation Status of the Croatian Posavina horse breed based on pedigree and microsatellite data. Animals 2021, 11, 2130. [Google Scholar] [CrossRef]
- Stasiol, L.D.; Perrotta, G.; Blasi, M.; Lisa, C. Genetic characterization of the Bardigiano horse using microsatellite markers. Ital. J. Anim. Sci. 2008, 7, 243–250. [Google Scholar] [CrossRef]
- Janova, E.; Futas, J.; Klumplerova, M.; Putnova, L.; Vrtkova, I.; Vyskocil, M.; Frolkova, P.; Horin, P. Genetic diversity and conservation in a small endangered horse population. J. Appl. Genet. 2013, 54, 285–292. [Google Scholar] [CrossRef]
- Seo, J.-H.; Park, K.-D.; Lee, H.-K.; Kong, H.-S. Genetic diversity of Halla horses using microsatellite markers. J. Anim. Sci. Technol. 2016, 58, 40. [Google Scholar] [CrossRef]
- Seyedabadi, H.R.; Sofla, S.S. Microsatellite analysis for parentage verification and genetic characterization of the Turkmen horse population. Kafkas Univ. Vet. Fak. Derg. 2017, 23, 467–471. [Google Scholar]
- Machmoum, M.; Boujenane, I.; Azelhak, R.; Badaoui, B.; Petit, D.; Piro, M. Genetic Diversity and population structure of Arabian horse populations using microsatellite markers. J. Equine Vet. Sci. 2020, 93, 103200. [Google Scholar] [CrossRef]
- Fornal, A.; Kowalska, K.; Zabek, T.; Piestrzynska-Kajtoch, A.; Musiał, A.D.; Ropka-Molik, K. Genetic diversity and population structure of Polish Konik horse based on individuals from all the male founder lines and microsatellite markers. Animals 2020, 10, 1569. [Google Scholar] [CrossRef]
- Nadeem, M.A.; Nawaz, M.A.; Shahid, M.Q.; Doğan, Y.; Comertpay, G.; Yıldız, M.; Hatipoğlu, R.; Ahmad, F.; Alsaleh, A.; Labhane, N.; et al. DNA molecular markers in plant breeding: Current status and recent advancements in genomic selection and genome editing. Biotechnol. Biotechnol. Equip. 2018, 32, 261–285. [Google Scholar] [CrossRef]
- Amiteye, S. Basic Concepts and methodologies of DNA marker systems in plant molecular breeding. Heliyon 2021, 7, e08093. [Google Scholar] [CrossRef]
- Alves, S.I.A.; Dantas, C.W.D.; Macedo, D.B.; Ramos, R.T.J. What are microsatellites and how to choose the best tool: A user-friendly review of SSR and 74 SSR mining tools. Front. Genet. 2024, 15, 1474611. [Google Scholar] [CrossRef]
- Khanshour, A.; Conant, E.; Juras, R.; Cothran, E.G. Microsatellite analysis of genetic diversity and population structure of Arabian horse populations. J. Hered. 2013, 104, 386–398. [Google Scholar] [CrossRef]
- Raguz, N.; Korabi, N.; Lukić, B.; Drzaic, I.; Vostry, L.; Moravcikova, N.; Curik, I.; Kasarda, R.; Cubric-Curik, V. Genomic characterization and population structure of Croatian Arabian horse. Livest. Sci. 2023, 277, 105343. [Google Scholar] [CrossRef]
- Binns, M.M.; Holmes, N.G.; Holliman, A.; Scott, A.M. Genetic diversity in Bulgarian Thoroughbred using microsatellite DNA markers. Br. Vet. J. 1995, 151, 9–15. [Google Scholar] [CrossRef]
- Bowling, A.T.; Eggleston-Stott, M.L.; Byrns, G.; Clark, R.S.; Dileanis, S.; Wictum, E. Validation of microsatellite markers for routine horse parentage testing. Anim. Genet. 1997, 28, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Irvin, Z.; Giffard, J.; Brandon, R.; Breen, M.; Bell, K. Equine dinucleotide repeat polymorphisms at loci ASB 21, 23, 25 and 37-43. Anim. Genet. 1998, 29, 67. [Google Scholar]
- Guerin, G.; Bertaud, M.; Amigues, Y. Characterization of seven new horse microsatellites: HMS1, HMS2, HMS3, HMS5, HMS6, HMS7 and HMS8. Anim. Genet. 1994, 25, 62. [Google Scholar]
- Ellegren, H.; Johansson, M.; Sandberg, K.; Andersson, L. Cloning of highly polymorphic microsatellites in the horse. Anim. Genet. 1992, 23, 133–142. [Google Scholar] [CrossRef]
- Marklund, S.; Ellegren, H.; Eriksson, S.; Sandberg, K.; Andersson, L. Parentage testing and linkage analysis in the horse using a set of highly polymorphic microsatellites. Anim. Genet. 1994, 25, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [PubMed]
- Nei, M.; Tajima, F.; Tateno, Y. Accuracy of estimated phylogenetic trees from molecular data. J. Mol. Evol. 1983, 19, 19153–19170. [Google Scholar] [CrossRef]
- Rodrigáñez, J.; Barragán, C.; Alves, E.; Gortázar, C.; Toro, M.A.; Silió, L. Genetic diversity and allelic richness in Spanish wild and domestic pig population estimated from microsatellite markers. Span. J. Agric. Res. 2008, 6, 107–115. [Google Scholar] [CrossRef]
- Kalinowski, S.T. HP-Rare: A computer program for performing rarefaction on measures of allelic diversity. Mol. Ecol. Notes 2005, 5, 187–189. [Google Scholar] [CrossRef]
- Weir, B.S.; Cockerham, C.C. Estimating F-statistics for the analysis of population structure. Evolution 1984, 38, 1358–1370. [Google Scholar] [CrossRef]
- Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980, 32, 314–331. [Google Scholar] [PubMed]
- Kalinowski, S.T.; Taper, M.L.; Marshall, T.C. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 2007, 16, 1099–1106. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef]
- Kopelman, N.M.; Mayzel, J.; Jakobsson, M.; Rosenberg, N.A.; Mayrose, I. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 2015, 15, 1179–1191. [Google Scholar] [CrossRef]
- Rosenberg, N.A. Distruct: A program for the graphical display of population structure. Mol. Ecol. Notes 2004, 4, 137–138. [Google Scholar] [CrossRef]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef]
- Puechmaille, S.J. The program structure does not reliably recover the correct population structure when sampling is uneven: Subsampling and new estimators alleviate the problem. Mol. Ecol. Resour. 2016, 16, 608–627. [Google Scholar] [CrossRef]
- Yarali, C.; Köseman, A.; Özşensoy, Y.; Şeker, İ.; Toprak, B.; Zengin, K. Parentage verification and genetic diversity of the Arabian and Thoroughbred horse populations in Türkiye using microsatellite analysis. Schweiz. Arch. Tierheilkd. 2023, 165, 716–725. [Google Scholar]
- Sargious, M.; El-Shawarby, R.; Abo-Salem, M.; EL-Shewy, E.; Ahmed, H.; Hagag, N.; Ramadan, S.I. Genetic diversity of Egyptian Arabian horses from El-Zahraa stud based on 14 TKY microsatellite markers. Slo. Vet. Res. 2021, 58, 2. [Google Scholar] [CrossRef]
- Chapman, J.R.; Nakagawa, S.; Coltman, D.W.; Slate, J.; Sheldon, B.C. A Quantitative review of heterozygosity–fitness correlations in animal populations. Mol. Ecol. 2009, 18, 2746–2765. [Google Scholar] [CrossRef]
- Barker, J.S.F. Conservation and management of genetic diversity: A domestic animal perspective. Can. J. Forest. Res. 2001, 31, 588–595. [Google Scholar] [CrossRef]
- Gasca-Pineda, J.; Cassaigne, I.; Alonso, R.A.; Eguiarte, L.E. Effective population size, genetic variation, and their relevance for conservation: The bighorn sheep in Tiburon Island and comparisons with managed artiodactyls. PLoS ONE 2013, 8, e78120. [Google Scholar] [CrossRef] [PubMed]
- Hong, E.P.; Park, J.W. Sample Size and Statistical Power Calculation in Genetic Association Studies. Genom. Inform. 2012, 10, 117. [Google Scholar] [CrossRef]
- Landguth, E.L.; Fedy, B.C.; Oyler-McCANCE, S.J.; Garey, A.L.; Emel, S.L.; Mumma, M.; Wagner, H.H.; Fortin, M.; Cushman, S.A. Effects of sample size, number of markers, and allelic richness on the detection of spatial genetic pattern. Mol. Ecol. Resour. 2012, 12, 276–284. [Google Scholar] [CrossRef]
- Meirmans, P.G. AMOVA-based clustering of population genetic data. J. Hered. 2012, 103, 744–750. [Google Scholar] [CrossRef]
- Valera, M.; Molina, A.; Gutierrez, J.P.; Gomez, J.; Goyache, F. Pedigree analysis in the Andalusian horse: Population structure, genetic variability and influence of the Carthusian strain. Livest. Prod. Sci. 2005, 95, 57–66. [Google Scholar] [CrossRef]
- Cosgrove, E.J.; Sadeghi, R.; Schlamp, F.; Holl, H.M.; Moradi-Shahrbabak, M.; Miraei-Ashtiani, S.R.; Abdalla, S.; Shykind, B.; Troedsson, M.; Stefaniuk-Szmukier, M.; et al. Genome Diversity and the Origin of the Arabian Horse. Sci. Rep. 2020, 10, 9702. [Google Scholar] [CrossRef]
- Hristov, P.; Radoslavov, G.; Mehandjyiski, I.; Salkova, D.; Yordanov, G. Genetic diversity and population structure among Arabian horse genealogical lineages in Bulgaria. Diversity 2024, 16, 281. [Google Scholar] [CrossRef]
- Głażewska, I.; Gralak, B.; Naczk, A.M.; Prusak, B. Genetic diversity and population structure of Polish Arabian horses assessed through breeding and microsatellite data. Anim. Sci. J. 2018, 89, 735–742. [Google Scholar] [CrossRef] [PubMed]
Locus | Chrom. | Motif | Primer Seq. 5′–3′ | FOR Primer Label | Amplicon Length (bp) | Ref. |
---|---|---|---|---|---|---|
AHT4 | 24q14 | (AC)nAT(AC)n | F: AACCGCCTGAGCAAGGAAGT R: CCCAGAGAGTTTACCCT | NED | 144–164 | [32] |
AHT5 | 8 | (GT)n | F: ACGGACACATCCCTGCCTGC R: GCAGGCTAAGGAGGCTCAGC | VIC | 126–144 | [32] |
ASB2 | 15q21.3-q23 | (GT)n | F: CCACTAAGTGTCGTTTCAGAAGG R: CACAACTGAGTTCTCTGATAGG | VIC | 216–250 | [33] |
ASB17 | 2p14-p15 | (AC)n | F: ACCATTCAGGATCTCCACCG R: GAGGGCGGTACCTTTGTACC | FAM | 87–129 | [33] |
ASB23 | 3q22 | (TG)n | F: GCAAGGATGAAGAGGGCAGC R: CTGGTGGGTTAGATGAGAAGTC | NED | 175–211 | [34] |
HMS1 | 15 | (TG)n | F: CATCACTCTTCATGTCTGCTTGG R: TTGACATAAATGCTTATCCTATGGC | FAM | 170–186 | [35] |
HMS2 | 10 | (CA)n(TC)2 | F: CTTGCAGTCGAATGTGTATTAAATG R: ACGGTGGCAACTGCCAAGGAAG | VIC | 222–248 | [35] |
HMS3 | 9 | (TG)2(CA)2TC(CA)n (TG)2(CA)2TC(CA)nGA(CA)5 | F: CCATCCTCACTTTTTCACTTTGTT R: CCAACTCTTTGTCACATAACAAGA | FAM | 148–170 | [35] |
HMS6 | 4 | (GT)n | F: GAAGCTGCCAGTATTCAACCATTG R: CTCCATCTTGTGAAGTGTAACTCA | VIC | 151–169 | [35] |
HMS7 | 1q25 | (AC)2(CA)n | F: TGTTGTTGAAACATACCTTGACTGT R: CAGGAAACTCATGTTGATACCATC | NED | 165–185 | [35] |
HTG4 | 9 | (TG)nAT(AG)5AAG(GA)5 ACAG(AGGG)3 | F: CTATCTCAGTCTTGATTGCAGGAC R: CTCCCTCCCTCCCTCTGTTCTC | FAM | 127–139 | [36] |
HTG6 | 15q26-q27 | (TG)n | F: GTTCACTGAATGTCAAATTCTGCT R: CCTGCTTGGAGGCTGTGATAAGAT | FAM | 84–102 | [36] |
HTG7 | 4 | (GT)n | F: CCTGAAGCAGAACATCCCTCCTTG R: ATAAAGTGTCTGGGCAGAGCTGCT | NED | 118–128 | [37] |
HTG10 | 21 | (TG)n TATC(TG)n | F: TTTTTATTCTGATCTGTCACATTT R: CAATTCCCGCCCCACCCCCGGCA | VIC | 95–115 | [37] |
VHL20 | 30 | (TG)n | F: CAAGTCCTCTTACTTGAAGACTAG R: AACTCAGGGAGAATCTTCCTCAG | NED | 87–105 | [36] |
Locus | Na | Ne | PIC | Ho | He | I | FST | F (Null) |
---|---|---|---|---|---|---|---|---|
AHT4 | 5.17 | 3.73 | 0.77 | 0.78 | 0.72 | 1.43 | −0.084 | 0.0086 |
ASB2 | 7.50 | 5.09 | 0.82 | 0.86 | 0.80 | 1.77 | −0.077 | −0.0159 |
HMS2 | 5.00 | 2.18 | 0.54 | 0.51 | 0.49 | 0.99 | −0.041 | 0.0237 |
HMS7 | 4.67 | 3.08 | 0.69 | 0.79 | 0.66 | 1.25 | −0.184 | −0.0354 |
HTG6 | 3.00 | 2.29 | 0.51 | 0.61 | 0.55 | 0.93 | −0.102 | 0.0010 |
AHT5 | 3.67 | 2.30 | 0.54 | 0.64 | 0.55 | 0.95 | −0.157 | −0.0396 |
ASB23 | 4.50 | 2.82 | 0.65 | 0.63 | 0.59 | 1.13 | −0.078 | 0.0352 |
HMS3 | 5.33 | 2.81 | 0.68 | 0.74 | 0.64 | 1.27 | −0.156 | −0.0199 |
HTG10 | 4.83 | 3.57 | 0.74 | 0.87 | 0.71 | 1.38 | −0.222 | −0.0473 |
HTG7 | 2.00 | 1.45 | 0.30 | 0.29 | 0.27 | 0.44 | −0.081 | 0.0091 |
ASB17 | 5.00 | 3.18 | 0.67 | 0.76 | 0.68 | 1.32 | −0.112 | −0.0287 |
HMS1 | 4.17 | 2.73 | 0.59 | 0.71 | 0.62 | 1.11 | −0.133 | −0.0118 |
HMS6 | 3.50 | 2.30 | 0.51 | 0.61 | 0.56 | 0.95 | −0.097 | −0.0230 |
HTG4 | 3.83 | 2.68 | 0.61 | 0.72 | 0.63 | 1.10 | −0.140 | 0.0001 |
VHL20 | 6.00 | 4.48 | 0.80 | 0.84 | 0.77 | 1.60 | −0.081 | −0.0039 |
Mean | 4.54 | 2.98 | 0.63 | 0.69 | 0.62 | 1.17 | −0.116 | −0.0098 |
SE | 0.15 | 0.11 | 0.14 | 0.02 | 0.02 | 0.04 | 0.05 | 0.02 |
Breed | Acronym | N | Num. of Alleles | Na | Ne | Ho | He | AR | FIS |
---|---|---|---|---|---|---|---|---|---|
Dahoman | DAH | 25 | 70 | 4.67 | 3.04 | 0.68 | 0.61 | 3.92 | −0.120 |
Gazal | GAZ | 24 | 67 | 4.47 | 2.97 | 0.70 | 0.63 | 3.84 | −0.113 |
Ibrahim | IBR | 37 | 77 | 5.13 | 3.09 | 0.69 | 0.64 | 3.91 | −0.076 |
Kuhailan Zaid | KUH ZAID | 21 | 67 | 4.46 | 2.87 | 0.65 | 0.59 | 3.76 | −0.101 |
O`Bajan | O’BAJ | 25 | 73 | 4.87 | 3.13 | 0.69 | 0.65 | 4.01 | −0.066 |
Shagya | SHA | 8 | 55 | 3.67 | 2.76 | 0.71 | 0.57 | 3.63 | −0.233 |
Mean | 4.54 | 2.98 | 0.69 | 0.62 | 3.84 | −0.202 | |||
SE | 0.15 | 0.11 | 0.02 | 0.02 | 0.13 | 0.22 |
Locus | FIS | FIT | FST |
---|---|---|---|
AHT4 | −0.076 | 0.024 | 0.093 |
ASB2 | −0.077 | −0.032 | 0.042 |
HMS2 | −0.048 | 0.029 | 0.073 |
HMS7 | −0.183 | −0.080 | 0.087 |
HTG6 | −0.103 | −0.033 | 0.064 |
AHT5 | −0.158 | −0.092 | 0.057 |
ASB23 | −0.060 | 0.072 | 0.124 |
HMS3 | −0.158 | −0.028 | 0.112 |
HTG10 | −0.213 | −0.122 | 0.075 |
HTG7 | −0.051 | 0.068 | 0.113 |
ASB17 | −0.113 | −0.061 | 0.047 |
HMS1 | −0.139 | −0.044 | 0.083 |
HMS6 | −0.087 | −0.044 | 0.040 |
HTG4 | −0.148 | −0.047 | 0.088 |
VHL20 | −0.082 | −0.021 | 0.057 |
Mean | −0.113 | −0.027 | 0.077 |
SE | 0.013 | 0.014 | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yordanov, G.; Yordanov, T.; Mehandjyiski, I.; Radoslavov, G.; Salkova, D.; Hristov, P. Population Structure and Genetic Diversity Among Shagya Arabian Horse Genealogical Lineages in Bulgaria Based on Microsatellite Genotyping. Vet. Sci. 2025, 12, 776. https://doi.org/10.3390/vetsci12080776
Yordanov G, Yordanov T, Mehandjyiski I, Radoslavov G, Salkova D, Hristov P. Population Structure and Genetic Diversity Among Shagya Arabian Horse Genealogical Lineages in Bulgaria Based on Microsatellite Genotyping. Veterinary Sciences. 2025; 12(8):776. https://doi.org/10.3390/vetsci12080776
Chicago/Turabian StyleYordanov, Georgi, Teodor Yordanov, Ivan Mehandjyiski, Georgi Radoslavov, Delka Salkova, and Peter Hristov. 2025. "Population Structure and Genetic Diversity Among Shagya Arabian Horse Genealogical Lineages in Bulgaria Based on Microsatellite Genotyping" Veterinary Sciences 12, no. 8: 776. https://doi.org/10.3390/vetsci12080776
APA StyleYordanov, G., Yordanov, T., Mehandjyiski, I., Radoslavov, G., Salkova, D., & Hristov, P. (2025). Population Structure and Genetic Diversity Among Shagya Arabian Horse Genealogical Lineages in Bulgaria Based on Microsatellite Genotyping. Veterinary Sciences, 12(8), 776. https://doi.org/10.3390/vetsci12080776