How Does Epidemic Prevention Training for Pig Breeding Affect Cleaning and Disinfection Procedures Adoption? Evidence from Chinese Pig Farms
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Theoretical Analysis and Research Assumptions
2.2. Data Collection
2.3. Variable Selection
2.3.1. Dependent Variables
2.3.2. Independent Variable
2.3.3. Mediation Variable
2.3.4. Control Variables
2.4. Research Methods and Models
2.4.1. Logit Model
2.4.2. Propensity Score Matching Method (PSM Model)
2.4.3. Mediation Effect Test Model of Bootstrap Method
3. Results
3.1. Descriptive Analysis
3.2. Binary Logit Model Estimation
3.3. Estimation Results of PSM
3.4. Analysis of Mediating Effects
3.5. Heterogeneity Analysis
4. Discussion
5. Conclusions and Policy Recommendations
5.1. Conclusions
5.2. Policy Recommendations
6. Limitations and Future Research Direction
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sánchez-Vizcaíno, J.M.; Mur, L.; Martínez-López, B. African Swine Fever: An Epidemiological Update. Transbound. Emerg. Dis. 2012, 59, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Costard, S.; Mur, L.; Lubroth, J.; Sanchez-Vizcaino, J.M.; Pfeiffer, D.U. Epidemiology of African Swine Fever Virus. Virus Res. 2013, 173, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Nguyen-thi, T.; Pham-thi-ngoc, L.; Nguyen-ngoc, Q.; Dang-xuan, S. An Assessment of the Economic Impacts of the 2019 African Swine Fever Outbreaks in Vietnam. Front. Vet. Sci. 2021, 8, 686038. [Google Scholar] [CrossRef] [PubMed]
- Ebwanga, E.J.; Ghogomu, S.M.; Paeshuyse, J. Molecular Characterization of ASFV and Differential Diagnosis of Erysipelothrix in ASFV-Infected Pigs in Pig Production Regions in Cameroon. Vet. Sci. 2022, 9, 440. [Google Scholar] [CrossRef]
- Lamberga, K.; Oļševskis, E.; Seržants, M.; Bērziņš, A.; Viltrop, A.; Depner, K. African Swine Fever in Two Large Commercial Pig Farms in LATVIA—Estimation of the High Risk Period and Virus Spread within the Farm. Vet. Sci. 2020, 7, 105. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Sarkar, A.; Qian, L.; Shuxia, Z.; Rahman, A.; Yongfeng, T. The Impact of the Epidemic Experience on the Recovery of Production of Pig Farmers after the Outbreak-Evidence from the Impact of African Swine Fever (ASF) in Chinese Pig Farming. Prev. Vet. Med. 2022, 199, 105568. [Google Scholar] [CrossRef]
- Tian, X.; von Cramon-Taubadel, S. Economic Consequences of African Swine Fever. Nat. Food 2020, 1, 196–197. [Google Scholar] [CrossRef]
- Ito, S.; Bosch, J.; Martínez-Avilés, M.; Sánchez-Vizcaíno, J.M. The Evolution of African Swine Fever in China: A Global Threat? Front. Vet. Sci. 2022, 9, 828498. [Google Scholar] [CrossRef] [PubMed]
- Ma, M.; Wang, H.H.; Hua, Y.; Qin, F.; Yang, J. African Swine Fever in China: Impacts, Responses, and Policy Implications. Food Policy 2021, 102, 102065. [Google Scholar] [CrossRef]
- Mutua, F.; Dione, M. The Context of Application of Biosecurity for Control of African Swine Fever in Smallholder Pig Systems: Current Gaps and Recommendations. Front. Vet. Sci. 2021, 8, 689811. [Google Scholar] [CrossRef]
- Penrith, M.L. Current Status of African Swine Fever. CABI Agric. Biosci. 2020, 1, 11. [Google Scholar] [CrossRef]
- Domenech, J.; Lubroth, J.; Eddi, C.; Martin, V.; Roger, F. Regional and International Approaches on Prevention and Control of Animal Transboundary and Emerging Diseases. Ann. N. Y. Acad. Sci. 2006, 1081, 90–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Lorenzi, G.; Borella, L.; Alborali, G.L.; Prodanov-Radulović, J.; Štukelj, M.; Bellini, S. African Swine Fever: A Review of Cleaning and Disinfection Procedures in Commercial Pig Holdings. Res. Vet. Sci. 2020, 132, 262–267. [Google Scholar] [CrossRef] [PubMed]
- Gosling, R. A Review of Cleaning and Disinfection Studies in Farming Environments. Farm Pract. 2018, 23, 232–237. [Google Scholar] [CrossRef]
- Kousta, M.; Mataragas, M.; Skandamis, P.; Drosinos, E.H. Prevalence and Sources of Cheese Contamination with Pathogens at Farm and Processing Levels. Food Control 2010, 21, 805–815. [Google Scholar] [CrossRef]
- Ford, W.B. Disinfection Procedures for Personnel and Vehicles Entering and Leaving Contaminated Premises. Rev. Sci. Tech. 1995, 14, 393–401. [Google Scholar] [CrossRef]
- Pletinckx, L.J.; Dewulf, J.; De Bleecker, Y.; Rasschaert, G.; Goddeeris, B.M.; De Man, I. Effect of a Disinfection Strategy on the Methicillin-resistant Staphylococcus Aureus CC398 Prevalence of Sows, Their Piglets and the Barn Environment. J. Appl. Microbiol. 2013, 114, 1634–1641. [Google Scholar] [CrossRef]
- Štukelj, M.; Prodanov-Radulović, J.; Bellini, S. Cleaning and Disinfection in the Domestic Pig Sector. In Understanding and Combatting African Swine Fever: A European Perspective; Wageningen Academic Publishers: Wageningen, The Netherlands, 2021; pp. 133–152. [Google Scholar]
- Luyckx, K.; Millet, S.; Van Weyenberg, S.; Herman, L.; Heyndrickx, M.; Dewulf, J.; De Reu, K. A 10-Day Vacancy Period after Cleaning and Disinfection Has No Effect on the Bacterial Load in Pig Nursery Units. BMC Vet. Res. 2016, 12, 236. [Google Scholar] [CrossRef] [Green Version]
- Dione, M.M.; Dohoo, I.; Ndiwa, N.; Poole, J.; Ouma, E.; Amia, W.C.; Wieland, B. Impact of Participatory Training of Smallholder Pig Farmers on Knowledge, Attitudes and Practices Regarding Biosecurity for the Control of African Swine Fever in Uganda. Transbound. Emerg. Dis. 2020, 67, 2482–2493. [Google Scholar] [CrossRef] [PubMed]
- Young, J.R.; Evans-Kocinski, S.; Bush, R.D.; Windsor, P.A. Improving Smallholder Farmer Biosecurity in the Mekong Region Through Change Management. Transbound. Emerg. Dis. 2015, 62, 491–504. [Google Scholar] [CrossRef]
- Cui, B.; Liu, Z.P. Determinants of Knowledge and Biosecurity Preventive Behaviors for Highly Pathogenic Avian Influenza Risk Among Chinese Poultry Farmers. Avian Dis. 2016, 60, 480–486. [Google Scholar] [CrossRef]
- Muriithi, B.; Bundi, M.; Galata, A.; Miringu, G.; Wandera, E.; Kathiiko, C.; Odoyo, E.; Kamemba, M.; Amukoye, E.; Huqa, S.; et al. Biosafety and Biosecurity Capacity Building: Insights from Implementation of the NUITM-KEMRI Biosafety Training Model. Trop. Med. Health 2018, 46, 30. [Google Scholar] [CrossRef]
- Dione, M.; Ouma, E.; Opio, F.; Kawuma, B.; Pezo, D. Qualitative Analysis of the Risks and Practices Associated with the Spread of African Swine Fever within the Smallholder Pig Value Chains in Uganda. Prev. Vet. Med. 2016, 135, 102–112. [Google Scholar] [CrossRef]
- Kouam, M.K.; Jacouba, M.; Moussala, J.O. Management and Biosecurity Practices on Pig Farms in the Western Highlands of Cameroon (Central Africa). Vet. Med. Sci. 2020, 6, 82–91. [Google Scholar] [CrossRef]
- Ribbens, S.; Dewulf, J.; Koenen, F.; Mintiens, K.; De Sadeleer, L.; de Kruif, A.; Maes, D. A Survey on Biosecurity and Management Practices in Belgian Pig Herds. Prev. Vet. Med. 2008, 83, 228–241. [Google Scholar] [CrossRef]
- Kouam, M.K.; Moussala, J.O. Assessment of Factors Influencing the Implementation of Biosecurity Measures on Pig Farms in the Western Highlands of Cameroon (Central Africa). Vet. Med. Int. 2018, 2018, 9173646. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Niemi, J.K.; Sahlström, L.; Kyyrö, J.; Lyytikäinen, T.; Sinisalo, A. Farm Characteristics and Perceptions Regarding Costs Contribute to the Adoption of Biosecurity in Finnish Pig and Cattle Farms. Rev. Agric. Food Environ. Stud. 2016, 97, 215–223. [Google Scholar] [CrossRef] [Green Version]
- Schultz, T.W. Investment in Human Capital. Am. Econ. Rev. 1961, 51, 1–17. [Google Scholar]
- Arokiasamy, L.; Fujikawa, T.; Piaralal, S.K.; Arumugam, T. A Systematic Review of Literature on Human Capital Investment and Its Significance for Human Resource Development. Int. J. Syst. Assur. Eng. Manag. 2023. [Google Scholar] [CrossRef]
- Cui, B.; Liu, Z.P.; Ke, J.; Tian, Y. Determinants of Highly Pathogenic Avian Influenza Outbreak Information Sources, Risk Perception and Adoption of Biosecurity Behaviors among Poultry Farmers in China. Prev. Vet. Med. 2019, 167, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Bora, M.; Bora, D.P.; Manu, M.; Barman, N.N.; Dutta, L.J.; Kumar, P.P.; Poovathikkal, S.; Suresh, K.P.; Nimmanapalli, R. Assessment of Risk Factors of African Swine Fever in India: Perspectives on Future Outbreaks and Control Strategies. Pathogens 2020, 9, 1044. [Google Scholar] [CrossRef] [PubMed]
- Valeeva, N.I.; van Asseldonk, M.A.P.M.; Backus, G.B.C. Perceived Risk and Strategy Efficacy as Motivators of Risk Management Strategy Adoption to Prevent Animal Diseases in Pig Farming. Prev. Vet. Med. 2011, 102, 284–295. [Google Scholar] [CrossRef]
- Chenais, E.; Boqvist, S.; Sternberg-Lewerin, S.; Emanuelson, U.; Ouma, E.; Dione, M.; Aliro, T.; Crafoord, F.; Masembe, C.; Ståhl, K. Knowledge, Attitudes and Practices Related to African Swine Fever Within Smallholder Pig Production in Northern Uganda. Transbound. Emerg. Dis. 2017, 64, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Omitoyin, S.A.; Osakuade, K.D. Awareness and Constraints of Aquaculture Biosecurity Among Fish Farmers in Ekiti State, Nigeria. Aquac. Stud. 2021, 21, 83–92. [Google Scholar] [CrossRef] [PubMed]
- Toma, L.; Stott, A.W.; Heffernan, C.; Ringrose, S.; Gunn, G.J. Determinants of Biosecurity Behaviour of British Cattle and Sheep Farmers-A Behavioural Economics Analysis. Prev. Vet. Med. 2013, 108, 321–333. [Google Scholar] [CrossRef] [PubMed]
- Simon-Grifé, M.; Martín-Valls, G.E.; Vilar-Ares, M.J.; García-Bocanegra, I.; Martín, M.; Mateu, E.; Casal, J. Biosecurity Practices in Spanish Pig Herds: Perceptions of Farmers and Veterinarians of the Most Important Biosecurity Measures. Prev. Vet. Med. 2013, 110, 223–231. [Google Scholar] [CrossRef]
- Xu, B.; Zhou, L.; Qiu, C.; Li, Y.; Zhang, W. What Determines Pig Farmers’ Epidemic Coping Behaviors: A Qualitative Analysis of Endemically Infected Areas in Relation to African Swine Fever. Vet. Sci. 2021, 8, 266. [Google Scholar] [CrossRef]
- Nantima, N.; Davies, J.; Dione, M.; Ocaido, M.; Okoth, E.; Mugisha, A.; Bishop, R. Enhancing Knowledge and Awareness of Biosecurity Practices for Control of African Swine Fever among Smallholder Pig Farmers in Four Districts along the Kenya–Uganda Border. Trop. Anim. Health Prod. 2016, 48, 727–734. [Google Scholar] [CrossRef]
- Tanquilut, N.C.; Espaldon, M.V.O.; Eslava, D.F.; Ancog, R.C.; Medina, C.D.R.; Paraso, M.G.V.; Domingo, R.D. Biosecurity Assessment of Layer Farms in Central Luzon, Philippines. Prev. Vet. Med. 2020, 175, 104865. [Google Scholar] [CrossRef]
- Schemann, K.; Taylor, M.R.; Toribio, J.A.L.M.L.; Dhand, N.K. Horse Owners’ Biosecurity Practices Following the First Equine Influenza Outbreak in Australia. Prev. Vet. Med. 2011, 102, 304–314. [Google Scholar] [CrossRef] [Green Version]
- Cooper, T.L.; Smith, D.; Gonzales, M.J.C.; Maghanay, M.T.; Sanderson, S.; Cornejo, M.R.J.C.; Pineda, L.L.; Sagun, R.A.A.; Salvacion, O.P. Beyond Numbers: Determining the Socioeconomic and Livelihood Impacts of African Swine Fever and Its Control in the Philippines. Front. Vet. Sci. 2022, 8, 734236. [Google Scholar] [CrossRef]
- Preacher, K.J.; Rucker, D.D.; Hayes, A.F. Addressing Moderated Mediation Hypotheses: Theory, Methods, and Prescriptions. Multivar. Behav. Res. 2007, 42, 185–227. [Google Scholar] [CrossRef] [PubMed]
- Baron, R.M.; Kenny, D.A. The Moderator-Mediator Variable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations. J. Pers. Soc. Psychol. 1986, 51, 1173. [Google Scholar] [CrossRef] [PubMed]
- Dixon, L.K.; Sun, H.; Roberts, H. African Swine Fever. Antivir. Res. 2019, 165, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Geering, W.A.; Penrith, M.L.; Nyakahuma, D. Manual on Procedures for Disease Eradication by Stamping Out; FAO Health Manual; Food and Agriculture Organization: Rome, Italy, 2001; Volume 12, ISBN 9251045852. [Google Scholar]
- Juszkiewicz, M.; Walczak, M.; Woźniakowski, G. Characteristics of Selected Active Substances Used in Disinfectants and Their Virucidal Activity against ASFV. J. Vet. Res. 2019, 63, 17–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dione, M.M.; Ouma, E.A.; Roesel, K.; Kungu, J.; Lule, P.; Pezo, D. Participatory Assessment of Animal Health and Husbandry Practices in Smallholder Pig Production Systems in Three High Poverty Districts in Uganda. Prev. Vet. Med. 2014, 117, 565–576. [Google Scholar] [CrossRef]
- Randrianantoandro, T.N.; Kono, H.; Kubota, S. Knowledge and Behavior in an Animal Disease Outbreak–Evidence from the Item Count Technique in a Case of African Swine Fever in Madagascar. Prev. Vet. Med. 2015, 118, 483–487. [Google Scholar] [CrossRef]
- Costard, S.; Zagmutt, F.J.; Porphyre, T.; Pfeiffer, D.U. Small-Scale Pig Farmers’ Behavior, Silent Release of African Swine Fever Virus and Consequences for Disease Spread. Sci. Rep. 2015, 5, 17074. [Google Scholar] [CrossRef] [Green Version]
- Moskalenko, L.; Schulz, K.; Mõtus, K.; Viltrop, A. Pigkeepers’ Knowledge and Perceptions Regarding African Swine Fever and the Control Measures in Estonia. Prev. Vet. Med. 2022, 208, 105717. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Li, C.S.; Liu, C.C.; Chen, K.Z. Prevention of Losses for Hog Farmers in China: Insurance, on-Farm Biosecurity Practices, and Vaccination. Res. Vet. Sci. 2013, 95, 819–824. [Google Scholar] [CrossRef]
Variables | Variable Measure | Mean | S.D. |
---|---|---|---|
Irregular C&D procedures | Do you require incoming personnel and vehicles to be cleaned and disinfected? (0 = no, 1 = yes) | 0.766 | 0.424 |
Regular C&D procedures | Do you regularly clean and disinfect the pig farm in compliance with the regulations? (0 = no, 1 = yes) | 0.718 | 0.451 |
Comprehensive C&D procedures | Do you take both regular and irregular disinfection measures? (0 = no, 1 = yes) | 0.538 | 0.499 |
Epidemic prevention training | Did you participate in the epidemic prevention training this year? (0 = no, 1 = yes) | 0.637 | 0.482 |
Gender | Gender of respondents (Female = 0; Male = 1) | 0.757 | 0.430 |
Age | Age of respondents (year) | 48.171 | 9.942 |
Education | Primary school and below = 1; Junior high school = 2; Senior high school/technical secondary school = 3; Junior college = 4; Undergraduate and above = 5 | 1.778 | 0.832 |
Family labor | How many people are involved in pig farming in the household? | 1.646 | 0.769 |
Breeding year | 5 years and below =1; 6–10 = 2; 11–15 = 3; 16–20 = 4; 21 and above = 5 | 2.919 | 1.381 |
Breeding scale | 30–99 = 1; 100–499 = 2; 500–999 = 3; 1000–1999 = 4; 2000 and above = 5 | 1.492 | 0.786 |
Proportion of breeding income | 30–49% = 1; 50–74% = 2; 75% and above = 3 | 2.324 | 0.766 |
Breeding organization | Are you a member of a breeding organization? (such as cooperative, company) (0 = no, 1 = yes) | 0.105 | 0.307 |
Breeding insurance | Do you buy breeding insurance? (0 = no, 1 = yes) | 0.727 | 0.446 |
Government inspections | Does the government conduct inspections of your farm? (0 = no, 1 = yes) | 0.628 | 0.484 |
Biosecurity cognition | Your level of knowledge of the contents or requirements of farm biosecurity management (1–5 increments) | 3.240 | 1.447 |
Variables | Classification | Sample Size | Proportion (%) | Variables | Classification | Sample Size | Proportion (%) |
---|---|---|---|---|---|---|---|
Gender | Male Female | 252 81 | 75.68 24.32 | Government inspections | Yes No | 209 124 | 62.76 37.24 |
Age | Under 30 years old 30–39 years old 40–49 years old 50–59 years old Over 59 years old | 20 46 109 131 27 | 6.01 13.81 32.73 39.34 8.11 | Breeding scale | 30–99 100–499 500–999 1000–1999 2000 and above | 205 111 4 7 6 | 61.56 33.33 1.20 2.10 1.80 |
Education | Primary school and below Junior high school Senior high school/technical secondary school Junior college Undergraduate and above | 143 136 41 11 2 | 42.94 40.84 12.31 3.30 0.60 | Breeding year | 5 years and below 6–10 11–15 16–20 21 and above | 71 59 88 56 59 | 21.32 17.72 26.43 16.82 17.72 |
Proportion of breeding income | 30–49% 50–74% 75% and above | 61 103 169 | 18.32 30.93 50.75 | Family labor | 1 2 3 and above | 161 141 31 | 48.35 42.34 9.31 |
Breeding organization | Yes No | 35 298 | 10.51 89.49 | Breeding insurance | Yes No | 242 91 | 72.67 27.33 |
Variables | Irregular C&D Procedures | Regular C&D Procedures | Comprehensive C&D Procedures | |||
---|---|---|---|---|---|---|
Coefficient | Dy/dx | Coefficient | Dy/dx | Coefficient | Dy/dx | |
Epidemic prevention training | 0.788 *** (0.298) | 0.133 *** (0.049) | 0.754 ** (0.314) | 0.115 ** (0.046) | 0.949 *** (0.280) | 0.188 *** (0.052) |
Gender | 0.0680 (0.321) | 0.012 (0.054) | 0.378 (0.330) | 0.057 (0.050) | 0.555 * (0.304) | 0.110 * (0.059) |
Age | −0.0327 ** (0.0161) | −0.006 ** (0.003) | 0.027 (0.0169) | 0.004 (0.003) | −0.009 (0.015) | −0.00186 (0.003) |
Education | −0.238 (0.185) | −0.040 (0.031) | 0.226 (0.217) | 0.034 (0.033) | −0.087 (0.177) | −0.0172 (0.035) |
Family labor | −0.0373 (0.183) | −0.006 (0.031) | 0.338 (0.224) | 0.051 (0.034) | 0.281 (0.176) | 0.0558 (0.034) |
Breeding year | 0.144 (0.107) | 0.024 (0.018) | 0.261 ** (0.116) | 0.040 ** (0.017) | 0.232 ** (0.010) | 0.0460 ** (0.019) |
Breeding scale | 0.328 (0.221) | 0.056 (0.037) | 0.859 *** (0.320) | 0.131 *** (0.047) | 0.547 ** (0.220) | 0.108 ** (0.042) |
Proportion of breeding income | −0.285 (0.201) | −0.048 (0.034) | 0.018 (0.202) | 0.003 (0.031) | −0.206 (0.180) | −0.0408 (0.035) |
Organization | 0.0994 (0.501) | 0.017 (0.085) | 1.946 * (1.068) | 0.296 * (0.161) | 0.575 (0.484) | 0.114 (0.095) |
Insurance | −0.087 (0.321) | −0.015 (0.054) | −0.218 (0.334) | −0.033 (0.051) | 0.031 (0.300) | 0.006 (0.060) |
Government inspections | 0.034 (0.300) | 0.006 (0.051) | 1.236 *** (0.305) | 0.188 *** (0.042) | 0.829 *** (0.271) | 0.165 *** (0.051) |
_cons | 2.560 ** (1.044) | −4.55 *** (1.190) | −2.312 ** (0.994) | |||
N | 333 | 333 | 333 | |||
Chi2 | 18.62 * | 87.67 *** | 73.03 *** | |||
Pseudo R2 | 0.051 | 0.221 | 0.159 |
Matching Algorithms | Item | Epidemic Prevention Training | |
---|---|---|---|
Unmatched | Matched | ||
Nearest neighbor matching (1:2) | Pseudo-R2 | 0.176 | 0.048 |
LR statistics | 76.90 | 27.75 | |
MeanBias | 31.8 | 9.8 | |
Radius matching (caliper 0.02) | Pseudo-R2 | 0.176 | 0.034 |
LR Statistics | 76.90 | 19.56 | |
MeanBias | 31.8 | 8.4 | |
Kernel-based matching (bandwidth 0.06) | Pseudo-R2 | 0.176 | 0.037 |
LR Statistics | 76.90 | 21.38 | |
MeanBias | 31.8 | 9.2 |
Matching Algorithms | Irregular C&D Procedures | Regular C&D Procedures | Comprehensive C&D Procedures | |||
---|---|---|---|---|---|---|
ATT | T-value | ATT | T-value | ATT | T-value | |
Nearest neighbor matching (1:2) | 0.183 ** | 2.36 | 0.206 ** | 2.58 | 0.278 *** | 3.48 |
(0.089) | (0.091) | (0.091) | ||||
Radius matching (caliper 0.02) | 0.172 ** | 2.35 | 0.180 ** | 2.36 | 0.269 *** | 3.55 |
(0.075) | (0.079) | (0.083) | ||||
Kernel-based matching (bandwidth 0.06) | 0.176 ** | 2.48 | 0.175 ** | 2.36 | 0.262 *** | 3.54 |
(0.076) | (0.074) | (0.074) |
Irregular C&D Procedures | Regular C&D Procedures | Comprehensive C&D Procedures | |||||||
---|---|---|---|---|---|---|---|---|---|
Coefficient | 95% Confidence Interval | Coefficient | 95% Confidence Interval | Coefficient | 95% Confidence Interval | ||||
Lower-Bound | Upper-Bound | Lower-Bound | Upper-Bound | Lower-Bound | Upper-Bound | ||||
Direct effects | 0.138 ** | 0.025 | 0.251 | 0.096 * | −0.002 | 0.194 | 0.173 *** | 0.054 | 0.293 |
(0.058) | (0.054) | (0.061) | |||||||
Indirect effects | 0.004 | −0.013 | 0.022 | 0.030 ** | 0.003 | 0.057 | 0.029 ** | 0.001 | 0.057 |
(0.009) | (0.014) | (0.014) |
Variables | Irregular C&D Procedures | Regular C&D Procedures | Comprehensive C&D Procedures | |||
---|---|---|---|---|---|---|
ATT | T-value | ATT | T-value | ATT | T-value | |
Shorter breeding years (10 years and below) | 0.142 | 1.15 | 0.296 ** | 2.31 | 0.321 *** | 2.83 |
(0.131) | (0.127) | (0.126) | ||||
Longer breeding years (Over 10 years) | 0.193 * | 1.83 | 0.108 | 1.05 | 0.219 * | 1.95 |
(0.109) | (0.103) | (0.119) | ||||
No breeding insurance | 0.400 * (0.213) | 2.54 | −0.045 (0.175) | −0.45 | 0.247 (0.209) | 1.41 |
Having breeding insurance | 0.128 (0.096) | 1.52 | 0.194 ** (0.088) | 2.22 | 0.257 *** (0.093) | 2.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Xia, R.; Ding, J.; Meng, Z.; Liu, Y.; Wang, H. How Does Epidemic Prevention Training for Pig Breeding Affect Cleaning and Disinfection Procedures Adoption? Evidence from Chinese Pig Farms. Vet. Sci. 2023, 10, 516. https://doi.org/10.3390/vetsci10080516
Chen Y, Xia R, Ding J, Meng Z, Liu Y, Wang H. How Does Epidemic Prevention Training for Pig Breeding Affect Cleaning and Disinfection Procedures Adoption? Evidence from Chinese Pig Farms. Veterinary Sciences. 2023; 10(8):516. https://doi.org/10.3390/vetsci10080516
Chicago/Turabian StyleChen, Yufan, Rui Xia, Jinghan Ding, Ze Meng, Yuying Liu, and Huan Wang. 2023. "How Does Epidemic Prevention Training for Pig Breeding Affect Cleaning and Disinfection Procedures Adoption? Evidence from Chinese Pig Farms" Veterinary Sciences 10, no. 8: 516. https://doi.org/10.3390/vetsci10080516
APA StyleChen, Y., Xia, R., Ding, J., Meng, Z., Liu, Y., & Wang, H. (2023). How Does Epidemic Prevention Training for Pig Breeding Affect Cleaning and Disinfection Procedures Adoption? Evidence from Chinese Pig Farms. Veterinary Sciences, 10(8), 516. https://doi.org/10.3390/vetsci10080516