Association between Birth Weight and Subcutaneous Fat Thickness at Adulthood in Dogs
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.1.1. Dog Population
2.1.2. Assessment of Adiposity
2.2. Statistical Analysis
3. Results
3.1. Population
3.2. Association between SFT and BCS
3.3. Association between Birth Weight and SFT
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Courcier, E.A.; Thomson, R.M.; Mellor, D.J.; Yam, P.S. An Epidemiological Study of Environmental Factors Associated with Canine Obesity. J. Small Anim. Pract. 2010, 51, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Gates, M.; Zito, S.; Harvey, L.; Dale, A.; Walker, J. Assessing Obesity in Adult Dogs and Cats Presenting for Routine Vaccination Appointments in the North Island of New Zealand Using Electronic Medical Records Data. N. Z. Vet. J. 2019, 67, 126–133. [Google Scholar] [CrossRef] [PubMed]
- Porsani, M.Y.H.; Teixeira, F.A.; Oliveira, V.V.; Pedrinelli, V.; Dias, R.A.; German, A.J.; Brunetto, M.A. Prevalence of Canine Obesity in the City of São Paulo, Brazil. Sci. Rep. 2020, 10, 14082. [Google Scholar] [CrossRef] [PubMed]
- German, A.J. The Growing Problem of Obesity in Dogs and Cats. J. Nutr. 2006, 136, 1940S–1946S. [Google Scholar] [CrossRef] [Green Version]
- Gossellin, J.; Wren, J.A.; Sunderland, S.J. Canine Obesity—An Overview. J. Vet. Pharmacol. Ther. 2007, 30, 1–10. [Google Scholar] [CrossRef]
- German, A.J.; Woods, G.R.T.; Holden, S.L.; Brennan, L.; Burke, C. Dangerous Trends in Pet Obesity. Vet. Rec. 2018, 182, 25. [Google Scholar] [CrossRef] [Green Version]
- Adolphe, J.L.; Silver, T.I.; Childs, H.; Drew, M.D.; Weber, L.P. Short-Term Obesity Results in Detrimental Metabolic and Cardiovascular Changes That May Not Be Reversed with Weight Loss in an Obese Dog Model. Br. J. Nutr. 2014, 112, 647–656. [Google Scholar] [CrossRef] [Green Version]
- Tropf, M.; Nelson, O.L.; Lee, P.M.; Weng, H.Y. Cardiac and Metabolic Variables in Obese Dogs. J. Vet. Intern. Med. 2017, 31, 1000–1007. [Google Scholar] [CrossRef] [PubMed]
- Lung, T.; Jan, S.; Tan, E.J.; Killedar, A.; Hayes, A. Impact of Overweight, Obesity and Severe Obesity on Life Expectancy of Australian Adults. Int. J. Obes. 2019, 43, 782–789. [Google Scholar] [CrossRef]
- Peeters, A.; Barendregt, J.J.; Willekens, F.; Mackenbach, J.P.; Mamun, A.A.; Bonneux, L. Obesity in Adulthood and Its Consequences for Life Expectancy: A Life-Table Analysis. Ann. Intern. Med. 2003, 138, 24–32. [Google Scholar] [CrossRef]
- Yam, P.S.; Butowski, C.F.; Chitty, J.L.; Naughton, G.; Wiseman-Orr, M.L.; Parkin, T.; Reid, J. Impact of Canine Overweight and Obesity on Health-Related Quality of Life. Prev. Vet. Med. 2016, 127, 64–69. [Google Scholar] [CrossRef]
- Laflamme, D.P. Companion Animals Symposium: Obesity in Dogs and Cats: What Is Wrong with Being Fat? J. Anim. Sci. 2012, 90, 1653–1662. [Google Scholar] [CrossRef]
- Barker, D.J.P. The Origins of the Developmental Origins Theory. J. Intern. Med. 2007, 261, 412–417. [Google Scholar] [CrossRef]
- Charles, M.-A.; Delpierre, C.; Bréant, B. Le concept des origines développementales de la santé: Évolution sur trois décennies. Med. Sci. 2016, 32, 15–20. [Google Scholar] [CrossRef] [Green Version]
- Ravelli, G.-P.; Stein, Z.A.; Susser, M.W. Obesity in Young Men after Famine Exposure in Utero and Early Infancy. N. Engl. J. Med. 1976, 295, 349–353. [Google Scholar] [CrossRef] [PubMed]
- Zeng, P.; Zhou, X. Causal Association Between Birth Weight and Adult Diseases: Evidence From a Mendelian Randomization Analysis. Front. Genet. 2019, 10, 618. [Google Scholar] [CrossRef] [PubMed]
- Grunnet, L.G.; Lund, A.-S.Q.; Laigaard, K.K.; Alibegovic, A.C.; Jensen, R.T.; Henriksen, N.S.; Astrup, A.; Vaag, A.; Brøns, C. Abdominal Fat Distribution Measured by Ultrasound and Aerobic Fitness in Young Danish Men Born with Low and Normal Birth Weight. Obes. Res. Clin. Pract. 2019, 13, 529–532. [Google Scholar] [CrossRef]
- Fall, C.H.D. Evidence for the Intra-Uterine Programming of Adiposity in Later Life. Ann. Hum. Biol. 2011, 38, 410–428. [Google Scholar] [CrossRef] [Green Version]
- Ylihärsilä, H.; Kajantie, E.; Osmond, C.; Forsén, T.; Barker, D.J.P.; Eriksson, J.G. Birth Size, Adult Body Composition and Muscle Strength in Later Life. Int. J. Obes. 2007, 31, 1392–1399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gondret, F.; Lefaucheur, L.; Juin, H.; Louveau, I.; Lebret, B. Low Birth Weight Is Associated with Enlarged Muscle Fiber Area and Impaired Meat Tenderness of the Longissimus Muscle in Pigs. J. Anim. Sci. 2006, 84, 93–103. [Google Scholar] [CrossRef]
- Beauchamp, B.; Ghosh, S.; Dysart, M.W.; Kanaan, G.N.; Chu, A.; Blais, A.; Rajamanickam, K.; Tsai, E.C.; Patti, M.-E.; Harper, M.-E. Low Birth Weight Is Associated with Adiposity, Impaired Skeletal Muscle Energetics and Weight Loss Resistance in Mice. Int. J. Obes. 2015, 39, 702–711. [Google Scholar] [CrossRef] [Green Version]
- Sarr, O.; Thompson, J.A.; Zhao, L.; Lee, T.-Y.; Regnault, T.R.H. Low Birth Weight Male Guinea Pig Offspring Display Increased Visceral Adiposity in Early Adulthood. PLoS ONE 2014, 9, e98433. [Google Scholar] [CrossRef] [Green Version]
- Mugnier, A.; Morin, A.; Cellard, F.; Devaux, L.; Delmas, M.; Adib-Lesaux, A.; Flanagan, J.; Laxalde, J.; Chastant, S.; Grellet, A. Association between Birth Weight and Risk of Overweight at Adulthood in Labrador Dogs. PLoS ONE 2020, 15, e0243820. [Google Scholar] [CrossRef]
- Jagatheesan, M.; De Silva, D.D.N.; Ariyarathna, H.M.H.S. Body Condition Score in Large Pure Bred Dogs: A Preliminary Study on Agreement between Owner’s Perception and Scientific Evaluation. Sri Lanka Vet. J. 2017, 63, 17. [Google Scholar] [CrossRef] [Green Version]
- Laflamme, D. Development and Validation of a Body Condition Score System for Dogs. Canine Pract. 1997, 22, 10–15. [Google Scholar]
- Santarossa, A.; Parr, J.M.; Verbrugghe, A. Assessment of Canine and Feline Body Composition by Veterinary Health Care Teams in Ontario, Canada. Can. Vet. J. 2018, 59, 1280–1286. [Google Scholar]
- Mawby, D.I.; Bartges, J.W.; d’Avignon, A.; Laflamme, D.P.; Moyers, T.D.; Cottrell, T. Comparison of Various Methods for Estimating Body Fat in Dogs. J. Am. Anim. Hosp. Assoc. 2004, 40, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Schröder, U.J.; Staufenbiel, R. Invited Review: Methods to Determine Body Fat Reserves in the Dairy Cow with Special Regard to Ultrasonographic Measurement of Backfat Thickness. J. Dairy Sci. 2006, 89, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Chun, J.L.; Bang, H.T.; Ji, S.Y.; Jeong, J.Y.; Kim, M.; Kim, B.; Lee, S.D.; Lee, Y.K.; Reddy, K.E.; Kim, K.H. A Simple Method to Evaluate Body Condition Score to Maintain the Optimal Body Weight in Dogs. J. Anim. Sci. Technol. 2019, 61, 366–370. [Google Scholar] [CrossRef] [Green Version]
- Martin-Gimenez, T.; Aguirre-Pascasio, C.N.; de Blas, I. Ultrasonographic Assessment of Regional Fat Distribution and Its Relationship With Body Condition in an Easy Keeper Horse Breed. J. Equine Vet. Sci. 2016, 39, 69–75. [Google Scholar] [CrossRef]
- Eastland-Jones, R.C.; German, A.J.; Holden, S.L.; Biourge, V.; Pickavance, L.C. Owner Misperception of Canine Body Condition Persists despite Use of a Body Condition Score Chart. J. Nutr. Sci. 2014, 3, e45. [Google Scholar] [CrossRef] [Green Version]
- Payan-Carreira, R.; Martins, L.; Miranda, S.; Olivério, P.; Silva, S.R. In Vivo Assessment of Subcutaneous Fat in Dogs by Real-Time Ultrasonography and Image Analysis. Acta Vet. Scand. 2016, 58, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Wei, T.; Simko, V. R Package “Corrplot”: Visualization of a Correlation Matrix, Version 0.92. 2021.
- Lenth, R. Emmeans: Estimated Marginal Means, Aka Least-Squares Mean. R Package, Version 1.8.1-1. 2022.
- Ogle, D.H.; Doll, J.C.; Wheeler, P.; Dinno, A. FSA: Fisheries Stock Analysis. R Package, Version 0.9.3. 2022.
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using Lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Lüdecke, D.; Ben-Shachar, M.; Patil, I.; Waggoner, P.; Makowski, D. Performance: An R Package for Assessment, Comparison and Testing of Statistical Models. J. Open Source Softw. 2021, 6, 3139. [Google Scholar] [CrossRef]
- Mangiafico, S. Rcompanion: Functions to Support Extension Education Program Evaluation. R Package, Version 2.4.18. 2022.
- Gaillard, V.; Chastant, S.; England, G.; Forman, O.; German, A.J.; Suchodolski, J.S.; Villaverde, C.; Chavatte-Palmer, P.; Péron, F. Environmental Risk Factors in Puppies and Kittens for Developing Chronic Disorders in Adulthood: A Call for Research on Developmental Programming. Front. Vet. Sci. 2022, 9, 944281. [Google Scholar] [CrossRef]
- Ayuso, D.; Izquierdo, M.; Hernández, F.I.; Bazán, J.; Corral, J.M. Ultrasonographic in Vivo Estimation of Back Fat Depth and Longissimus Dorsi Area in Iberian Pigs. In 7th International Symposium on the Mediterranean Pig. Zaragoza; De Pedro, E.J., Cabezas, A.B., Eds.; CIHEAM: Paris, France, 2012. [Google Scholar]
- Maes, D.G.D.; Janssens, G.P.J.; Delputte, P.; Lammertyn, A.; de Kruif, A. Back Fat Measurements in Sows from Three Commercial Pig Herds: Relationship with Reproductive Efficiency and Correlation with Visual Body Condition Scores. Livest. Prod. Sci. 2004, 91, 57–67. [Google Scholar] [CrossRef]
- Teixeira, A.; Joy, M.; Delfa, R. In Vivo Estimation of Goat Carcass Composition and Body Fat Partition by Real-Time Ultrasonography. J. Anim. Sci. 2008, 86, 2369–2376. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, S.R.; Gomes, M.J.; Dias-da-Silva, A.; Gil, L.F.; Azevedo, J.M.T. Estimation in Vivo of the Body and Carcass Chemical Composition of Growing Lambs by Real-Time Ultrasonography. J. Anim. Sci. 2005, 83, 350–357. [Google Scholar] [CrossRef]
- Singh, R.; Randhawa, S.N.S.; Randhawa, C.S. Body Condition Score and Its Correlation with Ultrasonographic Back Fat Thickness in Transition Crossbred Cows. Vet. World 2015, 8, 290–294. [Google Scholar] [CrossRef] [Green Version]
- Zulu, V.C.; Nakao, T.; Moriyoshi, M.; Nakada, K.; Sawamukai, Y.; Tanaka, Y.; Zhang, W.-C. Relationship between Body Condition Score and Ultrasonographic Measurement of Subcutaneous Fat in Dairy Cows. Asian-Australas. J. Anim. Sci. 2001, 14, 816–820. [Google Scholar] [CrossRef]
- Wilkinson, M.J.A.; McEwan, N.A. Use of Ultrasound in the Measurement of Subcutaneous Fat and Prediction of Total Body Fat in Dogs. J. Nutr. 1991, 121, S47–S50. [Google Scholar] [CrossRef] [PubMed]
- Morooka, T.; Niiyama, M.; Uchida, E.; Uemura, M.; Miyoshi, K.; Saito, M. Measurement of the Back Fat Layer in Beagles for Estimation of Obesity Using Two-Dimensional Ultrasonography. J. Small Anim. Pract. 2001, 42, 56–59. [Google Scholar] [CrossRef] [PubMed]
- Anvery, N.; Wan, H.T.; Dirr, M.A.; Christensen, R.E.; Weil, A.; Raja, S.; Reynolds, K.A.; Kyllo, R.L.; Makin, I.R.S.; Poon, E.; et al. Utility of High-Resolution Ultrasound in Measuring Subcutaneous Fat Thickness. Lasers Surg. Med. 2022, 54, 1189–1197. [Google Scholar] [CrossRef] [PubMed]
- Nösslinger, H.; Mair, E.; Toplak, H.; Hörmann-Wallner, M. Measuring Subcutaneous Fat Thickness Using Skinfold Calipers vs. High-Resolution B-Scan Ultrasonography in Healthy Volunteers: A Pilot Study. Clin. Nutr. Open Sci. 2022, 41, 19–32. [Google Scholar] [CrossRef]
- Laflamme, D.P. Nutrition for Aging Cats and Dogs and the Importance of Body Condition. Vet. Clin. N. Am. Small Anim. Pract. 2005, 35, 713–742. [Google Scholar] [CrossRef]
- Lund, E.M.; Armstrong, P.J.; Kirk, C.A.; Klausner, J.S. Prevalence and Risk Factors for Obesity in Adult Dogs from Private US Veterinary Practices. Intern. J. Appl. Res. Vet. Med. 2006, 4, 177–186. [Google Scholar]
- Kuk, J.L.; Saunders, T.J.; Davidson, L.E.; Ross, R. Age-Related Changes in Total and Regional Fat Distribution. Ageing Res. Rev. 2009, 8, 339–348. [Google Scholar] [CrossRef]
- Van der Westhuizen, E.; Brand, T.S.; Hoffman, L.C.; Aucamp, B.B. The Effect of Age and Gender on the Fat Distribution in Merino Lambs. South Afr. J. Anim. Sci. 2012, 40, 459–461. [Google Scholar] [CrossRef]
- Li, H.; Konja, D.; Wang, L.; Wang, Y. Link to external site, this link will open in a new window Sex Differences in Adiposity and Cardiovascular Diseases. Int. J. Mol. Sci. 2022, 23, 9338. [Google Scholar] [CrossRef]
- Karastergiou, K.; Smith, S.R.; Greenberg, A.S.; Fried, S.K. Sex Differences in Human Adipose Tissues—The Biology of Pear Shape. Biol. Sex Differ. 2012, 3, 13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolstad, K.; Jopson, N.B.; Vangen, O. Breed and Sex Differences in Fat Distribution and Mobilization in Growing Pigs Fed at Maintenance. Livest. Prod. Sci. 1996, 47, 33–41. [Google Scholar] [CrossRef]
- Barker, D. The Developmental Origins of Chronic Adult Disease. Acta Paediatr. 2004, 93, 26–33. [Google Scholar] [CrossRef] [PubMed]
- Oken, E.; Gillman, M.W. Fetal Origins of Obesity. Obes. Res. 2003, 11, 496–506. [Google Scholar] [CrossRef]
- te Velde, S.J.; Twisk, J.W.R.; van Mechelen, W.; Kemper, H.C.G. Birth Weight, Adult Body Composition, and Subcutaneous Fat Distribution. Obes. Res. 2003, 11, 202–208. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kempster, A.J. Fat Partition and Distribution in the Carcasses of Cattle, Sheep and Pigs: A Review. Meat Sci. 1981, 5, 83–98. [Google Scholar] [CrossRef]
- Chait, A.; den Hartigh, L.J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front. Cardiovasc. Med. 2020, 7, 22. [Google Scholar] [CrossRef] [Green Version]
- Parikh, A.M.; Coletta, A.M.; Yu, Z.H.; Rauch, G.M.; Cheung, J.P.; Court, L.E.; Klopp, A.H. Development and Validation of a Rapid and Robust Method to Determine Visceral Adipose Tissue Volume Using Computed Tomography Images. PLoS ONE 2017, 12, e0183515. [Google Scholar] [CrossRef] [Green Version]
- Castro, A.V.B.; Nunes, V.S.; Ionut, V.; Bergman, R.N.; Dib, R.E. Is Visceral Fat a Better Predictor of the Incidence of Impaired Glucose Tolerance or Type 2 Diabetes Mellitus than Subcutaneous Abdominal Fat: A Systematic Review and Meta-Analysis of Cohort Studies. PeerJ PrePrints. 2014, 2, e199v1. [Google Scholar] [CrossRef]
- Hamdy, O.; Porramatikul, S.; Al Ozairi, E. Metabolic Obesity: The Paradox Between Visceral and Subcutaneous Fat. Curr. Diabetes Rev. 2006, 2, 367–373. [Google Scholar] [CrossRef]
- Alves, S.A.; Cavalcante, E.V.; Melo, N.T.; Lima, A.C.; e Silva, E.J.; de Lima, G.M.; Figueiroa, J.N.; Alves, J.G. Fat Distribution among Children Born Extremely Low Birth Weight and Very Low Birth Weight: A Cohort Study. Child. Obes. 2020, 16, 549–553. [Google Scholar] [CrossRef]
- Yates, D.T.; Cadaret, C.N.; Beede, K.A.; Riley, H.E.; Macko, A.R.; Anderson, M.J.; Camacho, L.E.; Limesand, S.W. Intrauterine Growth-Restricted Sheep Fetuses Exhibit Smaller Hindlimb Muscle Fibers and Lower Proportions of Insulin-Sensitive Type I Fibers near Term. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2016, 310, R1020–R1029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakano, Y. Adult-Onset Diseases in Low Birth Weight Infants: Association with Adipose Tissue Maldevelopment. JAT 2020, 27, 397–405. [Google Scholar] [CrossRef] [Green Version]
- Speakman, J.R.; Booles, D.; Butterwick, R. Validation of Dual Energy X-Ray Absorptiometry (DXA) by Comparison with Chemical Analysis of Dogs and Cats. Int. J. Obes. 2001, 25, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Yam, P.S.; Naughton, G.; Butowski, C.F.; Root, A.L. Inaccurate Assessment of Canine Body Condition Score, Bodyweight, and Pet Food Labels: A Potential Cause of Inaccurate Feeding. Vet. Sci. 2017, 4, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colliard, L.; Ancel, J.; Benet, J.-J.; Paragon, B.-M.; Blanchard, G. Risk Factors for Obesity in Dogs in France. J. Nutr. 2006, 136, 1951S–1954S. [Google Scholar] [CrossRef] [Green Version]
- Mankowska, M.; Krzeminska, P.; Graczyk, M.; Switonski, M. Confirmation That a Deletion in the POMC Gene Is Associated with Body Weight of Labrador Retriever Dogs. Res. Vet. Sci. 2017, 112, 116–118. [Google Scholar] [CrossRef]
- Raffan, E.; Dennis, R.J.; O’Donovan, C.J.; Becker, J.M.; Scott, R.A.; Smith, S.P.; Withers, D.J.; Wood, C.J.; Conci, E.; Clements, D.N.; et al. A Deletion in the Canine POMC Gene Is Associated with Weight and Appetite in Obesity-Prone Labrador Retriever Dogs. Cell Metab. 2016, 23, 893–900. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Parameter | Mean | SD | Minimum | Maximum |
---|---|---|---|---|
BCS | 5.9 | 1.2 | 4 | 9 |
SFT (all locations) | 9.2 | 4.9 | 0.8 | 35.6 |
SFT Abdomen | 7.8 | 3.7 | 0.9 | 24.1 |
SFT Flank | 7.2 | 2.9 | 0.8 | 18.5 |
SFT Lumbar region | 12.7 | 5.8 | 1.4 | 35.6 |
Parameter | Coeff. | SE | p | |
---|---|---|---|---|
Intercept | 6.954 | 0.785 | ||
Age | Young, ≤2 years | <0.001 | ||
Adult, 2–5 years | −0.462 | 0.754 | ||
Old, ≥5 years | 3.061 | 0.720 | ||
Neuter status | Entire | 0.038 | ||
Sterilized | 1.251 | 0.603 | ||
Birth weight | Lower than the median | 0.014 | ||
Higher or equal to the median | −1.500 | 0.613 | ||
Location | Abdomen | <0.001 | ||
Flank | −0.611 | 0.491 | ||
Lumbar | 4.821 | 0.491 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mugnier, A.; Cellard, F.; Morin, A.; Delmas, M.; Grellet, A.; Chastant, S. Association between Birth Weight and Subcutaneous Fat Thickness at Adulthood in Dogs. Vet. Sci. 2023, 10, 208. https://doi.org/10.3390/vetsci10030208
Mugnier A, Cellard F, Morin A, Delmas M, Grellet A, Chastant S. Association between Birth Weight and Subcutaneous Fat Thickness at Adulthood in Dogs. Veterinary Sciences. 2023; 10(3):208. https://doi.org/10.3390/vetsci10030208
Chicago/Turabian StyleMugnier, Amélie, Fanny Cellard, Anthony Morin, Magalie Delmas, Aurélien Grellet, and Sylvie Chastant. 2023. "Association between Birth Weight and Subcutaneous Fat Thickness at Adulthood in Dogs" Veterinary Sciences 10, no. 3: 208. https://doi.org/10.3390/vetsci10030208
APA StyleMugnier, A., Cellard, F., Morin, A., Delmas, M., Grellet, A., & Chastant, S. (2023). Association between Birth Weight and Subcutaneous Fat Thickness at Adulthood in Dogs. Veterinary Sciences, 10(3), 208. https://doi.org/10.3390/vetsci10030208