# Forty Years of the Applications of Stark Broadening Data Determined with the Modified Semiempirical Method

## Abstract

**:**

**Dataset:**Stark broadening parameters for isolated lines of non-hydrogenic atoms and ions calculated by using the impact semiclassical perturbation method and modified semiempirical method are available online in the STARK-B database at https://stark-b.obspm.fr/. This is one of 38 databases that can be searched and through the Virtual Atomic and Molecular Data Center (VAMDC) at https://portal.vamdc.eu/vamdc_portal/home.seam

**Dataset License:**CC BY 4.0.

## 1. Introduction

^{3}. Here, electrons in distant orbit with principal quantum number values of several hundred or larger are weakly bounded with the core, so that even very weak electric microfields can have a non-negligible influence. They are deexciting in cascades emitting in the radio domain, lines with profiles influenced by Stark broadening. This broadening mechanism may be dominant in white dwarf atmospheres and may contribute to the line profile of hot stars of A and B type.

## 2. Modified Semiempirical Method

_{kk′}(k = i,j) for Δn ≠ 0 in the Coulomb approximation is:

_{k}and l

_{k}± 1 (k = i,f).

_{k}, k = i,f) and this averaged level (n

_{k}+ 1) is approximated as [12]:

_{H}is ionization energy of hydrogen and E

_{ion}of the considered spectral series; N is electron density T temperature; g(x) [12] and $\stackrel{~}{g}$(x) [7] are Gaunt factors for width and g

_{sh}(x) [12] and ${\stackrel{~}{g}}_{sh}$ (x) [9] for shift; g(x) = 0.2 for x ≤ 2 and g(x) = 0.24, 0.33, 0.56, 0.98, 1.33 for x = 3, 5, 10, 30, and 100 [12]. $\stackrel{~}{g}$(x) = 0.7 − 1.1/Z + g(x) [9]. For high temperature (or large x) limit:

- x = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 60, 80, 100
- g
_{sh}= 0.20, 0.25, 0.32, 0.41, 0.45, 0.51, 0.56, 0.60, 0.63, 0.66, 0.78, 0.82, 0.84, 0.85, 0.86, 0.87 - ${\stackrel{~}{g}}_{sh}$, Z = 2 0.35 0.40 0.47 0.53 0.58 0.61 0.64 0.66 0.68 0.70 0.78 0.82 0.84 0.85 0.86 0.87
- Z = 3 0.53 0.54 0.57 0.59 0.62 0.64 0.66 0.67 0.69 0.70 0.78 0.82 0.84 0.85 0.86 0.87
- Z = 4 0.62 0.62 0.63 0.64 0.65 0.66 0.67 0.68 0.69 0.70 0.78 0.82 0.84 0.85 0.86 0.87
- Z > 4 0.88 − 1.1/Z + 0.01x/Z 0.87

_{kk′}= (E

_{k″}− E

_{k})/|E

_{k′}− E

_{k}|

_{k}and E

_{k}

_{′}are energies of the considered level and of its perturbing level, respectively.

_{j′j}< 0.

## 3. Applications of the Modified Semiempirical Method and Data Obtained by It

#### 3.1. Astrophysics

#### 3.2. Regularities and Systematic Trends

#### 3.3. Lasers and Laser Produced Plasma

_{2}pulsed laser on targets made of titanium oxides [99], the mechanism of effect of distance between a lens and a sample on plasma induced by laser [100], and the effect of ambient pressure on titanium plasma induced by a femtosecond laser [101].

#### 3.4. Radiative Properties

^{7+}, Fe

^{8+}[147], and O III [148]; nuclear excitation by electron transition rate confidence interval in

^{201}Hg local thermodynamic equilibrium plasma [149]; electron-impact excitation of the (5d

^{10}6s)

^{2}S

_{1/2}-(5d

^{10}6p)

^{2}P

^{o}

_{1/2,3/2}resonance transitions in gold atoms [150]; chemi-ionization processes in slow collisions of Rydberg atoms with ground state atoms [151]; and XUV amplification considering recombination in clusters [152].

#### 3.5. Plasma Diagnostics

#### 3.6. Other Applications of MSE Data

## 4. Conclusions

## Funding

## Conflicts of Interest

## References

- Griem, H.R. Spectral Line Broadening by Plasmas; Academic Press: New York, NY, USA; London, UK, 1974. [Google Scholar]
- Oks, E. Diagnostics of Laboratory and Astrophysical Plasmas Using Spectral Lineshapes of One-, Two-, and Three-Electron Systems; World Scientific: Singapore, 2017. [Google Scholar]
- Elabidi, H.; Sahal-Bréchot, S.; Dimitrijević, M.S.; Ben Nessib, N. Quantum Stark broadening data for the C IV, N V, O VI, F VII and Ne VIII resonance doublets. MNRAS
**2011**, 417, 2624–2630. [Google Scholar] [CrossRef][Green Version] - Sahal-Bréchot, S. Impact theory of the broadening and shift of spectral lines due to electrons and ions in a plasma (continued). Astron. Astrophys.
**1969**, 2, 322–354. [Google Scholar] - Sahal-Bréchot, S. Impact theory of the broadening and shift of spectral lines due to electrons and ions in a plasma. Astron. Astrophys.
**1969**, 1, 91–123. [Google Scholar] - Sahal-Bréchot, S.; Dimitrijević, M.S.; Moreau, N.; Ben Nessib, N. The STARK-B Database as a Resource for “STARK” Widths and Shifts Data: State of Advancement and Program of Development. Adv. Space Res.
**2014**, 54, 1148–1151. [Google Scholar] [CrossRef][Green Version] - Sahal-Bréchot, S.; Dimitrijević, M.S.; Moreau, N.; Ben Nessib, N. The STARK-B Database VAMDC node: A Repository for Spectral Line Broadening and Shifts Due to Collisions with Charged Particles. Phys. Scr.
**2015**, 50, 054008. [Google Scholar] [CrossRef] - STARK-B. Available online: http://stark-b.obspm.fr (accessed on 12 July 2020).
- Dimitrijević, M.S.; Konjević, N. Stark widths of doubly- and triply-ionized atom lines. J. Quant. Spectrosc. Radiat. Transf.
**1980**, 24, 451–459. [Google Scholar] [CrossRef] - Dimitrijević, M.S.; Konjević, N. Modified semiempirical formula for the electron impact width of ionized atom lines: Theory and applications. In Spestral Line Shapes; Wende, B., Ed.; Walter de Gruyter: Berlin, Germany; New York, NY, USA, 1981; pp. 211–239. [Google Scholar]
- Dimitrijević, M.S.; Kršljanin, V. Electron-impact shifts of ion lines—Modified semiempirical approach. Astron. Astrophys.
**1986**, 165, 269–274. [Google Scholar] - Griem, H.R. Semiempirical Formulas for the Electron-Impact Widths and Shifts of Isolated Ion Lines in Plasmas. Phys. Rev.
**1968**, 165, 258–266. [Google Scholar] [CrossRef] - Lennon, D.J.; Lynas-Gray, A.E.; Brown, P.J.F.; Dufton, P.L. Non-LTE calculations of silicon-line strengths in B-type stars. Mon. Not. Roy. Astron. Soc.
**1986**, 222, 719–729. [Google Scholar] [CrossRef][Green Version] - Smith, K.C. Elemental abundances in normal late-B and HgMn stars from co-added IUE spectra. 2. Magnesium, aluminium and silicon. Astron. Astrophys.
**1993**, 276, 393–408. [Google Scholar] - Gies, D.R.; Lambert, D.L. Carbon, Nitrogen and Oxygen abundances in early B-type stars. Astrophys. J.
**1992**, 387, 673–700. [Google Scholar] [CrossRef] - Dworetsky, M.M.; Persaud, J.L.; Patel, K. Xenon in mercury-manganese stars. Mon. Not. R. Astron. Soc.
**2008**, 385, 1523–1529. [Google Scholar] [CrossRef][Green Version] - Popović, L.Č.; Dimitrijević, M.S. Stark broadening of Xe II lines. Astron. Astrophys. Suppl. Ser.
**1996**, 116, 359–365. [Google Scholar] [CrossRef] - Dimitrijević, M.S. Stark broadening of Pt II lines in chemically peculiar stars. Astrophys. Lett. Commun.
**1993**, 28, 381–383. [Google Scholar] - Bohlender, D.A.; Dworetsky, M.M.; Jomaron, C.M. Isotopic anomalies of platinum in the mercury manganese star HR-7775. Astrophys. J.
**1998**, 504, 533–538. [Google Scholar] [CrossRef][Green Version] - Dimitrijević, M.S. Electron-impact widths of doubly and triply charged ion lines of astrophysical importance. Astron. Astrophys. Suppl. Ser.
**1988**, 76, 53–59. [Google Scholar] - Kudritzki, R.; Hummer, D.G. Quantitative spectroscopy of hot stars. Ann. Rev. Astron. Astrophys.
**1990**, 28, 303–345. [Google Scholar] [CrossRef] - Chayer, P.; Vennes, S.; Pradhan, A.K.; Thejll, P.; Beauchamp, A.; Fontaine, G.; Wesemael, F. Improved calculations of the equilibrium abundances of heavy elements supported by radiative levitation in the atmospheres of hot DA white dwarfs. Astrophys. J.
**1995**, 454, 429–441. [Google Scholar] [CrossRef] - Chayer, P.; Fontaine, G.; Wesemael, F. Radiative levitation in hot white dwarfs: Equilibrium theory. Astrophys. J. Suppl. Ser.
**1995**, 99, 189–221. [Google Scholar] [CrossRef] - Seaton, M.J. Radiative Accelerations in Stellar Envelopes. MNRAS
**1997**, 289, 700–720. [Google Scholar] [CrossRef][Green Version] - Gonzales, J.F.; LeBlanc, F.; Artru, M.-C.; Michaud, G. Improvements on radiative acceleration calculations in stellar envelopes. Astron. Astrophys.
**1995**, 297, 223–236. [Google Scholar] - Gonzales, J.F.; Artru, M.-C.; Michaud, G. Radiative accelerations on carbon, nitrogen and oxygen. Astron. Astrophys.
**1995**, 302, 788–796. [Google Scholar] - LeBlanc, F.; Michaud, G. Radiative accelerations on iron. Astron. Astrophys.
**1995**, 303, 166–174. [Google Scholar] - Alecian, G.; Michaud, G.; Tully, J. Radiative Accelerations on Iron Using Opacity Project Data. Astrophys. J.
**1993**, 411, 882–890. [Google Scholar] [CrossRef] - Kosarev, I.B. Calculation of thermodynamic and optical properties of the vapors of cosmic bodies entering the Earth’s atmosphere. J. Eng. Phys. Thermodyn.
**1999**, 72, 1030–1038. [Google Scholar] [CrossRef] - Yüce, K.; Castelli, F.; Hubrig, S. Wavelengths and oscillator strengths of Xe II from the UVES spectra of four HgMn stars. Astron. Astrophys.
**2011**, 528, A37. [Google Scholar] [CrossRef] - Iglesias, C.A.; Rogers, F.J.; Wilson, B.G. Opacities for classical cepheid models. Astrophys. J.
**1990**, 360, 221–226. [Google Scholar] [CrossRef] - Iglesias, C.A.; Rogers, F.J. Results obtained using the OPAL code. Rev. Mex. Astron. Astrofis.
**1992**, 23, 161–170. [Google Scholar] - Rogers, F.J.; Iglesias, C.A. Radiative atomic Rosseland mean opacity tables. Astrophys. J. Suppl. Ser.
**1992**, 79, 507–568. [Google Scholar] [CrossRef] - Mostovych, A.N.; Chan, L.Y.; Kearney, K.J.; Garren, D.; Iglesias, C.A.; Klapisch, M.; Rogers, F.J. Opacity of dense, cold, and, strongly coupled plasmas. Phys. Rev. Lett.
**1995**, 75, 1530–1533. [Google Scholar] [CrossRef] - Rogers, F.J.; Iglesias, C.A. Opacity of stellar matter. Space Sci. Rev.
**1999**, 85, 61–70. [Google Scholar] [CrossRef] - Seaton, M.J.; Badnell, N.R. A comparison of Rosseland-mean opacities from OP and OPAL. MNRAS
**2004**, 354, 457–465. [Google Scholar] [CrossRef][Green Version] - Krief, M.; Feigel, A.; Gazit, D. Solar Opacity Calculations Using the Super-transition-array Method. Astrophys. J.
**2016**, 821, 45. [Google Scholar] [CrossRef] - Zeng, J.; Yuan, J.; Lu, Q. Detailed-term-accouting-approximation calculations of the radiative opacity of laser-produced Al plasmas. Phys. Rev. E
**2001**, 64, 066412. [Google Scholar] [CrossRef] - Zeng, J.; Yuan, J. Detailed-term-accouting-approximation calculations of the radiative opacity of aluminium plasmas: A systematic study. Phys. Rev. E
**2002**, 66, 06401. [Google Scholar] [CrossRef] - Jin, F.; Zeng, J.; Yuan, J. Radiative opacities and configuration interaction effects of hot iron plasma using a detailed term accounting model. Phys. Rev. E
**2003**, 68, 066401. [Google Scholar] [CrossRef] - Jin, F.; Yuan, J. Detailed diagnostics for a hot bromine plasma by the open M-shell opacity. Phys. Rev. E
**2005**, 72, 016404. [Google Scholar] [CrossRef] - Zeng, J.L.; Jin, F.T.; Yuan, J.M. Radiative opacity of plasmas studied by detailed term (level) accounting approaches. Front. Phys.
**2006**, 4, 468–489. [Google Scholar] [CrossRef] - Li, Y.; Wu, J.; Hou, Y.; Yuan, J. Radiative opacities of hot and solid-dense aluminium plasmas using a detailed level accounting model. J. Phys. B
**2009**, 42, 235701. [Google Scholar] [CrossRef] - Zeng, J.; Gao, C.; Yuan, J. Detailed investigations on radiative opacity and emissivity of tin plasmas in the extreme-ultraviolet region. Phys. Rev. E
**2010**, 82, 026409. [Google Scholar] [CrossRef] - Gao, C.; Zeng, J.; Yuan, J. Plasma screening effects on the atomic structure and radiative opacity of dense carbon plasmas based on the DLA model. High Energy Density Phys.
**2011**, 7, 54–60. [Google Scholar] [CrossRef] - Upcraft, L.M.; Jeffery, M.; Harris, J.W.O. The DAVROS opacity code: Detailed term accounting calculations for LTE plasmas. High Energy Density Phys.
**2015**, 14, 59–66. [Google Scholar] [CrossRef] - Rodriguez, R.; Florido, R.; Gil, J.M.; Rubiano, J.G.; Martel, P.; Minguez, E. RAPCAL code: A flexible package to compute radiative properties for optically thin and thick low and high-Z plasmas in a wide range of density and temperature. Laser Part. Beams
**2008**, 26, 433–448. [Google Scholar] [CrossRef] - Popović, L.Č.; Dimitrijević, M.S. Stark broadening of heavy ion lines: As II, Br II, Sb II and I II. Phys. Scr.
**1996**, 53, 325–331. [Google Scholar] [CrossRef] - Popović, L.Č.; Dimitrijević, M.S.; Ryabchikova, T. The electron-impact broadening effect in CP stars: The case of La II, La III, Eu II, and Eu III lines. Astron. Astrophys.
**1999**, 350, 719–724. [Google Scholar] - Dimitrijević, M.S.; Tankosić, D. On the variation of Stark line shifts within a given spectrum in the case of irregular energy level structure. Phys. Scr.
**2000**, 62, 177–182. [Google Scholar] [CrossRef] - Purić, J.; Srećković, A.; Djeniže, S.; Platiša, M. Stark broadening and regularities of prominent multiply ionized nitrogen spectral lines. Phys. Rev. A
**1987**, 36, 3957–3963. [Google Scholar] [CrossRef] - Bottcher, F.; Breger, P.; Hey, J.D.; Kunze, H.J. Dependence of the Stark broadening on the emitter charge for the 3s–3p transitions of Li-like ions. Phys. Rev. A
**1988**, 38, 2690–2693. [Google Scholar] [CrossRef] - Purić, J.; Djeniže, S.; Srećković, A.; Platiša, M.; Labat, J. Stark-broadening regularities of prominent multiply-ionized-oxygen spectral lines in plasma. Phys. Rev. A
**1988**, 37, 498–503. [Google Scholar] [CrossRef] - Glenzer, S.; Uzelac, N.I.; Kunze, H.-J. Stark-broadening of spectral-lines along the isoelectronic sequence of Li. Phys. Rev. A
**1992**, 45, 8795–8802. [Google Scholar] [CrossRef] - Wiese, W.L.; Konjević, N. Regularities in experimental Stark shifts. JQSRT
**1992**, 47, 185–200. [Google Scholar] [CrossRef] - Glenzer, S.; Hey, J.D.; Kunze, H.J. Stark broadening of spectral lines along the isoelectronic sequence of B. J. Phys. B
**1994**, 27, 413–422. [Google Scholar] [CrossRef] - Wrubel, T.; Ahmad, I.; Buscher, S.; Kunze, H.J. Stark-Broadening along the Berylliumlike Sequence. Phys. Rev. E
**1998**, 57, 5972–5977. [Google Scholar] [CrossRef] - Ivković, M.; Ben Nessib, N.; Konjević, N. Stark broadening of 3s
^{3}P^{o}–3p^{3}D and 3p^{3}D–3d^{3}F^{o}transitions along carbon isoelectronic sequences of ions revisited. J. Phys. B**2005**, 38, 715–728. [Google Scholar] [CrossRef] - Hoarty, D.J.; Bentley, C.D.; Crowley, B.J.B.; Davidson, S.J.; Gales, S.G.; Graham, P.; Harris, J.W.O.; Iglesias, C.A.; James, S.F.; Smith, C.C. The effect of line-broadening on the overall width of transition arrays in dense plasmas. J. Quant. Spectrosc. Radiat. Transf.
**2006**, 99, 283–294. [Google Scholar] [CrossRef] - Dojčinović, I.P.; Tapalaga, I.; Purić, J. Stark Width Regularities within Beryllium Spectral Series. Publ. Astron. Soc. Aust.
**2011**, 28, 281–289. [Google Scholar] [CrossRef][Green Version] - Pelaez, R.J.; Djurović, S.; Ćirišan, M.; Aparicio, J.A.; Mar, S. Stark halfwidth trends along the homologous sequence of doubly ionized noble gases. Astron. Astrophys.
**2012**, 539, A40. [Google Scholar] [CrossRef][Green Version] - Tapalaga, I.; Trklja, N.; Dojčinović, I.P.; Purić, J. Stark width regularities within spectral series of the lithium isoelectronic sequence. MNRAS
**2018**, 474, 5479–5484. [Google Scholar] [CrossRef] - Trklja, N.; Tapalaga, I.; Dojčinović, I.P.; Purić, J. Stark widths regularities within spectral series of sodium isoelectronic sequence. New Astron.
**2018**, 59, 54–59. [Google Scholar] [CrossRef] - Purić, J.; Djeniže, S.; Labat, J.; Platiša, M.; Srećković, A.; Ćuk, M. Stark-broadening regularities of lithium-like and sodium-like isoelectronic sequences. Z. Phys. D
**1988**, 10, 431–436. [Google Scholar] [CrossRef] - Purić, J.; Djeniže, S.; Srećković, A.; Ćuk, M.; Labat, J.; Platiša, M. Stark broadening and regularities of ionized neon and argon spectral lines. Z. Phys. D
**1988**, 8, 343–347. [Google Scholar] [CrossRef] - Purić, J.; Srećković, A.; Djeniže, S.; Platiša, M. Stark broadening and regularities of prominent spectral lines of multiply ionized chlorine and fluorine. Phys. Rev. A
**1988**, 37, 4380–4386. [Google Scholar] [CrossRef] [PubMed] - Purić, J.; Djeniže, S.; Labat, J.; Srećković, A.; Platiša, M. Stark broadening regularities within successive ionization stages in krypton and xenon. Contrib. Plasma Phys.
**1991**, 31, 63–69. [Google Scholar] [CrossRef] - Djeniže, S.; Labat, J.; Platiša, M.; Srećković, A.; Purić, J. Stark-broadening regularities of np-nd transition arrays of nitrogen, oxygen, neon, and silicon ion spectral lines. Astron. Astrophys.
**1990**, 227, 291–293. [Google Scholar] - Purić, J.; Miller, M.H.; Lesage, A. Electron impact broadening parameters predictions from regularities: Fe I, Fe II, Fe III, Fe IV, C IV and Si IV. Astrophys. J.
**1993**, 416, 825–830. [Google Scholar] [CrossRef] - Purić, J.; Šćepanović, M. General Regularities of Stark Parameters for Ion Lines. Astrophys. J.
**1999**, 521, 490–491. [Google Scholar] [CrossRef][Green Version] - Colon, C.; Alonso-Medina, A. Stark broadening parameters prediction and regularities of singly ionized lead. J. Phys. B
**2002**, 35, 1143–1153. [Google Scholar] - Colon, C.; Alonso-Medina, A.; Rivero, C.; Fernandez, F. Stark width and shift parameter predictions and regularities of Sn II. Phys. Scr.
**2006**, 73, 410–419. [Google Scholar] [CrossRef] - Purić, J.; Dojčinović, I.P.; Nikolić, M.; Šćepanović, M.; Obradović, B.M.; Kuraica, M.M. Stark parameter regularities of multiply charged ion spectral lines originating from the same transition array. Astrophys. J.
**2008**, 680, 803–808. [Google Scholar] [CrossRef] - Peláez, R.J.; Djurović, S.; Ćirišan, M.; Aparicio, J.A.; Mar, S. Stark halfwidth trends along the homologous sequence of singly ionized noble gases. Astron. Astrophys.
**2010**, 518, A60. [Google Scholar] [CrossRef] - Elabidi, H.; S.Sahal-Bréchot, S. Checking the dependence on the upper level ionization potential of electron impact widths using quantum calculations. Eur. Phys. J. D
**2011**, 61, 285–290. [Google Scholar] [CrossRef] - Peláez, R.J.; Djurović, S.; Ćirišan, M.; Aparicio, J.A.; Mar, S. Irregularities of Stark parameters of Xe II spectral lines. J. Phys. B
**2009**, 42, 125002. [Google Scholar] [CrossRef] - Zanon, A.; Alonso-Medina, A.; Colon, C. Core polarization effect for the Stark broadening of Pb III spectral lines predictions and regularities. Int. Rev. At. Mol. Phys.
**2010**, 1, 1–11. [Google Scholar] - Popović, L.Č.; Vince, I.; Dimitrijević, M.S. Stark broadening of Zn II and Cd II spectral lines of astrophysical interest. Astron. Astrophys. Suppl. Ser.
**1993**, 102, 17–23. [Google Scholar] - Popović, L.Č.; Dimitrijević, M.S. Stark broadening parameter tables for Xe II, Sc II, Y II and Zr II. Bull. Astron. Belgrade
**1997**, 155, 159–164. [Google Scholar] - Popović, L.Č.; Dimitrijević, M.S. The electron impact broadening parameters in hot star atmospheres: Mn II, Mn III, Ga III, Ge III and Ge IV lines. Astron. Astrophys. Suppl. Ser.
**1998**, 128, 203–205. [Google Scholar] [CrossRef][Green Version] - Tankosić, D.; Popović, L.Č.; Dimitrijević, M.S. Electron-impact Stark broadening parameters for Ti II and Ti III spectral lines. At. Data Nucl. Data Tables
**2001**, 77, 277–310. [Google Scholar] [CrossRef] - Tankosić, D.; Popović, L.Č.; Dimitrijević, M.S. The electron-impact broadening parameters for Co III spectral lines. Astron. Astrophys.
**2003**, 399, 795–797. [Google Scholar] [CrossRef] - Simić, Z.; Dimitrijević, M.S.; Milovanović, N.; Sahal-Bréchot, S. Stark broadening of Cd I spectral lines. Astron. Astrophys.
**2005**, 441, 391–393. [Google Scholar] [CrossRef] - Popović, L.Č.; Dimitrijević, M.S. Tables of the electron impact broadening parameters: Mn II, Mn III, Ga III, Ge III and Ge IV lines. Bull. Astron. Belgrade
**1997**, 156, 173–178. [Google Scholar] - Simić, Z.; Dimitrijević, M.S.; Popović, L.Č.; Dačić, M.D. Stark broadening parameters for Cu III, Zn III and Se III lines in laboratory and stellar plasma. New Astron.
**2006**, 12, 187–191. [Google Scholar] [CrossRef] - Dimitrijević, M.S.; Konjević, N. Semiempirical Stark linewidths of alkali like ions. Astron. Astrophys.
**1981**, 102, 93–96. [Google Scholar] - Zmerli, B.; Ben Nessib, N.; Dimitrijević, M.S.; Sahal-Bréchot, S. Stark broadening calculations of neutral copper spectral lines and temperature dependence. Phys. Scr.
**2010**, 82, 055301. [Google Scholar] [CrossRef] - Fill, E.E.; Schoning, T. Linewidth Calculations of Si11
^{+}and Mg 9^{+}Resonance Lines and Applications to Photoresonant X-ray Laser Pumping. J. Appl. Phys.**1994**, 76, 1423–1430. [Google Scholar] [CrossRef] - Decker, C.D.; London, R.A. Designs for a Compact Ni-Like-Tungsten X-ray Laser. Phys. Rev. A
**1998**, 57, 1395–1399. [Google Scholar] [CrossRef] - Konjević, N.; Ivković, M.; Jovićević, S. Spectroscopic diagnostics of laser-induced plasmas. Spectrochim. Acta B
**2010**, 65, 593–602. [Google Scholar] [CrossRef] - Rao, K.H.; Smijesh, N.; Nivas, J.J.; Philip, R. Ultrafast laser produced zinc plasma: Stark broadening of emission lines in nitrogen ambient. Phys. Plasmas
**2016**, 23, 043503. [Google Scholar] [CrossRef] - Lemoff, B.E.; Barty, C.P.J.; Harris, S.E. Femtosecond-pulse-driven, electron-excited XUV lasers in eight-times-ionized noble gases. Opt. Lett.
**1994**, 19, 569–571. [Google Scholar] [CrossRef][Green Version] - Lemoff, B.E.; Yinm, G.Y.; Gordon, C.L.; Barty, C.P.J.; Harris, S.E. Demonstration of a 10-Hz femtosecond-pulse-driven XUV laser at 41.8 nm in Xe IX. Phys. Rev. Lett.
**1995**, 74, 1574–1577. [Google Scholar] [CrossRef][Green Version] - Lemoff, B.E.; Yin, G.Y.; Gordon, C.L.; Barty, C.P.J.; Harris, S.E. Femtosecond-Pulse-Driven 10-Hz 41.8-nm Laser in Xe-IX. J. Opt. Soc. Am. B Opt. Phys.
**1996**, 13, 180–184. [Google Scholar] [CrossRef][Green Version] - Gornushkin, I.B.; Kazakov, A.Y.; Omenetto, N.; Smith, B.W.; Winefordner, J.D. Experimental verification of a radiative model of laser-induced plasma expanding into vacuum. Spectrochim. Acta B
**2005**, 60, 215–230. [Google Scholar] [CrossRef] - Shaikh, N.M.; Rashid, B.; Hafeez, S.; Mahmood, S.; Saleem, M.; Baig, M.A. Diagnostics of cadmium plasma produced by laser ablation. J. Appl. Phys.
**2006**, 100, 073102. [Google Scholar] [CrossRef] - Matsumoto, A.; Ohba, H.; Toshimitsu, M.; Akaoka, K.; Ruas, A.; Sakka, T.; Wakaida, I. Fiber-optic laser-induced breakdown spectroscopy of zirconium metal in air: Special features of the plasma produced by a long-pulse laser. Spectrochim. Acta B
**2018**, 142, 37–49. [Google Scholar] [CrossRef] - Bredice, F.; Borges, F.O.; Sobral, H.; Villagran-Muniz, M.; Di Roco, H.O.; Cristoforetti, G.; Legnaioli, S.; Palleschi, V.; Pardini, L.; Salvetti, A.; et al. Evaluation of self-absorption of manganese emission lines in Laser Induced Breakdown Spectroscopy measurements. Spectrochim. Acta B
**2006**, 61, 1294. [Google Scholar] [CrossRef][Green Version] - Diaz, L.; Camacho, J.J.; Sanz, M.; Hernández, M.; Jandova, V.; Castillejo, M. Temporal evolution study of the plasma induced by CO
_{2}pulsed laser on targets of titanium oxides. Spectrochim. Acta B**2013**, 86, 88–93. [Google Scholar] [CrossRef][Green Version] - Liu, Y.H.; Chen, M.; Liu, X.D.; Cui, Q.Q.; Zhao, M.W. The mechanism of effect of lens-to-sample distance on laser-induced plasma. Acta Phys. Sin.
**2013**, 62, 025203. [Google Scholar] - Liu, D.; Chen, C.; Gao, X.; Lin, J.; Man, B.; Sun, Y.; Li, F. Effect of ambient pressure on a femtosecond laser induced titanium plasma. Eur. Phys. J. D
**2016**, 70, 245. [Google Scholar] [CrossRef] - Mohamed, W.T.Z.; Askar, A. Study of the Matrix Effect on the Plasma Characterization of Heavy Elements in Soil Sediments using LIBS with a Portable Echelle Spectrometer. Prog. Phys.
**2007**, 1, 46–52. [Google Scholar] - Shaikh, N.M.; Hafeez, S.; Baig, M.A. Comparison of zinc and cadmium plasma produced by laser ablation. Spectrochim. Acta B
**2007**, 62, 1311–1320. [Google Scholar] [CrossRef] - Sanz, M.; Lopez-Arias, M.; Rebollar, E.; de Nalda, R.; Castillejo, M. Laser ablation and deposition of wide bandgap semiconductors: Plasma and nanostructure of deposits diagnosis. J. Nanopart. Res.
**2012**, 13, 6621–6631. [Google Scholar] [CrossRef] - Hu, W.; Shin, Y.C.; King, G. Characteristics of plume plasma and its effects on ablation depth during ultrashort laser ablation of copper in air. J. Phys. D Appl. Phys.
**2012**, 45, 355204. [Google Scholar] [CrossRef] - Cheng, D.; Zhu, H.; Ke, L. Investigation of plasma spectra during selective laser micro sintering Cu-based metal powder. Rapid Prototyp. J.
**2013**, 19, 373–382. [Google Scholar] [CrossRef] - Hartig, K.C.; Colgan, J.; Kilcrease, D.P.; Barefield, J.E.; Jovanovic, I. Laser-induced breakdown spectroscopy using mid-infrared femtosecond pulses. J. Appl. Phys.
**2015**, 118, 043107. [Google Scholar] [CrossRef][Green Version] - Zhao, X.; Shin, Y.C. Laser–plasma interaction and plasma enhancement by ultrashort double-pulse ablation. Appl. Phys. B
**2015**, 120, 81–87. [Google Scholar] [CrossRef] - Anoop, K.K.; Harilal, S.S.; Philip, R.; Bruzzese, R.; Amoruso, S. Laser fluence dependence on emission dynamics of ultrafast laser induced copper plasma. J. Appl. Phys.
**2016**, 120, 185901. [Google Scholar] [CrossRef] - Singh, K.S.; Khare, A.; Sharma, A.K. Effect of uniform magnetic field on laser-produced Cu plasma and the deposited particles on the target surface. Laser Part. Beams
**2017**, 35, 352–361. [Google Scholar] [CrossRef] - Singh, K.S.; Sharma, A.K. Melt ejection from copper target in air in the presence of magnetic field using nanosecond pulsed laser ablation. J. Vac. Sci. Technol. A Vac. Surf. Film.
**2017**, 35, 031305. [Google Scholar] [CrossRef] - Singh, K.S.; Sharma, A.K. Time-integrated optical emission studies on laser-produced copper plasma in the presence of magnetic field in air ambient at atmospheric pressure. Appl. Phys. A
**2017**, 123, 325. [Google Scholar] [CrossRef] - Ahamer, C.M.; Pedarnig, J.D. Femtosecond double pulse laser-induced breakdown spectroscopy: Investigation of the intensity enhancement. Spectrochim. Acta Part B At. Spectrosc.
**2018**, 148, 23–30. [Google Scholar] [CrossRef] - Ahmed, R.; Akthar, M.; Jabbar, A.; Umar, Z.A.; Ahmed, N.; Iqbal, J.; Baig, M.A. Signal Intensity Enhancement by Cavity Confinement of Laser-Produced Plasma. IEEE Trans. Plasma Sci.
**2019**, 47, 1616–1620. [Google Scholar] [CrossRef] - Jabbar, A.; Hou, Z.; Liu, J.; Ahmed, R.; Mahmood, S.; Wang, Z. Calibration-free analysis of immersed metal alloys using long-pulse-duration laser-induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc.
**2019**, 157, 84–90. [Google Scholar] [CrossRef] - Junjuri, R.; Rashkovskiy, S.A.; Gundawar, M.K. Dependence of radiation decay constant of laser produced copper plasma on focal position. Phys. Plasmas
**2019**, 26, 122107. [Google Scholar] [CrossRef] - Mal, E.; Junjuri, R.; Gundawar, M.K.; Khare, A. Optimization of temporal window for application of calibration free-laser induced breakdown spectroscopy (CF-LIBS) on copper alloys in air employing a single line. J. Anal. At. Spectrom.
**2019**, 34, 319–330. [Google Scholar] [CrossRef] - Popov, A.M.; Sushkov, N.I.; Zaytsev, S.M.; Labutin, T.A. The effect of hyperfine splitting on Stark broadening for three blue-green Cu I lines in laser-induced plasma. Mon. Not. R. Astron. Soc.
**2019**, 488, 5594–5603. [Google Scholar] [CrossRef] - Gao, J.; Kang, J.; Li, R.; Chen, Y. Application of calibration-free high repetition rate laser-ablation spark-induced breakdown spectroscopy for the quantitative elemental analysis of a silver alloy. Appl. Opt.
**2020**, 59, 4091–4096. [Google Scholar] [CrossRef] - Rezaei, F.; Karimi, P.; Tavassoli, S.H. Effect of self-absorption correction on LIBS measurements by calibration curve and artificial neural network. Appl. Phys. B
**2013**, 114, 591–600. [Google Scholar] [CrossRef] - Nee, T.-J.A. Near-resonance-Rayleigh scattering measurement on a resonant laser-driven barium plasma. J. Appl. Phys.
**1985**, 57, 4968–4972. [Google Scholar] [CrossRef] - Popović, L.Č.; Dimitrijević, M.S. Stark broadening parameters for spectral lines of singly-, doubly- and triply-charged vanadium ions. Phys. Scr.
**2000**, 61, 192–199. [Google Scholar] [CrossRef] - Popović, L.Č.; Dimitrijević, M.S.; Tankosić, D. The Stark broadening effect in hot star atmospheres: Au I and Au II lines. Astron. Astrophys. Suppl. Ser.
**1999**, 139, 617–623. [Google Scholar] [CrossRef] - Glenzer, S.; Musielok, J.; Kunze, H.J. Investigation of a pair of transition probabilities of C III in high-density plasmas. Phys. Rev. A
**1991**, 44, 1266–1269. [Google Scholar] [CrossRef] - Djeniže, S.; Srećković, A.; Bukvić, S. Experimental transition probabilities in N III, N IV and N V spectra. European Phys. J. D
**2002**, 20, 11–16. [Google Scholar] [CrossRef] - Irimia, A. Forbidden Transition Probabilities of Astrophysical Interest among Low-lying States of V III. J. Astrophys. Astron.
**2007**, 27, 158–166. [Google Scholar] [CrossRef] - Storey, P.J.; Sochi, T. Collision strengths and transition probabilities for Co III forbidden lines. Mon. Not. R. Astron. Soc.
**2016**, 459, 2558–2565. [Google Scholar] [CrossRef] - Xu, L.H.; Persson, A.; Svanberg, S.; Blagoev, K.; Malcheva, G.; Pentchev, V.; Biémont, E.; Campos, J.; Ortiz, M.; Mayo, R. Radiative lifetime and transition probabilities in Cd I and Cd II. Phys. Rev. A
**2004**, 70, 042508. [Google Scholar] [CrossRef][Green Version] - Mayo, R.; Ortiz, M.; Campos, J.; Blagoev, K.; Malcheva, G. Transition probabilities of some high lying states of Cd II. Phys. Scr.
**2005**, 72, 142–147. [Google Scholar] [CrossRef] - Çelik, G.; Erol, E.; Taşer, M. Transition probabilities, oscillator strengths and radiative lifetimes for Zn II. J. Quant. Spectrosc. Radiat. Transf.
**2013**, 129, 263–271. [Google Scholar] [CrossRef] - Nandy, D.K.; Sahoo, B.K. Relativistic calculations of radiative properties and fine structure constant varying sensitivity coefficients in the astrophysically relevant Zn II, Si IV and Ti IV ions. Mon. Not. R. Astron. Soc.
**2015**, 447, 3812–3823. [Google Scholar] [CrossRef] - Fivet, V.; Quinet, P.; Biémont, E.; Xu, H.L. Transition probabilities and lifetimes in gold (Au I and Au II). J. Phys. B
**2006**, 39, 3587–3598. [Google Scholar] [CrossRef] - Mayo, R.; Ortiz, M.; Parente, F.; Santos, J.P. Experimental and theorethical transition probabilities for lines arising from the 6p configurations of Au II. J. Phys. B
**2007**, 40, 4651–4660. [Google Scholar] [CrossRef] - Tian, Y.; Wang, X.; Liu, C.; Yu, Q.; Dai, Z. Measurements of radiative lifetimes, branching fractions, transition probabilities, and oscillator strengths for Eu II and Eu III levels. Mon. Not. R. Astron. Soc.
**2019**, 485, 4485–4491. [Google Scholar] [CrossRef] - Mayo, R.; Ortiz, M.; Campos, J. Experimental oscillator strengths of Zn II lines of astrophysical interest. Eur. J. Phys. D
**2006**, 37, 181–186. [Google Scholar] [CrossRef] - Dixit, G.; Nataraj, H.S.; Sahoo, B.K.; Chaudhuri, R.K.; Majumder, S. Relativistic calculations of the lifetimes and hyperfine structure constants in
^{67}Zn^{+}. J. Phys. B**2008**, 41, 025001. [Google Scholar] [CrossRef][Green Version] - Menart, J.; Heberlein, J.; Pfender, E. Line-by-Line Method of Calculating Emission Coefficients for Thermal Plasmas Consisting of Monoatomic Species. JQSRT
**1996**, 56, 377–398. [Google Scholar] [CrossRef] - Menart, J.; Heberlein, J.; Pfender, E. Theoretical Radiative Emission Results for Argon/Copper Thermal Plasmas. Plasma Chem. Plasma Process.
**1996**, 16, S245–S265. [Google Scholar] [CrossRef] - Menart, J.; Malik, S. Net emission coefficients for argon-iron thermal plasmas. J. Phys. D
**2002**, 35, 867–874. [Google Scholar] [CrossRef] - Wendt, M. Net emission coefficients of argon iron plasmas with electron Stark widths scaled to experiments. J. Phys. D
**2011**, 44, 125201. [Google Scholar] [CrossRef] - Hannachi, R.; Ben Nasr, S.; Cressault, Z.; Teulet, P.; Béji, L. Net emission coefficient of complex thermal plasmas used in SWNT synthesis. J. Phys. D
**2019**, 52, 095203. [Google Scholar] [CrossRef] - Cressault, Y.; Gleizes, A. Thermal plasma properties for Ar-Al, Ar-Fe and Ar-Cu mixtures used in welding plasmas processes: I. Net emission coefficients at atmospheric pressure. J. Phys. D
**2013**, 46, 415206. [Google Scholar] [CrossRef] - Xiang, W.; Zeng, J.; Fu, Y.; Gao, C. Detailed Theoretical Investigations on the L-Shell Absorption of Open-M-Shell Germanium Plasmas: Effect of Autoionization Resonance Broadening. J. Mod. Phys.
**2012**, 3, 1670–1677. [Google Scholar] [CrossRef][Green Version] - Xiang, W.; Fu, Y.; Gao, C.; Zeng, J. Autoionization widths of open-M-shell germanium ions: Effects on inner-shell absorptions. Phys. Scr.
**2012**, 86, 045302. [Google Scholar] [CrossRef] - O’Reilly, F.; Dunne, P. 3D Photoabsorption in Zn-II, Ga-III and Ge-IV. J. Phys. B
**1998**, 31, 1059–1068. [Google Scholar] [CrossRef] - O’Reilly, F.; Dunne, P. 3D Photoabsorption in Zn-III and Ge-V. J. Phys. B
**1998**, 31, L141–L145. [Google Scholar] [CrossRef] - Zeng, J.; Dong, G.; Zhao, G.; Yuan, J. The photoionization of Fe
^{7+}and Fe^{8+}in the 2p-3d resonance energy region. J. Phys. B**2004**, 37, 2529–2542. [Google Scholar] [CrossRef] - Zeng, J.; Yuan, J.; Lu, Q. Photoionization of O III low-lying states: Autoionization resonance energies and widths of some 1s-2p excited states. J. Phys. B
**2001**, 34, 2823–2833. [Google Scholar] [CrossRef] - Comet, M.; Gosselin, G.; Meot, V.; Morel, P.; Pain, J.-C. Nuclear excitation by electron transition rate confidence interval in a
^{201}Hg local thermodynamic equilibrium plasma. Phys. Rev. C**2015**, 92, 054609. [Google Scholar] [CrossRef][Green Version] - Maslov, M.; Brunger, M.J.; Teubner, P.J.O.; Zatsarinny, O.; Bartschat, K.; Fursa, D.; Bray, I.; McEachran, R.P. Electron-impact excitation of the (5d
^{10}6s)^{2}S_{1/2}–(5d^{10}6p)^{2}P_{1/2,3/2}resonance transitions in gold atoms. Phys. Rev. A**2008**, 77, 062711. [Google Scholar] [CrossRef][Green Version] - Mihajlov, A.A.; Srećković, V.A.; Ignjatović, L.M.; Klyucharev, A.N. The Chemi-Ionization Processes in Slow Collisions of Rydberg Atoms with Ground State Atoms: Mechanism and Applications. J. Clust. Sci.
**2012**, 23, 47–75. [Google Scholar] [CrossRef] - Brunner, W.; Ritze, H.H. Conditions for XUV Amplification Considering Recombination in Clusters. Appl. Phys. B
**1998**, 67, 47–51. [Google Scholar] [CrossRef] - Bakshi, V.; Barrett, B.D.; Boone, T.D., Jr.; Nunnally, W.C. Spectroscopic diagnostics of railgun plasma armatures. IEEE Trans. Magn.
**1993**, 29, 1097–1101. [Google Scholar] [CrossRef] - Wetzler, H.; Suss, W.; Stockl, C.; Tauschwitz, A.; Hoffmann, D.H.H. Density Diagnostics of an Argon Plasma by Heavy-Ion Beams and Spectroscopy. Laser Part. Beams
**1997**, 15, 449–459. [Google Scholar] [CrossRef] - Konjević, N. On the use of non-hydrogenic spectral line profiles for plasma electron density diagnostics. Plasma Source Sci. Technol.
**2001**, 10, 356–363. [Google Scholar] [CrossRef] - Ivković, M.; Jovićević, S.; Konjević, N. Low electron density diagnostics: Development of optical emission spectroscopic techniques and some applications to microwave induced plasmas. Spectrochim. Acta B
**2004**, 59, 591–605. [Google Scholar] [CrossRef] - Cheron, B.G.; Bultel, A.; Delair, L. Experimental study of a double arc nitrogen plasma: Static and dynamic behavior. IEEE Trans. Plasma Sci.
**2007**, 35, 498–508. [Google Scholar] [CrossRef] - Jovović, J.; Stojadinović, S.; Šišović, N.M.; Konjević, N. Spectroscopic characterization of plasma during electrolytic oxidation (PEO) of aluminium. Surf. Coat. Technol.
**2011**, 206, 24–28. [Google Scholar] [CrossRef] - Antonov, O.; Efimov, S.; Gurovich, V.T.; Bernshtam, V.; Krasik, Y.E. Spectroscopy of a plasma formed in the vicinity of implosion of the shock wave generated by underwater electrical explosion of spherical wire array. Phys. Plasmas
**2015**, 22, 053507. [Google Scholar] [CrossRef] - Ehrich, H.; Kaplan, J.; Muller, K.G. Initiation of arcing at a plasma-wall contact. IEEE Trans. Plasma Sci.
**1986**, 14, 603–608. [Google Scholar] [CrossRef] - Heading, D.J.; Machacek, A.; Whitford, L.C.; Varney, A.J.; Wark, J.S.; Lee, R.W.; Stamm, R.; Talin, B. Rapid generation of approximate optical spectra of dense cool plasmas. J. Quant. Spectrosc. Radiat. Transf.
**1997**, 58, 619–626. [Google Scholar] [CrossRef] - Ghebregziabher, I.; Hartig, K.C.; Jovanovic, I. Propagation distance-resolved characteristics of filament-induced copper plasma. Opt. Express
**2016**, 24, 5263–5276. [Google Scholar] [CrossRef] - Pandey, P.K.; Thareja, R.K.; Costello, J.T. Heterogeneous (Cu-Ti) colliding plasma dynamics. Phys. Plasmas
**2016**, 23, 103516. [Google Scholar] [CrossRef] - Nagai, H.; Kikuchi, R.; Inada, Y.; Matsuoka, S.; Shioiri, T.; Kumada, A.; Hidaka, K. Process of Vacuum Breakdown between Cu and CuCr Electrodes. IEEE Trans. Plasma Sci.
**2019**, 47, 5191–5197. [Google Scholar] [CrossRef] - Garkusha, I.E.; Chebotarev, V.V.; Solyakov, D.G.; Petrov, Y.V.; Ladygina, M.S.; Marchenko, A.K.; Staltsov, V.V.; Yelisyeyev, D.V. Compression zone of a magnetoplasma compressor as a source of extreme UV radiation. Plasma Phys. Rep.
**2012**, 38, 110–115. [Google Scholar] [CrossRef] - Milosavljević, V.; Poparić, G. Atomic spectral line free parameter deconvolution procedure. Phys. Rev. E
**2001**, 63, 036404. [Google Scholar] [CrossRef] [PubMed] - Dimitrijević, M.S.; Chougule, A. Stark broadening of Cr III spectral lines: DO white dwarfs. Atoms
**2018**, 6, 15. [Google Scholar] [CrossRef][Green Version] - Abdul Rahim Yaqub, N.; Qindeel, R.; Alonizan, N.; Ben Nessib, N. Expectation Values of the Neutral Chromium Radius. Atoms
**2018**, 6, 51. [Google Scholar] [CrossRef][Green Version] - Dimitrijević, M.S.; Sahal-Bréchot, S. On the Application of Stark Broadening Data Determined with a Semiclassical Perturbation Approach. Atoms
**2014**, 2, 357–377. [Google Scholar] [CrossRef][Green Version] - Dimitrijević, M.S.; Sahal-Bréchot, S.; Moreau, N. The STARK-B Database, a Node of Virtual Atomic and Molecular Data Center (VAMDC). Publ. Astron. Obs. Belgrade
**2018**, 98, 285–288. [Google Scholar] - Sahal-Bréchot, S.; Dimitrijević, M.S.; Moreau, N. Virtual Laboratory Astrophysics and the STARK-B database VAMDC node: A resource for electron and ion impact widths and shifts of isolated lines. J. Phys. Conf. Ser.
**2020**, 1412, 132052. [Google Scholar] [CrossRef] - Dubernet, M.L.; Boudon, V.; Culhane, J.L.; Dimitrijević, M.S.; Fazliev, A.Z.; Joblin, C.; Kupka, F.; Leto, G.; Le Sidaner, P.; Loboda, P.A.; et al. Virtual atomic and molecular data centre. J. Quant. Spectrosc. Radiat. Transf.
**2010**, 111, 2151–2159. [Google Scholar] [CrossRef][Green Version] - Dubernet, M.L.; Antony, B.; Ba, Y.A.; Babikov, Y.; Bartschat, K.; Boudon, V.; Braams, B.; Chung, H.K.; Daniel, F.; Delahaye, F.; et al. The Virtual Atomic and Molecular Data Centre (VAMDC) Consortium. J. Phys. B At. Mol. Opt. Phys.
**2016**, 49, 074003. [Google Scholar] [CrossRef] - VAMDC Portal. Available online: https://portal.vamdc.eu (accessed on 20 July 2020).

© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Dimitrijević, M.S.
Forty Years of the Applications of Stark Broadening Data Determined with the Modified Semiempirical Method. *Data* **2020**, *5*, 73.
https://doi.org/10.3390/data5030073

**AMA Style**

Dimitrijević MS.
Forty Years of the Applications of Stark Broadening Data Determined with the Modified Semiempirical Method. *Data*. 2020; 5(3):73.
https://doi.org/10.3390/data5030073

**Chicago/Turabian Style**

Dimitrijević, Milan S.
2020. "Forty Years of the Applications of Stark Broadening Data Determined with the Modified Semiempirical Method" *Data* 5, no. 3: 73.
https://doi.org/10.3390/data5030073