Preliminary Studies on Genetic Profiling of Coffee and Caffeine Consumption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Population
2.2. DNA Preparation and Genotyping
3. Results
4. Discussion
5. Conclusions
6. Patents
Funding
Acknowledgments
Conflicts of Interest
References
- Fredholm, B.B.; Battig, K.; Holmen, J.; Nehlig, A.; Zvartau, E.E. Actions of Caffeine in the Brain with Special Reference to Factors That Contribute to Its Widespread Use. Pharmacol. Rev. 1999, 51, 83–133. [Google Scholar]
- Santos, R.M. Our ‘Black Box’ Cup of Coffee: What Is Inside? Res. Pharm. 2010, 1, 60–63. [Google Scholar]
- Nehlig, A.; Debry, G. Potential Genotoxic, Mutagenic and Antimutagenic Effects of Coffee: A Review. Mutat. Res. 1994, 317, 145–162. [Google Scholar] [CrossRef]
- Butler, M.A.; Iwasaki, M.; Guengerich, F.P.; Kadlubar, F.F. Human Cytochrome P-450pa (P-450ia2), the Phenacetin O-Deethylase, Is Primarily Responsible for the Hepatic 3-Demethylation of Caffeine and N-Oxidation of Carcinogenic Arylamines. Proc. Natl. Acad. Sci. USA 1999, 86, 7696–7700. [Google Scholar] [CrossRef]
- Gu, L.; Gonzalez, F.J.; Kalow, W.; Tang, B.K. Biotransformation of Caffeine, Paraxanthine, Theobromine and Theophylline by Cdna-Expressed Human Cyp1a2 and Cyp2e1. Pharmacogenetics 1992, 2, 73–77. [Google Scholar] [CrossRef]
- Sachse, C.; Brockmoller, J.; Bauer, S.; Roots, I. Functional Significance of a C-->a Polymorphism in Intron 1 of the Cytochrome P450 Cyp1a2 Gene Tested with Caffeine. Br. J. Clin. Pharmacol. 1999, 47, 445–449. [Google Scholar] [CrossRef]
- Santos, R.M.; Cotta, K.; Jiang, S.; Lima, D.R.A. Does Cyp1a2 Genotype Influence Coffee Consumption? Austin J. Pharmacol. Ther. 2014, 3, 1065. [Google Scholar]
- Slatkin, M. Linkage Disequilibrium--Understanding the Evolutionary Past and Mapping the Medical Future. Nat. Rev. Genet. 2008, 9, 477–485. [Google Scholar] [CrossRef]
- HapMap Consortium, T.I. The International Hapmap Project. Nature 2003, 426, 789–796. [Google Scholar] [CrossRef]
- Goldstein, D.B.; Weale Michael, E. Population Genomics: Linkage Desequilibrium Holds the Key. Curr. Biol. 2001, 11, R576–R579. [Google Scholar] [CrossRef]
- Cornelis, M.C.; Byrne, E.M.; Esko, T.; Nalls, M.A.; Ganna, A.; Paynter, N.; Monda, K.L.; Amin, N.; Fischer, K.; Renstrom, F.; et al. Genome-Wide Meta-Analysis Identifies Six Novel Loci Associated with Habitual Coffee Consumption. Mol. Psychiatry 2014, 20, 647. [Google Scholar] [CrossRef]
- Cornelis, M.C. Coffee Intake. Prog. Mol. Biol. Transl. Sci. 2012, 108, 293–322. [Google Scholar]
- Cornelis, M.C.; Monda, K.L.; Yu, K.; Paynter, N.; Azzato, E.M.; Bennett, S.N.; Berndt, S.I.; Boerwinkle, E.; Chanock, S.; Chatterjee, N.; et al. Genome-Wide Meta-Analysis Identifies Regions on 7 p21 (Ahr) and 15 q24 (Cyp1a2) as Determinants of Habitual Caffeine Consumption. PLoS Genet. 2011, 7, e1002033. [Google Scholar] [CrossRef]
- Sulem, P.; Gudbjartsson, D.F.; Geller, F.; Prokopenko, I.; Feenstra, B.; Aben, K.K.; Franke, B.; den Heijer, M.; Kovacs, P.; Stumvoll, M.; et al. Sequence Variants at Cyp1a1-Cyp1a2 and Ahr Associate with Coffee Consumption. Hum. Mol. Genet. 2011, 20, 2071–2077. [Google Scholar] [CrossRef]
- Josse, A.R.; da Costa, L.A.; Campos, H.; El-Sohemy, A. Associations between Polymorphisms in the Ahr and Cyp1a1-Cyp1a2 Gene Regions and Habitual Caffeine Consumption. Am. J. Clin. Nutr. 2012, 96, 665–671. [Google Scholar] [CrossRef]
- Amin, N.; Byrne, E.; Johnson, J.; Chenevix-Trench, G.; Walter, S.; Nolte, I.M.; Vink, J.M.; Rawal, R.; Mangino, M.; Teumer, A.; et al. Genome-Wide Association Analysis of Coffee Drinking Suggests Association with Cyp1a1/Cyp1a2 and Nrcam. Mol. Psychiatry 2012, 17, 1116–1129. [Google Scholar] [CrossRef]
- Blanchard, J.; Mohammadi, J.D.; Conrad, K.A. Improved Liquid-Chromatographic Determination of Caffeine in Plasma. Clin. Chem. 1980, 26, 1351–1354. [Google Scholar]
- Zhang, W.; Ng, H.W.; Shu, M.; Luo, H.; Su, Z.; Ge, W.; Perkins, R.; Tong, W.; Hong, H. Comparing Genetic Variants Detected in the 1000 Genomes Project with Snps Determined by the International Hapmap Consortium. J. Genet. 2015, 94, 731–740. [Google Scholar] [CrossRef]
- Bickmore, W.A.; van Steensel, B. Genome Architecture: Domain Organization of Interphase Chromosomes. Cell 2013, 152, 1270–1284. [Google Scholar] [CrossRef] [Green Version]
- Cremer, T.; Cremer, C. Chromosome Territories, Nuclear Architecture and Gene Regulation in Mammalian Cells. Nat. Rev. Genet. 2011, 2, 292–301. [Google Scholar] [CrossRef]
- Cremer, T.; Cremer, M.; Dietzel, S.; Muller, S.; Solovei, I.; Fakan, S. Chromosome Territories--a Functional Nuclear Landscape. Curr. Opin. Cell Biol. 2006, 18, 307–316. [Google Scholar] [CrossRef]
- Nakagawa-Senda, H.; Hachiya, T.; Shimizu, A.; Hosono, S.; Oze, I.; Watanabe, M.; Matsuo, K.; Ito, H.; Hara, M.; Nishida, Y.; et al. A Genome-Wide Association Study in the Japanese Population Identifies the 12q24 Locus for Habitual Coffee Consumption: The J-Micc Study. Sci. Rep. 2018, 8, 1493. [Google Scholar] [CrossRef]
SNP # | Marker (rs) | EA/NEA | CHR | Gene Symbol | Position Kb | Gene Name |
---|---|---|---|---|---|---|
1 | 2470893 | [C/T] | 15 q24 | CYP1A1-1A2 region | 74727108 | Cytochrome P450 family 1A1 |
2 | 2472297 | [C/T] | 15 q24 | CYP1A1-1A2 region | 74735539 | Cytochrome P450 family 1A1 |
3 | 6495122 | [A/C] | 15 q24 | CPLX3/ULK3/ | 74833304 | Unc-51 like kinase 3 Complexin 3 |
4 | 2472304 | [G/A] | 15 q24 | CYP 1A2 | 74751897 | Cytochrome P450 family 1A2 |
5 | 1378942 | [A/C] | 15 q24 | CSK | 74785026 | c-src tyrosine kinase microRNA 4513 |
6 | 12148488 | [G/T] | 15 q24 | PPCDC/SCAMP5 | 75090201 | Secretory carrier membrane protein 5; phosphor-pantothenoylcysteine decarboxylase |
7 | 4410790 | [C/T] | 7 p21 | AHR region | 17244953 | Aryl Hydrocarbon Receptor |
8 | 6968865 | [A/T] | 7 p21 | AHR region | 17247645 | Aryl Hydrocarbon Receptor |
9 | 762551 | [C/A] | 15 q24 | CYP 1A2 | 74749576 | Cytochrome P450 family 1A2 |
10 | 3761422 | [C/T] | 22 q11 | SPECC 1L/ADORA2 | 24430704 | Adenosine Receptor 2A |
11 | 9526558 | [A/G] | 13 q14 | CAB39L | 49408376 | Calcium Binding protein g39-like |
12 | 1051730 | [A/G] | 15 q25 | CHRNA3 | 78601997 | Cholinergic receptor nicotinic alpha 3/alpha 5 (neuronal) |
13 | 2066853 | [A/G] | 7 p21 | AHR | 17339486 | Aryl Hydrocarbon Receptor |
14 | 382140 | [A/G] | 7 q31 | LAMB4/NRCAM | 108141755 | Neuronal cell adhesion molecule |
15 | 16868941 | [A/G] | 8 q22 | NCALD | 102040149 | Neurocalcin Delta |
16 | 17498920 | [A/G] | 8 q22 | NCALD | 102043861 | Neurocalcin Delta |
SNP # | Homozygote Variant % Frequency | Homozygote Wild-Type % Frequency | Heterozygote % Frequency | Variant-Allele Effect Direction | Marker | Trait (NCBI) |
---|---|---|---|---|---|---|
1 | 38.5 | 7.7 | 53.8 | Subtract | CYP1A1- | Caffeine/Addictive behavior |
(5/13) | (1/13) | (7/13) | (Negative) | 1A2 region | ||
2 | 53.8 | 7.7 | 38.5 | Subtract | CYP1A1- | Coffee |
(7/13) | (1/13) | (5/13) | (Negative) | 1A2 region | ||
3 | 23.1 | 53.8 | 23.1 | CPLX3/ | Caffeine, blood pressure; addictive behavior | |
(3/13) | (7/13) | (3/13) | No effect | ULK3/ | ||
4 | 15.4 | 61.5 | 23.1 | Add | Caffeine | |
(2/13) | (8/13) | (3/13) | (Positive) | CYP 1A2 | ||
5 | 61.5 | 15.4 | 23.1 | Subtract | CSK | Blood Pressure |
(8/13) | (2/13) | (3/13) | (Negative) | |||
6 | 46.2 | 23.1 | 30.8 | Subtract | PPCDC/SC | Caffeine |
(6/13) | (3/13) | (4/13) | (Negative) | AMP5 | ||
7 | 15.4 | 23.1 | 61.5 | Add | AHR | Caffeine |
(2/13) | (3/13) | (8/13) | (Positive) | region | ||
8 | 23.1 | 15.4 | 61.5 | Add | AHR | Coffee |
(3/13) | (2/13) | (8/13) | (Positive) | region | ||
9 * | 9.0 | 81.8 | 9.0 | Add | CYP 1A2 | Caffeine PK |
(1/11) | (9/11) | (1/11) | (Positive) | |||
10 | 7.7 | 30.8 | 61.5 | Add | SPECC | Caffeine PD |
(1/13) | (4/13) | (8/13) | (Positive) | 1L/ADORA2A | ||
11 | 61.5 | 30.8 | 7.7 | Subtract | CAB39L | Unknown |
(8/13) | (4/13) | (1/13) | (Negative) | |||
12 | 69.2 | 0.0 | 30.8 | Subtract | CHRNA3 | Lung cancer Smoking |
(9/13) | (4/13) | (Negative) | ||||
13 | 0.0 | 53.8 | 46.2 | Add | AHR | Unknown |
(7/13) | (6/13) | (Positive) | ||||
14 | 0.0 | 53.8 | 46.2 | Add | LAMB4/ | Addictive behavior |
(7/13) | (6/13) | (Positive) | NRCAM | |||
15 | 7.7 | 84.6 | 7.7 | Add | NCALD | Addictive behavior |
(1/13) | (11/13) | (1/13) | (Positive) | |||
16 | 0.0 | 92.3 | 7.7 | Add | NCALD | Unknown |
(12/13) | (1/13) | (Positive) |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, R.M. Preliminary Studies on Genetic Profiling of Coffee and Caffeine Consumption. Beverages 2019, 5, 41. https://doi.org/10.3390/beverages5030041
Santos RM. Preliminary Studies on Genetic Profiling of Coffee and Caffeine Consumption. Beverages. 2019; 5(3):41. https://doi.org/10.3390/beverages5030041
Chicago/Turabian StyleSantos, Roseane M. 2019. "Preliminary Studies on Genetic Profiling of Coffee and Caffeine Consumption" Beverages 5, no. 3: 41. https://doi.org/10.3390/beverages5030041
APA StyleSantos, R. M. (2019). Preliminary Studies on Genetic Profiling of Coffee and Caffeine Consumption. Beverages, 5(3), 41. https://doi.org/10.3390/beverages5030041