Microalgae: Green Engines for Achieving Carbon Sequestration, Circular Economy, and Environmental Sustainability—A Review Based on Last Ten Years of Research
Abstract
1. Introduction
2. Contribution to Soil Health Improvement
3. Contribution to Sustainable Agriculture
Species | Function/Method | Effect/Benefits | References |
---|---|---|---|
Arthrospira platensis, Chlorella vulgaris, Nostoc muscorum, Anabaena azollae, Scenedesmus spp., Dunaliella salina | Soil enrichment, EPS secretion, biomass decomposition | Enhance soil health, increase organic matter, improve soil structure, water-holding capacity, and microbial enzymatic activity | [4,9,31,32,33,37] |
Nostoc muscorum, Tolypothrix tenuis, Anabaena spp. | EPS secretion (soil particle binding, mucilage, flagella) | Improve aggregation, porosity, reduce evaporation, enhance gas exchange, water retention, erosion resistance, and soil fertility | [32,33,34,44] |
Nostoc calcicole, Cyanobacteria, Scytonema spp., Anabaena spp. | Biocrust formation (EPS, trichomes, mucilage) | Stabilize topsoil, improve soil texture, and integrity | [32,35,71] |
Nostoc commune, Tolypothrix distorta, Trichocoleus desertorum, Leptolyngbya frigida, Chlorella vulgaris, Nannochloropsis salina, Arthrospira platensis, Spirulina platensis | Secretion of plant growth regulators (gibberellins, cytokinins, auxins) and seed germination | Enhance root development, stimulate microbial activity, and increase aggregate formation | [8,36,37,72] |
Chlorococcum mexicana, C. sajao | EPS and soil aggregation | Improve soil aggregate stability in temperate agriculture | [38] |
Desmodesmus, Heterochlorella | Acidophilic biocrust formation | Stabilize acidic soils, raise pH levels | [39] |
Scytonema javanicum (N-fixer), Phormidium ambiguum (non-N-fixer) | EPS production, biocrust formation | Enhance soil integrity, erosion resistance | [40] |
Chlorella spp., Scenedesmus spp., Nannochloropsis spp., Dunaliella salina | Binding soil particles and metals (Ca, Fe, Zn) | Form organo-mineral complexes, enhance aggregation | [9,41] |
Chlamydomonas spp. | Electrostatic/flagellar adhesion | Facilitate soil particle aggregation | [42] |
Tetradesmus obliquus and Chlorella sorokiniana, Chlorella pyrenoidosa, Azotobacter beijerinckii, Leptolyngbya spp., Dunaliella salina | Soil improvement in degraded/saline soils | Enhance organic matter, lower pH, improve enzyme activity, and microbial performance | [45,73,74,75,76] |
Tribonema spp., Thermonaerobaculia, Subgroup_10, Sordariomycetes, Microascaceae, Pseudomonas, Togniniaceae, and Phaeoacremonium, Chlorella ellipsoidea, Arthrospira maxima | Soil nutrient enrichment in tomato cultivation | ↑ Phosphorus (27.4%), organic N (403.4%), ammonium-N (125.2%), nitrate-N (215.6%), Mg (73.4%) | [31,45,46,47,48,49,50,51] |
Nostoc, Anabaena, Tolypothrix, Aulosira | Nitrogen fixation in paddy rice | Improve soil fertility, reduce synthetic inputs | [4,7,52,53] |
Azolla–Anabaena, Rhizobium spp. (symbiotic) | Biofertilizer combinations | Enhance fertility, crop performance | [52,53] |
Nostoc piscinale | Biofertilizer in maize | ↑ Humus 17–20%, improve soil fertility and crop yield | [55,59] |
Chlorella vulgaris, Spirulina platensis | Biofertilizer application | Improve soil quality, ↑ rice yield by 20.9% | [56] |
Monoraphidium spp. | Tomato inoculation | ↑ Shoot biomass 32%, ↑ Chlorophyll-a 12% | [58] |
Anabaena spp. | Nitrogen fixation, growth regulator secretion | ↑ Yield, nitrogen fixation, disease resistance, soil fertility (wheat and others) | [60] |
Microalgae (Chlorella spp.) + compost (wheat field) | Wastewater-grown algal application | ↑ Microbial biomass C (31.8–67%), ↓ fertilizer use 25%, ↑ grain N (3.56%), ↑ yield components | [61,77] |
Chlorella vulgaris + Rhizobium tropici + Azospirillum brasilense | Co-inoculation (bean cultivation) | ↑ Yield (219.7–656 kg ha−1), ↑ profit by 25.6% | [62] |
Nostoc spp., Anabaena | EPS secretion, N fixation | ↓ Fertilizer use by 25–50%, ↑ microbial activity 5–25%, fix 25–40 kg N ha−1, reduce leaching | [63,64] |
Burkholderia vietnamiensis + Trichoderma harzianum | Co-inoculation in tomato | ↑ Microbial diversity, suppress pathogens, enhance resilience | [65,66] |
Scenedesmus obliquus | Bio-stimulant activity | ↑ Germination 40%, auxin-like activity 60%, cytokinin-like activity 187.5% | [67] |
Trichormus variabilis, Auxenochlorella pyrenoidosa, Spirulina platensis Anabaena spp., Tribonema spp., Chlorella vulgaris | Biofertilizer and soil restoration | ↑ Crop yields 15.7–29.6%, ↓ fertilizer use, restore degraded soils | [70] |
4. Contribution to Carbon Sequestration and Climate Change Mitigation
5. Contribution to Environmental Benefits
6. Contribution to Circular Economy and Waste Valorization
7. Challenges, Limitations, Solutions, and Future Directions
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
EPS | Extracellular polymeric substances |
CO2 | Carbon dioxide |
CCM | Carbon concentration mechanism |
Gt | Gigatons |
HC | Hydrocarbons |
SO2 | Sulfur dioxide |
PHB | Polyhydroxybutyrate |
PLA | Polylactic acid |
PBR | Photobioreactor |
ROS | Reactive oxygen species |
References
- Muller, A.; Schader, C.; El-Hage Scialabba, N.; Brüggemann, J.; Isensee, A.; Erb, K.H.; Smith, P.; Klocke, P.; Leiber, F.; Stolze, M.; et al. Strategies for Feeding the World More Sustainably with Organic Agriculture. Nat. Commun. 2017, 8, 1290. [Google Scholar] [CrossRef]
- Meena, R.S.; Kumar, S.; Datta, R.; Lal, R.; Vijayakumar, V.; Brtnicky, M.; Sharma, M.P.; Yadav, G.S.; Jhariya, M.K.; Jangir, C.K.; et al. Impact of Agrochemicals on Soil Microbiota and Management: A Review. Land 2020, 9, 34. [Google Scholar] [CrossRef]
- Scagliola, M.; Valentinuzzi, F.; Mimmo, T.; Cesco, S.; Crecchio, C.; Pii, Y. Bioinoculants as Promising Complement of Chemical Fertilizers for a More Sustainable Agricultural Practice. Front. Sustain. Food Syst. 2021, 4, 622169. [Google Scholar] [CrossRef]
- Gonçalves, J.; Freitas, J.; Fernandes, I.; Silva, P. Microalgae as Biofertilizers: A Sustainable Way to Improve Soil Fertility and Plant Growth. Sustainability 2023, 15, 12413. [Google Scholar] [CrossRef]
- Song, X.; Zhang, J.; Peng, C.; Li, D. Replacing Nitrogen Fertilizer with Nitrogen-Fixing Cyanobacteria Reduced Nitrogen Leaching in Red Soil Paddy Fields. Agric. Ecosyst. Environ. 2021, 312, 107320. [Google Scholar] [CrossRef]
- Viana, C.M.; Freire, D.; Abrantes, P.; Rocha, J.; Pereira, P. Agricultural Land Systems Importance for Supporting Food Security and Sustainable Development Goals: A Systematic Review. Sci. Total Environ. 2022, 806, 150718. [Google Scholar] [CrossRef]
- Reisoglu, Ş.; Aydin, S. Microalgae as a Promising Candidate for Mitigating Climate Change and Biodiversity Loss. In Microalgae—Current and Potential Applications; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Parmar, P.; Kumar, R.; Neha, Y.; Srivatsan, V. Microalgae as next Generation Plant Growth Additives: Functions, Applications, Challenges and Circular Bioeconomy Based Solutions. Front. Plant Sci. 2023, 14, 1073546. [Google Scholar] [CrossRef]
- Gurau, S.; Imran, M.; Ray, R.L. Algae: A Cutting-Edge Solution for Enhancing Soil Health and Accelerating Carbon Sequestration—A Review. Environ. Technol. Innov. 2025, 37, 103980. [Google Scholar] [CrossRef]
- Mutum, L.; Janda, T.; Ördög, V.; Molnár, Z. Biologia Futura: Potential of Different Forms of Microalgae for Soil Improvement. Biol. Futur. 2022, 73, 1–8. [Google Scholar] [CrossRef]
- Ammar, E.E.; Aioub, A.A.A.; Elesawy, A.E.; Karkour, A.M.; Mouhamed, M.S.; Amer, A.A.; EL-Shershaby, N.A. Algae as Bio-Fertilizers: Between Current Situation and Future Prospective: The Role of Algae as a Bio-Fertilizer in Serving of Ecosystem. Saudi J. Biol. Sci. 2022, 29, 3083–3096. [Google Scholar] [CrossRef]
- Kholssi, R.; Lougraimzi, H.; Grina, F.; Lorentz, J.F.; Silva, I.; Castaño-Sánchez, O.; Marks, E.A.N. Green Agriculture: A Review of the Application of Micro- and Macroalgae and Their Impact on Crop Production on Soil Quality. J. Soil Sci. Plant Nutr. 2022, 22, 4627–4641. [Google Scholar] [CrossRef]
- Zhou, L.; Li, K.; Duan, X.; Hill, D.; Barrow, C.; Dunshea, F.; Martin, G.; Suleria, H. Bioactive Compounds in Microalgae and Their Potential Health Benefits. Food Biosci. 2022, 49, 101932. [Google Scholar] [CrossRef]
- Alam, M.A.; Xu, J.L.; Wang, Z. Microalgae Biotechnology for Food, Health and High Value Products; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1–483. [Google Scholar] [CrossRef]
- Youssef, S.M.; El-Serafy, R.S.; Ghanem, K.Z.; Elhakem, A.; Abdel Aal, A.A. Foliar Spray or Soil Drench: Microalgae Application Impacts on Soil Microbiology, Morpho-Physiological and Biochemical Responses, Oil and Fatty Acid Profiles of Chia Plants under Alkaline Stress. Biology 2022, 11, 1844. [Google Scholar] [CrossRef]
- Costa, J.A.V.; Freitas, B.C.B.; Cruz, C.G.; Silveira, J.; Morais, M.G. Potential of Microalgae as Biopesticides to Contribute to Sustainable Agriculture and Environmental Development. J. Environ. Sci. Health Part B Pestic. Food Contam. Agric. Wastes 2019, 54, 366–375. [Google Scholar] [CrossRef]
- Sekerc, Y.; Ozarslan, R. Oxygen-Plankton Model under the Effect of Global Warming with Nonsingular Fractional Order. Chaos Solitons Fractals 2020, 132, 109532. [Google Scholar] [CrossRef]
- Khambalkar, P.A.; Yadav, S.S.; Sadawart, M.J.; Shivansh. Innovative Use of Algae for Carbon Sequestration and Renewable Energy Generation. Environ. Rep. 2023, 5, 10–14. [Google Scholar] [CrossRef]
- Sarwer, A.; Hamed, S.M.; Osman, A.I.; Jamil, F.; Al-Muhtaseb, A.H.; Alhajeri, N.S.; Rooney, D.W. Algal Biomass Valorization for Biofuel Production and Carbon Sequestration: A Review. Environ. Chem. Lett. 2022, 20, 2797–2851. [Google Scholar] [CrossRef]
- Ashour, M.; Mansour, A.T.; Alkhamis, Y.A.; Elshobary, M. Usage of Chlorella and Diverse Microalgae for CO2 Capture-towards a Bioenergy Revolution. Front. Bioeng. Biotechnol. 2024, 12, 1387519. [Google Scholar] [CrossRef]
- Kupriyanova, E.V.; Pronina, N.A.; Los, D.A. Adapting from Low to High: An Update to CO2-Concentrating Mechanisms of Cyanobacteria and Microalgae. Plants 2023, 12, 1569. [Google Scholar] [CrossRef]
- Barrett, J.; Girr, P.; Mackinder, L.C.M. Pyrenoids: CO2-Fixing Phase Separated Liquid Organelles. Biochim. Biophys. Acta Mol. Cell Res. 2021, 1868, 118949. [Google Scholar] [CrossRef]
- Novoveská, L.; Nielsen, S.L.; Eroldoğan, O.T.; Haznedaroglu, B.Z.; Rinkevich, B.; Fazi, S.; Robbens, J.; Vasquez, M.; Einarsson, H. Overview and Challenges of Large-Scale Cultivation of Photosynthetic Microalgae and Cyanobacteria. Mar. Drugs 2023, 21, 445. [Google Scholar] [CrossRef]
- Leong, Y.K.; Chang, J.-S. Bioremediation of Heavy Metals Using Microalgae: Recent Advances and Mechanisms. Bioresour. Technol. 2020, 303, 122886. [Google Scholar] [CrossRef]
- Moreira, J.B.; Santos, T.D.; Duarte, J.H.; Bezerra, P.Q.M.; de Morais, M.G.; Costa, J.A.V. Role of Microalgae in Circular Bioeconomy: From Waste Treatment to Biofuel Production. Clean Technol. Environ. Policy 2023, 25, 427–437. [Google Scholar] [CrossRef]
- Ezhumalai, G.; Arun, M.; Manavalan, A.; Rajkumar, R.; Heese, K. A Holistic Approach to Circular Bioeconomy Through the Sustainable Utilization of Microalgal Biomass for Biofuel and Other Value-Added Products. Microb. Ecol. 2024, 87, 61. [Google Scholar] [CrossRef] [PubMed]
- Martins, R.A.; Salgado, E.M.; Gonçalves, A.L.; Esteves, A.F.; Pires, J.C.M. Microalgae-Based Remediation of Real Textile Wastewater: Assessing Pollutant Removal and Biomass Valorisation. Bioengineering 2024, 11, 44. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.M.; Yang, Y.C.; Zhang, W.X.; Wu, J.X.; Chen, Y.T.; Lin, C.H.; Lin, M.W.; Lin, C.S. A Low-Cost Fertilizer Medium Supplemented with Urea for the Lutein Production of Chlorella Sp. and the Ability of the Lutein to Protect Cells against Blue Light Irradiation. Bioengineering 2023, 10, 594. [Google Scholar] [CrossRef]
- Abreu, A.P.; Martins, R.; Nunes, J. Emerging Applications of Chlorella sp. and Spirulina (Arthrospira) sp. Bioengineering 2023, 10, 955. [Google Scholar] [CrossRef]
- Sarma, S.; Sharma, S.; Rudakiya, D.; Upadhyay, J.; Rathod, V.; Patel, A.; Narra, M. Valorization of Microalgae Biomass into Bioproducts Promoting Circular Bioeconomy: A Holistic Approach of Bioremediation and Biorefinery. 3 Biotech 2021, 11, 378. [Google Scholar] [CrossRef]
- Song, X.; Liu, J.; Feng, Y.; Zhou, C.; Li, X.; Yan, X.; Ruan, R.; Cheng, P. Microalgae-Based Biofertilizers Improve Fertility and Microbial Community Structures in the Soil of Potted Tomato. Front. Plant Sci. 2024, 15, 1461945. [Google Scholar] [CrossRef]
- Costa, O.Y.A.; Raaijmakers, J.M.; Kuramae, E.E. Microbial Extracellular Polymeric Substances: Ecological Function and Impact on Soil Aggregation. Front. Microbiol. 2018, 9, 1636. [Google Scholar] [CrossRef]
- Li, C.; Liang, Y.; Miao, Q.; Ji, X.; Duan, P.; Quan, D. The Influence of Microalgae Fertilizer on Soil Water Conservation and Soil Improvement: Yield and Quality of Potted Tomatoes. Agronomy 2024, 14, 2102. [Google Scholar] [CrossRef]
- Mikha, M.M.; Jin, V.L.; Johnson, J.M.F.; Lehman, R.M.; Karlen, D.L.; Jabro, J.D. Land Management Effects on Wet Aggregate Stability and Carbon Content. Soil Sci. Soc. Am. J. 2021, 85, 2149–2168. [Google Scholar] [CrossRef]
- Crouzet, O.; Consentino, L.; Pétraud, J.P.; Marrauld, C.; Aguer, J.P.; Bureau, S.; Le Bourvellec, C.; Touloumet, L.; Bérard, A. Soil Photosynthetic Microbial Communities Mediate Aggregate Stability: Influence of Cropping Systems and Herbicide Use in an Agricultural Soil. Front. Microbiol. 2019, 10, 1319. [Google Scholar] [CrossRef]
- Ronga, D.; Biazzi, E.; Parati, K.; Carminati, D.; Carminati, E.; Tava, A. Microalgal Biostimulants and Biofertilisers in Crop Productions. Agronomy 2019, 9, 192. [Google Scholar] [CrossRef]
- Ramakrishnan, B.; Maddela, N.R.; Venkateswarlu, K.; Megharaj, M. Potential of Microalgae and Cyanobacteria to Improve Soil Health and Agricultural Productivity: A Critical View. Environ. Sci. Adv. 2023, 2, 586–611. [Google Scholar] [CrossRef]
- Bhowmick, S.; Mazumdar, A.; Moulick, A.; Adam, V. Algal Metabolites: An Inevitable Substitute for Antibiotics. Biotechnol. Adv. 2020, 43, 107571. [Google Scholar] [CrossRef]
- Shanthakumar, S.; Abinandan, S.; Venkateswarlu, K.; Subashchandrabose, S.R.; Megharaj, M. Algalization of Acid Soils with Acid-Tolerant Strains: Improvement in PH, Carbon Content, Exopolysaccharides, Indole Acetic Acid and Dehydrogenase Activity. Land Degrad. Dev. 2021, 32, 3157–3166. [Google Scholar] [CrossRef]
- Chamizo, S.; Mugnai, G.; Rossi, F.; Certini, G.; De Philippis, R. Cyanobacteria Inoculation Improves Soil Stability and Fertility on Different Textured Soils: Gaining Insights for Applicability in Soil Restoration. Front. Environ. Sci. 2018, 6, 49. [Google Scholar] [CrossRef]
- Adessi, A.; Cruz de Carvalho, R.; De Philippis, R.; Branquinho, C.; Marques da Silva, J. Microbial Extracellular Polymeric Substances Improve Water Retention in Dryland Biological Soil Crusts. Soil Biol. Biochem. 2018, 116, 67–69. [Google Scholar] [CrossRef]
- Kreis, C.T.; Grangier, A.; Bäumchen, O. In Vivo Adhesion Force Measurements of Chlamydomonas on Model Substrates. Soft Matter 2019, 15, 3027–3035. [Google Scholar] [CrossRef]
- La Bella, E.; Baglieri, A.; Fragalà, F.; Puglisi, I. Multipurpose Agricultural Reuse of Microalgae Biomasses Employed for the Treatment of Urban Wastewater. Agronomy 2022, 12, 234. [Google Scholar] [CrossRef]
- De Silva, A.G.S.D.; Hashim, Z.K.; Solomon, W.; Zhao, J.-B.; Kovács, G.; Kulmány, I.M.; Molnár, Z. Unveiling the Role of Edaphic Microalgae in Soil Carbon Sequestration: Potential for Agricultural Inoculants in Climate Change Mitigation. Agriculture 2024, 14, 2065. [Google Scholar] [CrossRef]
- Wu, Q.; Chen, Y.; Dou, X.; Liao, D.; Li, K.; An, C.; Li, G.; Dong, Z. Microbial Fertilizers Improve Soil Quality and Crop Yield in Coastal Saline Soils by Regulating Soil Bacterial and Fungal Community Structure. Sci. Total Environ. 2024, 949, 175127. [Google Scholar] [CrossRef]
- Abinandan, S.; Praveen, K.; Venkateswarlu, K.; Megharaj, M. Seed Priming with Microalgae Enhances Plant Productivity and Rhizosphere Health. Soil Ecol. Lett. 2025, 7, 240271. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, X.; Laipan, M.; Wei, T.; Guo, J. Soil Health Improvement by Inoculation of Indigenous Microalgae in Saline Soil. Environ. Geochem. Health 2024, 46, 23. [Google Scholar] [CrossRef] [PubMed]
- Solomon, W.; Mutum, L.; Janda, T.; Molnar, Z. Microalgae–Bacteria Interaction: A Catalyst to Improve Maize (Zea mays L.) Growth and Soil Fertility. Cereal Res. Commun. 2025, 53, 1037–1049. [Google Scholar] [CrossRef]
- Wang, M.; Chen, L.; Li, Y.; Chen, L.; Liu, Z.; Wang, X.; Yan, P.; Qin, S. Responses of Soil Microbial Communities to a Short-Term Application of Seaweed Fertilizer Revealed by Deep Amplicon Sequencing. Appl. Soil Ecol. 2018, 125, 288–296. [Google Scholar] [CrossRef]
- Abideen, Z.; Waqif, H.; Munir, N.; El-Keblawy, A.; Hasnain, M.; Radicetti, E.; Mancinelli, R.; Nielsen, B.L.; Haider, G. Algal-Mediated Nanoparticles, Phycochar, and Biofertilizers for Mitigating Abiotic Stresses in Plants: A Review. Agronomy 2022, 12, 1788. [Google Scholar] [CrossRef]
- Nawaz, T.; Joshi, N.; Nelson, D.; Saud, S.; Abdelsalam, N.R.; Abdelhamid, M.M.A.; Jaremko, M.; Rahman, T.U.; Fahad, S. Harnessing the Potential of Nitrogen-Fixing Cyanobacteria: A Rich Bio-Resource for Sustainable Soil Fertility and Enhanced Crop Productivity. Environ. Technol. Innov. 2024, 36, 103886. [Google Scholar] [CrossRef]
- Samantaray, A.; Chattaraj, S.; Mitra, D.; Ganguly, A.; Kumar, R.; Gaur, A.; Mohapatra, P.K.D.; Santos-Villalobos, S.d.l.; Rani, A.; Thatoi, H. Advances in Microbial Based Bio-Inoculum for Amelioration of Soil Health and Sustainable Crop Production. Curr. Res. Microb. Sci. 2024, 7, 100251. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.L. The Use of Microalgae and Cyanobacteria in the Improvement of Agricultural Practices: A Review on Their Biofertilising, Biostimulating and Biopesticide Roles. Appl. Sci. 2021, 11, 871. [Google Scholar] [CrossRef]
- Sani, I.; Kurnia, Y.W.; Sinthya, H.C.; Anthony, R.; Situmorang, E.C.; Utomo, C.; Liwang, T. Exploring The Potency of Microalgae-Based Biofertilizer and Its Impact on Oil Palm Seedlings Growth. Agrivita 2022, 44, 139–151. [Google Scholar] [CrossRef]
- Solomon, W.; Mutum, L.; Rakszegi, M.; Janda, T.; Molnár, Z. Harnessing the Synergy of the Cyanobacteria-Plant Growth Promoting Bacteria for Improved Maize (Zea mays) Growth and Soil Health. Sustainability 2023, 15, 16660. [Google Scholar] [CrossRef]
- Dineshkumar, R.; Kumaravel, R.; Gopalsamy, J.; Sikder, M.N.A.; Sampathkumar, P. Microalgae as Bio-Fertilizers for Rice Growth and Seed Yield Productivity. Waste Biomass Valorization 2018, 9, 793–800. [Google Scholar] [CrossRef]
- Dineshkumar, R.; Subramanian, J.; Gopalsamy, J.; Jayasingam, P.; Arumugam, A.; Kannadasan, S.; Sampathkumar, P. The Impact of Using Microalgae as Biofertilizer in Maize (Zea mays L.). Waste Biomass Valorization 2019, 10, 1101–1110. [Google Scholar] [CrossRef]
- Jimenez, R.; Markou, G.; Tayibi, S.; Barakat, A.; Chapsal, C.; Monlau, F. Production of Microalgal Slow-Release Fertilizer by Valorizing Liquid Agricultural Digestate: Growth Experiments with Tomatoes. Appl. Sci. 2020, 10, 3890. [Google Scholar] [CrossRef]
- Ördög, V.; Stirk, W.A.; Takács, G.; Pőthe, P.; Illés, Á.; Bojtor, C.; Széles, A.; Tóth, B.; van Staden, J.; Nagy, J. Plant Biostimulating Effects of the Cyanobacterium Nostoc Piscinale on Maize (Zea mays L.) in Field Experiments. South African J. Bot. 2021, 140, 153–160. [Google Scholar] [CrossRef]
- Hakkoum, Z.; Minaoui, F.; Chabili, A.; Douma, M.; Mouhri, K.; Loudiki, M. Biofertilizing Effect of Soil Cyanobacterium Anabaena Cylindrica–Based Formulations on Wheat Growth, Physiology, and Soil Fertility. Agriculture 2025, 15, 189. [Google Scholar] [CrossRef]
- Renuka, N.; Prasanna, R.; Sood, A.; Ahluwalia, A.S.; Bansal, R.; Babu, S.; Singh, R.; Shivay, Y.S.; Nain, L. Exploring the Efficacy of Wastewater-Grown Microalgal Biomass as a Biofertilizer for Wheat. Environ. Sci. Pollut. Res. 2016, 23, 6608–6620. [Google Scholar] [CrossRef]
- De Oliveira, K.S.; Volsi, B.; Telles, T.S.; Mendes, A.D.R.; Yunes, J.S.; Andrade, D.S. Co-Inoculation with Rhizobium, Azospirillum, and Microalgae Increases Common Bean Yield and Profitability. Agron. J. 2025, 117, e21719. [Google Scholar] [CrossRef]
- Solomon, W.; Mutum, L.; Janda, T.; Molnár, Z. Potential Benefit of Microalgae and Their Interaction with Bacteria to Sustainable Crop Production. Plant Growth Regul. 2023, 101, 53–65. [Google Scholar] [CrossRef]
- Song, X.; Bo, Y.; Feng, Y.; Tan, Y.; Zhou, C.; Yan, X.; Ruan, R.; Xu, Q.; Cheng, P. Potential Applications for Multifunctional Microalgae in Soil Improvement. Front. Environ. Sci. 2022, 10, 1035332. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, W.; Li, J.; Hu, J.; Wei, Y.; Wang, Y.; Yang, H.; Zhou, Y.; Wu, Y.; Zhang, S. Co-Inoculating Burkholderia Vietnamiensis B418 and Trichoderma Harzianum T11W Reduced Meloidogyne Incognita Infestation of Tomato Plants. Microorganisms 2025, 13, 1337. [Google Scholar] [CrossRef]
- Tang, T.; Sun, X.; Liu, Q.; Dong, Y.; Zha, M. Treatment with Organic Manure Inoculated with a Biocontrol Agent Induces Soil Bacterial Communities to Inhibit Tomato Fusarium Wilt Disease. Front. Microbiol. 2023, 13, 1006878. [Google Scholar] [CrossRef]
- Navarro-López, E.; Ruíz-Nieto, A.; Ferreira, A.; Gabriel Acién, F.; Gouveia, L. Biostimulant Potential of Scenedesmus Obliquus Grown in Brewery Wastewater. Molecules 2020, 25, 664. [Google Scholar] [CrossRef]
- Mignoni, D.S.B.; Nonato, J.D.S.; Alves, J.S.; Michelon, W.; de Oliveira Nunes, E.; Pandolfi, J.R.; Luchessi, A.D. Agriculture Application, Comparison, and Functional Association between Macrophytes and Microalgae: A Review. Discov. Agric. 2025, 3, 82. [Google Scholar] [CrossRef]
- Sanodiya, L.K.; Kevat, P.; Tiwari, M. Seaweed Extract: Usable for Plants Growth and Yield. Vigyan Varta 2022, 3, 80–84. [Google Scholar]
- Ma, F.; Li, Y.; Han, X.; Li, K.; Zhao, M.; Guo, L.; Li, S.; Wang, K.; Qin, K.; Duan, J.; et al. Microalgae-Based Biofertilizer Improves Fruit Yield and Controls Greenhouse Gas Emissions in a Hawthorn Orchard. PLoS ONE 2024, 19, e0307774. [Google Scholar] [CrossRef]
- Yadav, P.; Singh, R.P.; Hashem, A.; Abd_Allah, E.F.; Santoyo, G.; Kumar, A.; Gupta, R.K. Enhancing Biocrust Development and Plant Growth through Inoculation of Desiccation-Tolerant Cyanobacteria in Different Textured Soils. Microorganisms 2023, 11, 2507. [Google Scholar] [CrossRef]
- Alameda-Martín, A.; Chamizo, S.; Rodríguez-Caballero, E.; Muñoz-Rojas, M.; Cantón, Y. The Potential of Biocrust-Forming Cyanobacteria to Enhance Seedling Growth of Native Semi-Arid Plants Through Seed Biopriming. J. Plant Growth Regul. 2024. [Google Scholar] [CrossRef]
- Malla, M.A.; Ansari, F.A.; Featherston, J.; Hassan, H.; Owaes, M.; Osman, A.; Heintz-Buschart, A.; Eisenhauer, N.; Ismail, A.; Bux, F.; et al. Microalgae Inoculation Increases Bacterial Diversity and Gene Abundances Related to Nutrient Removal While Decreasing Antibiotic Resistant Genes in Municipal Wastewater. Algal Res. 2025, 91, 104217. [Google Scholar] [CrossRef]
- Zhou, L.; Liu, W.; Duan, H.; Dong, H.; Li, J.; Zhang, S.; Zhang, J.; Ding, S.; Xu, T.; Guo, B. Improved Effects of Combined Application of Nitrogen-Fixing Bacteria Azotobacter Beijerinckii and Microalgae Chlorella Pyrenoidosa on Wheat Growth and Saline-Alkali Soil Quality. SSRN Electron. J. 2022. [Google Scholar] [CrossRef]
- Mao, Q.; Xie, Z.; Pinzon-Nuñez, D.A.; Issaka, S.; Liu, T.; Zhang, L.; Irshad, S. Leptolyngbya Sp. XZMQ and Bacillus XZM Co-Inoculation Reduced Sunflower Arsenic Toxicity by Regulating Rhizosphere Microbial Structure and Enzyme Activity. Environ. Pollut. 2024, 341, 123001. [Google Scholar] [CrossRef]
- Ren, C.G.; Kong, C.C.; Li, S.M.; Wang, X.J.; Yu, X.; Wang, Y.C.; Qin, S.; Cui, H.L. Symbiotic Microalgae and Microbes: A New Frontier in Saline Agriculture. Front. Microbiol. 2025, 16, 1540274. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, X.; Hong, Y.; Liu, X.; Zhao, G.; Zhang, H.; Zhai, Q. Microalgae Cultivation in Domestic Wastewater for Wastewater Treatment and High Value-Added Production: Species Selection and Comparison. Biochem. Eng. J. 2022, 185, 108493. [Google Scholar] [CrossRef]
- Li, G.; Xiao, W.; Yang, T.; Lyu, T. Optimization and Process Effect for Microalgae Carbon Dioxide Fixation Technology Applications Based on Carbon Capture: A Comprehensive Review. C-J. Carbon Res. 2023, 9, 35. [Google Scholar] [CrossRef]
- Yang, X.; Liu, L.; Yin, Z.; Wang, X.; Wang, S.; Ye, Z. Quantifying Photosynthetic Performance of Phytoplankton Based on Photosynthesis–Irradiance Response Models. Environ. Sci. Eur. 2020, 32, 24. [Google Scholar] [CrossRef]
- Shimakawa, G.; Demulder, M.; Flori, S.; Kawamoto, A.; Tsuji, Y.; Nawaly, H.; Tanaka, A.; Tohda, R.; Ota, T.; Matsui, H.; et al. Diatom Pyrenoids Are Encased in a Protein Shell That Enables Efficient CO2 Fixation. Cell 2024, 187, 5919–5934.e19. [Google Scholar] [CrossRef]
- Xu, G.; Li, Y.; Hou, W.; Wang, S.; Kong, F. Effects of Substrate Type on Enhancing Pollutant Removal Performance and Reducing Greenhouse Gas Emission in Vertical Subsurface Flow Constructed Wetland. J. Environ. Manage. 2021, 280, 111674. [Google Scholar] [CrossRef] [PubMed]
- Bi, Z.; He, B. Biodiesel from Microalgae. In Handbook of Microalgae-Based Processes and Products; Academic Press: Cambridge, MA, USA, 2020; pp. 329–371. [Google Scholar] [CrossRef]
- Li, G.; Yao, J. A Review of Algae-Based Carbon Capture, Utilization, and Storage (Algae-Based CCUS). Gases 2024, 4, 468–503. [Google Scholar] [CrossRef]
- Adamczyk, M.; Lasek, J.; Skawińska, A. CO2 Biofixation and Growth Kinetics of Chlorella Vulgaris and Nannochloropsis Gaditana. Appl. Biochem. Biotechnol. 2016, 179, 1248–1261. [Google Scholar] [CrossRef]
- Morillas-España, A.; Lafarga, T.; Acién-Fernández, F.G.; Gómez-Serrano, C.; González-López, C.V. Annual Production of Microalgae in Wastewater Using Pilot-Scale Thin-Layer Cascade Photobioreactors. J. Appl. Phycol. 2021, 33, 3861–3871. [Google Scholar] [CrossRef]
- Politaeva, N.; Ilin, I.; Velmozhina, K.; Shinkevich, P. Carbon Dioxide Utilization Using Chlorella Microalgae. Environments 2023, 10, 109. [Google Scholar] [CrossRef]
- Yan, Z.; Shen, T.; Li, W.; Cheng, W.; Wang, X.; Zhu, M.; Yu, Q.; Xiao, Y.; Yu, L. Contribution of Microalgae to Carbon Sequestration in a Natural Karst Wetland Aquatic Ecosystem: An in-Situ Mesocosm Study. Sci. Total Environ. 2021, 768, 144387. [Google Scholar] [CrossRef] [PubMed]
- Hamidi, M.; Mohammadi, A.; Mashhadi, H.; Mahmoudnia, F. Evaluation of Effective Environmental Parameters on Lipid, Protein and Beta-Carotene Production in Spirulina Platensis Microalga. Results Eng. 2023, 18, 101102. [Google Scholar] [CrossRef]
- Iglina, T.; Iglin, P.; Pashchenko, D. Industrial CO2 Capture by Algae: A Review and Recent Advances. Sustainability 2022, 14, 3801. [Google Scholar] [CrossRef]
- Tan, X.; Zhang, F.; Wang, H.; Ho, S.H. The Magic of Algae-Based Biochar: Advantages, Preparation, and Applications. Bioengineered 2023, 14, 2252157. [Google Scholar] [CrossRef]
- Shareefdeen, Z.; Elkamel, A.; Babar, Z. Bin Recent Developments on the Performance of Algal Bioreactors for CO2 Removal: Focusing on the Light Intensity and Photoperiods. BioTech 2023, 12, 10. [Google Scholar] [CrossRef]
- Chaudry, S.; Hurtado-McCormick, V.; Cheng, K.Y.; Willis, A.; Speight, R.; Kaksonen, A.H. Microalgae to Bioplastics—Routes and Challenges. Clean. Eng. Technol. 2025, 25, 100922. [Google Scholar] [CrossRef]
- Kim, K.H.; Parrow, M.W.; Kheirkhah Sangdeh, P. Microalgae-Integrated Building Enclosures: A Nature-Based Solution for Carbon Sequestration. Front. Built Environ. 2025, 11, 1574582. [Google Scholar] [CrossRef]
- Ighalo, J.O.; Dulta, K.; Kurniawan, S.B.; Omoarukhe, F.O.; Ewuzie, U.; Eshiemogie, S.O.; Ojo, A.U.; Abdullah, S.R.S. Progress in Microalgae Application for CO2 Sequestration. Clean. Chem. Eng. 2022, 3, 100044. [Google Scholar] [CrossRef]
- Tsai, D.D.W.; Chen, P.H.; Ramaraj, R. The Potential of Carbon Dioxide Capture and Sequestration with Algae. Ecol. Eng. 2017, 98, 17–23. [Google Scholar] [CrossRef]
- Raeesossadati, M.J.; Ahmadzadeh, H.; McHenry, M.P.; Moheimani, N.R. CO2 Environmental Bioremediation by Microalgae. In Biomass and Biofuels from Microalgae. Biofuel and Biorefinery Technologies; Springer: Berlin/Heidelberg, Germany, 2015; pp. 117–136. [Google Scholar] [CrossRef]
- Yahya, L.; Harun, R.; Abdullah, L.C. Screening of Native Microalgae Species for Carbon Fixation at the Vicinity of Malaysian Coal-Fired Power Plant. Sci. Rep. 2020, 10, 22355. [Google Scholar] [CrossRef]
- Abraham, J.; Prigiobbe, V.; Abimbola, T.; Christodoulatos, C. Integrating Biological and Chemical CO2 Sequestration Using Green Microalgae for Bioproducts Generation. Front. Clim. 2023, 4, 949411. [Google Scholar] [CrossRef]
- Arashiro, L.T.; Montero, N.; Ferrer, I.; Acién, F.G.; Gómez, C.; Garfí, M. Life Cycle Assessment of High Rate Algal Ponds for Wastewater Treatment and Resource Recovery. Sci. Total Environ. 2018, 622–623, 1118–1130. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.N.D.; Mukhtar, H.; Le, L.T.; Tran, D.P.H.; Ngo, M.T.T.; Pham, M.D.T.; Nguyen, T.B.; Vo, T.K.Q.; Bui, X.T. Roles of Microalgae-Based Biofertilizer in Sustainability of Green Agriculture and Food-Water-Energy Security Nexus. Sci. Total Environ. 2023, 870, 161927. [Google Scholar] [CrossRef]
- Bagh, S.S.K.K.P. Application of Algae in Air Pollution Control Technique. Bachelor Thesis, National Institue of Technology, Rourkela, India, 2018; pp. 1–30. [Google Scholar]
- Díaz-Pérez, F.J.; Díaz, R.; Valdés, G.; Valdebenito-Rolack, E.; Hansen, F. Effects of Microalgae and Compost on the Yield of Cauliflower Grown in Low Nutrient Soil. Chil. J. Agric. Res. 2023, 83, 181–194. [Google Scholar] [CrossRef]
- Chen, H.; Yu, S.; Yu, Z.; Ma, M.; Liu, M.; Pei, H. Phycoremediation Potential of Salt-Tolerant Microalgal Species: Motion, Metabolic Characteristics, and Their Application for Saline–Alkali Soil Improvement in Eco-Farms. Microorganisms 2024, 12, 676. [Google Scholar] [CrossRef] [PubMed]
- Su, Y. Revisiting Carbon, Nitrogen, and Phosphorus Metabolisms in Microalgae for Wastewater Treatment. Sci. Total Environ. 2021, 762, 144590. [Google Scholar] [CrossRef]
- Sarma, U.; Hoque, M.E.; Thekkangil, A.; Venkatarayappa, N.; Rajagopal, S. Microalgae in Removing Heavy Metals from Wastewater—An Advanced Green Technology for Urban Wastewater Treatment. J. Hazard. Mater. Adv. 2024, 15, 100444. [Google Scholar] [CrossRef]
- Figler, A.; B-Béres, V.; Dobronoki, D.; Márton, K.; Nagy, S.A.; Bácsi, I. Salt Tolerance and Desalination Abilities of Nine Common Green Microalgae Isolates. Water 2019, 11, 2527. [Google Scholar] [CrossRef]
- Bin Abu Sofian, A.D.A.; Lim, H.R.; Manickam, S.; Ang, W.L.; Show, P.L. Towards a Sustainable Circular Economy: Algae-Based Bioplastics and the Role of Internet-of-Things and Machine Learning. ChemBioEng Rev. 2024, 11, 39–59. [Google Scholar] [CrossRef]
- Popa, M.D.; Simionov, I.A.; Petrea, S.M.; Georgescu, P.L.; Ifrim, G.A.; Iticescu, C. Efficiency of Microalgae Employment in Nutrient Removal (Nitrogen and Phosphorous) from Municipal Wastewater. Water 2025, 17, 260. [Google Scholar] [CrossRef]
- Shabbirahmed, A.M.; Jacob, A.; Dey, P.; Somu, P.; Haldar, D. Biomass as Eco-Friendly Adsorbents for the Removal of Emerging Pollutants from Wastewater: A Review. Discov. Appl. Sci. 2025, 7, 771. [Google Scholar] [CrossRef]
- Chen, J.; Dai, L.; Mataya, D.; Cobb, K.; Chen, P.; Ruan, R. Enhanced Sustainable Integration of CO2 Utilization and Wastewater Treatment Using Microalgae in Circular Economy Concept. Bioresour. Technol. 2022, 366, 128188. [Google Scholar] [CrossRef]
- Singh Chauhan, D.; Sahoo, L.; Mohanty, K. Maximize Microalgal Carbon Dioxide Utilization and Lipid Productivity by Using Toxic Flue Gas Compounds as Nutrient Source. Bioresour. Technol. 2022, 348, 126784. [Google Scholar] [CrossRef] [PubMed]
- Wu, G.; Chong, J.W.R.; Khoo, K.S.; Tang, D.Y.Y.; Show, P.L. Upcycling Food Waste for Microalgae Cultivation toward Lipid Production in a Closed-Loop and System-Integrated Circular Bioeconomy. Biotechnol. Biofuels Bioprod. 2025, 18, 74. [Google Scholar] [CrossRef] [PubMed]
- Arashiro, L.T.; Boto-Ordóñez, M.; Van Hulle, S.W.H.; Ferrer, I.; Garfí, M.; Rousseau, D.P.L. Natural Pigments from Microalgae Grown in Industrial Wastewater. Bioresour. Technol. 2020, 303, 122894. [Google Scholar] [CrossRef]
- Wu, G.; Tham, P.E.; Chew, K.W.; Munawaroh, H.S.H.; Tan, I.S.; Wan-Mohtar, W.A.A.Q.I.; Sriariyanun, M.; Show, P.L. Net Zero Emission in Circular Bioeconomy from Microalgae Biochar Production: A Renewed Possibility. Bioresour. Technol. 2023, 388, 129748. [Google Scholar] [CrossRef]
- CORDIS Webpage. A Circular Economy Platform for Treatment of Wastewater by Blue Green Microalgae. Available online: https://cordis.europa.eu/project/id/101064763 (accessed on 1 October 2022).
- Velásquez-Orta, S.B.; Yáñez-Noguez, I.; Ramírez, I.M.; Ledesma, M.T.O. Pilot-Scale Microalgae Cultivation and Wastewater Treatment Using High-Rate Ponds: A Meta-Analysis. Environ. Sci. Pollut. Res. 2024, 31, 46994–47021. [Google Scholar] [CrossRef]
- Malik, S.; Shahid, A.; Betenbaugh, M.J.; Liu, C.G.; Mehmood, M.A. A Novel Wastewater-Derived Cascading Algal Biorefinery Route for Complete Valorization of the Biomass to Biodiesel and Value-Added Bioproducts. Energy Convers. Manag. 2022, 256, 115360. [Google Scholar] [CrossRef]
- Acién, F.G.; Fernández, J.M.; Magán, J.J.; Molina, E. Production Cost of a Real Microalgae Production Plant and Strategies to Reduce It. Biotechnol. Adv. 2012, 30, 1344–1353. [Google Scholar] [CrossRef]
- Tredici, M.R.; Rodolfi, L.; Biondi, N.; Bassi, N.; Sampietro, G. Techno-Economic Analysis of Microalgal Biomass Production in a 1-Ha Green Wall Panel (GWP®) Plant. Algal Res. 2016, 19, 253–263. [Google Scholar] [CrossRef]
- Rumin, J.; de Oliveira Junior, R.G.; Bérard, J.B.; Picot, L. Improving Microalgae Research and Marketing in the European Atlantic Area: Analysis of Major Gaps and Barriers Limiting Sector Development. Mar. Drugs 2021, 19, 319. [Google Scholar] [CrossRef]
- Fortune Business Insights. Microalgae Market Size, Share & Industry Analysis, By Species (Spirulina, Chlorella, Nannochloropsis, Haematococcus, Isochrysis, Chlamydomonas, and Others), By Application (Food and Feed), and Regional Forecast, 2024–2032. 2023, pp. 1–163. Available online: https://www.fortunebusinessinsights.com/microalgae-market-110314 (accessed on 4 August 2025).
- Hoque, M.M.; Saha, B.K.; Scopa, A.; Drosos, M. Biochar in Agriculture: A Review on Sources, Production, and Composites Related to Soil Fertility, Crop Productivity, and Environmental Sustainability. C 2025, 11, 50. [Google Scholar] [CrossRef]
- Yu, K.L.; Show, P.L.; Ong, H.C.; Ling, T.C.; Chen, W.H.; Salleh, M.A.M. Biochar Production from Microalgae Cultivation through Pyrolysis as a Sustainable Carbon Sequestration and Biorefinery Approach. Clean Technol. Environ. Policy 2018, 20, 2047–2055. [Google Scholar] [CrossRef]
- Webster, L.J.; Villa-Gomez, D.; Brown, R.; Clarke, W.; Schenk, P.M. A Synthetic Biology Approach for the Treatment of Pollutants with Microalgae. Front. Bioeng. Biotechnol. 2024, 12, 1379301. [Google Scholar] [CrossRef]
- Piyatilleke, S.; Thevarajah, B.; Nimarshana, P.H.V.; Ariyadasa, T.U. Microalgal Biofuels: Challenges and Prospective in the Framework of Circular Bioeconomy. Energy Nexus 2025, 17, 100338. [Google Scholar] [CrossRef]
- Narala, R.R.; Garg, S.; Sharma, K.K.; Thomas-Hall, S.R.; Deme, M.; Li, Y.; Schenk, P.M. Comparison of Microalgae Cultivation in Photobioreactor, Open Raceway Pond, and a Two-Stage Hybrid System. Front. Energy Res. 2016, 4, 29. [Google Scholar] [CrossRef]
- Dalgleish, P. Sustainability Research Project: Research of Suitable Locations, Design and Operation of Microalgae Production Plants for Biofuel’s. Nat. Resour. 2017, 8, 671–708. [Google Scholar] [CrossRef]
- Penloglou, G.; Pavlou, A.; Kiparissides, C. Recent Advancements in Photo-Bioreactors for Microalgae Cultivation: A Brief Overview. Processes 2024, 12, 1104. [Google Scholar] [CrossRef]
- Banerjee, S.; Ramaswamy, S. Comparison of Productivity and Economic Analysis of Microalgae Cultivation in Open Raceways and Flat Panel Photobioreactor. Bioresour. Technol. Rep. 2019, 8, 100328. [Google Scholar] [CrossRef]
- Yu, B.S.; Pyo, S.; Lee, J.; Han, K. Microalgae: A Multifaceted Catalyst for Sustainable Solutions in Renewable Energy, Food Security, and Environmental Management. Microb. Cell Fact. 2024, 23, 308. [Google Scholar] [CrossRef]
- Deprá, M.C.; Dias, R.R.; Zepka, L.Q.; Jacob-Lopes, E. Tackling Old Challenges in Microalgal Biotechnology: The Role of Photobioreactors to Advance the Technology Readiness Level. Processes 2025, 13, 51. [Google Scholar] [CrossRef]
- Cañedo, J.C.G.; Lizárraga, G.L.L. Considerations for Photobioreactor Design and Operation for Mass Cultivation of Microalgae. In Algae: Organisms for Imminent Biotechnology; Intech Open: London, UK, 2016. [Google Scholar] [CrossRef]
- Shivakumar, S.; Serlini, N.; Esteves, S.M.; Miros, S.; Halim, R. Cell Walls of Lipid-Rich Microalgae: A Comprehensive Review on Characterisation, Ultrastructure, and Enzymatic Disruption. Fermentation 2024, 10, 608. [Google Scholar] [CrossRef]
- Nunes, A.L.F.; Lima, V.S.; Júnior, J.R.M.; Resende, M.E.T.; da Silva, C.A.S.; Martins, M.A.; Coimbra, J.S.D.R. Cell Disruption of Microalgae: Advances and Perspectives. Cienc. Rural 2024, 54, e20220330. [Google Scholar] [CrossRef]
- Zhao, Q.; Huang, H. Microalgae Cultivation. Adv. Bioenergy 2021, 6, 37–115. [Google Scholar] [CrossRef]
- Kholssi, R.; Lougraimzi, H.; Moreno-Garrido, I. Influence of Salinity and Temperature on the Growth, Productivity, Photosynthetic Activity and Intracellular ROS of Two Marine Microalgae and Cyanobacteria. Mar. Environ. Res. 2023, 186, 105932. [Google Scholar] [CrossRef]
- Branco-Vieira, M.; Mata, T.M.; Martins, A.A.; Freitas, M.A.V.; Caetano, N.S. Economic Analysis of Microalgae Biodiesel Production in a Small-Scale Facility. Energy Rep. 2020, 6, 325–332. [Google Scholar] [CrossRef]
- Rafa, N.; Ahmed, S.F.; Badruddin, I.A.; Mofijur, M.; Kamangar, S. Strategies to Produce Cost-Effective Third-Generation Biofuel From Microalgae. Front. Energy Res. 2021, 9, 749968. [Google Scholar] [CrossRef]
- Nichols, K.; Olson, M.; Ayers, A.D.; Nichols, K. Microalgae As a Beneficial Soil Amendment; MyLand Company, LLC: Phoenix, AZ, USA, 2020; pp. 1–22. [Google Scholar]
- Álvarez-González, A.; Uggetti, E.; Serrano, L.; Gorchs, G.; Ferrer, I.; Díez-Montero, R. Can Microalgae Grown in Wastewater Reduce the Use of Inorganic Fertilizers? J. Environ. Manag. 2022, 323, 116224. [Google Scholar] [CrossRef]
- Zhang, Z.; Xu, M.; Fan, Y.; Zhang, L.; Wang, H. Using Microalgae to Reduce the Use of Conventional Fertilizers in Hydroponics and Soil-Based Cultivation. Sci. Total Environ. 2024, 912, 169424. [Google Scholar] [CrossRef] [PubMed]
- Renuka, N.; Guldhe, A.; Prasanna, R.; Singh, P.; Bux, F. Microalgae as Multi-Functional Options in Modern Agriculture: Current Trends, Prospects and Challenges. Biotechnol. Adv. 2018, 36, 1255–1273. [Google Scholar] [CrossRef]
- Riddech, N.; Theerakulpisut, P.; Ma, Y.N.; Sarin, P. Bioorganic Fertilizers from Agricultural Waste Enhance Rice Growth under Saline Soil Conditions. Sci. Rep. 2025, 15, 8979. [Google Scholar] [CrossRef]
- Klinthong, W.; Yang, Y.H.; Huang, C.H.; Tan, C.S. A Review: Microalgae and Their Applications in CO2 Capture and Renewable Energy. Aerosol Air Qual. Res. 2015, 15, 712–742. [Google Scholar] [CrossRef]
- Skifa, I.; Chauchat, N.; Cocquet, P.-H.; Guer, Y. Le Microalgae Cultivation in Raceway Ponds: Advances, Challenges, and Hydrodynamic Considerations. EFB Bioeconomy J. 2025, 5, 100073. [Google Scholar] [CrossRef]
- Frongia, F.; Arru, L.; Cramarossa, M.R.; Forti, L. Microalgae Potential in the Capture of CO2 Emission. Acta Innov. 2021, 41, 19–27. [Google Scholar] [CrossRef]
- Bhardwaj, R.; Yadav, A.; Sahoo, A.; Kumari, P.; Singh, L.A.; Swapnil, P.; Meena, M.; Kumar, S. Microalgal-Based Sustainable Bio-Fungicides: A Promising Solution to Enhance Crop Yield. Discov. Sustain. 2025, 6, 39. [Google Scholar] [CrossRef]
- Ummalyma, S.B.; Sahoo, D.; Pandey, A. Resource Recovery through Bioremediation of Wastewaters and Waste Carbon by Microalgae: A Circular Bioeconomy Approach. Environ. Sci. Pollut. Res. 2021, 28, 58837–58856. [Google Scholar] [CrossRef]
- Osman, M.E.H.; Abo-Shady, A.M.; Gheda, S.F.; Desoki, S.M.; Elshobary, M.E. Unlocking the Potential of Microalgae Cultivated on Wastewater Combined with Salinity Stress to Improve Biodiesel Production. Environ. Sci. Pollut. Res. 2023, 30, 114610–114624. [Google Scholar] [CrossRef]
- Stiles, W.A.V.; Styles, D.; Chapman, S.P.; Esteves, S.; Bywater, A.; Melville, L.; Silkina, A.; Lupatsch, I.; Fuentes Grünewald, C.; Lovitt, R.; et al. Using Microalgae in the Circular Economy to Valorise Anaerobic Digestate: Challenges and Opportunities. Bioresour. Technol. 2018, 267, 732–742. [Google Scholar] [CrossRef]
- Naduthodi, M.I.S.; Claassens, N.J.; D’Adamo, S.; van der Oost, J.; Barbosa, M.J. Synthetic Biology Approaches To Enhance Microalgal Productivity. Trends Biotechnol. 2021, 39, 1019–1036. [Google Scholar] [CrossRef]
- Ahmad Kamal, A.H.; Mohd Hamidi, N.F.; Zakaria, M.F.; Ahmad, A.; Harun, M.R.; Chandra Segaran, T.; Jusoh, M. Genetically Engineered Microalgae for Enhanced Bioactive Compounds. Discov. Appl. Sci. 2024, 6, 482. [Google Scholar] [CrossRef]
- Kumar, G.; Shekh, A.; Jakhu, S.; Sharma, Y.; Kapoor, R.; Sharma, T.R. Bioengineering of Microalgae: Recent Advances, Perspectives, and Regulatory Challenges for Industrial Application. Front. Bioeng. Biotechnol. 2020, 8, 914. [Google Scholar] [CrossRef] [PubMed]
- Kumar, D.; Singh, B. Algal Biorefinery: An Integrated Approach for Sustainable Biodiesel Production. Biomass and Bioenergy 2019, 131, 105398. [Google Scholar] [CrossRef]
- Barik, S.K.; Kumar, P.; Pal, U.J.; Aikat, K. Integrated Biorefinery Approach for Sustainable Biofuel Production from Algal Biomass. Clean Technol. Environ. Policy 2024. [Google Scholar] [CrossRef]
- Grzesik, M.; Pszczółkowski, W.; Pszczółkowska, A.; Romanowska-Duda, Z. Microalgae as Efficient Feedstock for Biorefinery. Acta Innov. 2015, 14, 17–25. [Google Scholar]
- Olguín, E.J.; Sánchez-Galván, G.; Arias-Olguín, I.I.; Melo, F.J.; González-Portela, R.E.; Cruz, L.; De Philippis, R.; Adessi, A. Microalgae-Based Biorefineries: Challenges and Future Trends to Produce Carbohydrate Enriched Biomass, High-Added Value Products and Bioactive Compounds. Biology 2022, 11, 1146. [Google Scholar] [CrossRef]
- Khan, N.; Sudhakar, K.; Mamat, R. Macroalgae Farming for Sustainable Future: Navigating Opportunities and Driving Innovation. Heliyon 2024, 10, e28208. [Google Scholar] [CrossRef]
Species/System | Function/Method | Effect/Benefits | References |
---|---|---|---|
Phaeodactylum tricornutum, Thalassiosira pseudonana, Scenedesmuss obliquss, Duniella tertiolecta, Chlorella vulgaris, Phormidium spp., Amicroscopica negeli, Chlorococcum littorale, Isochrysis spp., Botryococcus braunii, Haematococcus pluvialis | Biological carbon fixation (photosynthesis) | Fix ~50 Gt CO2 annually, diatoms alone account for ~20% of global CO2 sequestration and highest CO2 fixation rate 0.35 g CO2 L d−1 after acclimatization | [78,79,80,96,97] |
Botryococcus braunii, Dunaliella salina, Scenedesmus obliquus, Arthrospira platensis | Absorption of greenhouse gases (CO2, HC, SO2, CH4, NOx) | Capture up to 77% of total GHG emissions; carbon capture efficiency 10–50× higher than terrestrial plants | [20,81] |
Chlorella vulgaris, Scenedesmus obliquus, Dunaliella salina, Haematococcus pluvialis, Coelastrella saipanensis | Photosynthesis (high surface area-to-volume ratio, fast growth) | Fix CO2 up to 50× faster than land plants | [82,83] |
Chlorella vulgaris | Biomass-based carbon sequestration | 1.6–2 tons CO2 per ton biomass; yields up to 82 tons biomass ha−1 y−1 in open ponds or photobioreactors | [84,85] |
Photobioreactors (spray absorption towers) | Enhanced CO2 capture efficiency | Up to 50% improvement vs. 11.17% in bubbling systems | [86] |
Karst wetland microalgae (China) | Natural aquatic carbon sink (photosynthesis) | Fix ~4200 tons C annually; convert 28.7% of bicarbonate into organic carbon | [87] |
Global microalgal biomass (Chlorella spp.), Scenedesmus obliquus, Nannochloropsis gaditana, Botryococcus braunii, Spirulina platensis | Biomass production linked to CO2 sequestration | 93,756 t (2010), 87,000 t (2018), 56,465 t (2019) → ~187,500 t, 174,000 t, 112,900 t CO2 sequestered respectively | [20,88,89] |
Engineered systems (photobioreactors, bioenergy, biochar platforms) | Industrial-scale CO2 captured from flue gases | Capture efficiencies up to 93.7%; biomass used for biofuels, bioplastics, fertilizers, biochar (long-term carbon storage) | [19,90,91,92,93,94,95] |
Chlorella spp. (under optimal reactor conditions), Scenedesmus obliquus, Nannochloropsis gaditana, Spirulina platensis, Botryococcus braunii | Biomass productivity | 160–175 mg L−1day−1 biomass yield; up to 96% CO2 removal efficiency | [93,94,95] |
Agricultural applications (hawthorn orchards with microalgal biofertilizers), Chlorella spp., Scenedesmus spp., Spirulina platensis | Soil enrichment and crop support | +29.6% fruit yield; improved soil organic C; stable GHG emission levels | [70] |
Environmental Benefit | Effect/Application | References |
---|---|---|
Atmospheric CO2 sequestration | Conversion of CO2 into biomass via photosynthesis; reduces greenhouse gases and mitigates climate change | [9,18,98] |
Industrial CO2 capture | Absorbs CO2 from flue gases and waste streams in photobioreactors while producing oxygen | [86] |
Renewable bioenergy | Biomass used for biofuels → enables closed-loop carbon recycling, lower emissions vs. fossil fuels | [83,99,100] |
Air purification | Absorption and metabolism of NOx and SOx; reduces smog and acid rain | [101] |
Soil restoration | Improves fertility and productivity in degraded soils; enhances organic matter content and structure in saline/brackish soils | [102,103] |
Adaptability to harsh conditions | Thrives in arid, nutrient-poor, and saline environments; suitable for sustainable agriculture in water-scarce regions | [103,106] |
Wastewater treatment | Assimilates excess nitrogen and phosphorus (reduces eutrophication); enhances water quality | [104] |
Heavy metal removal | Biosorption and bioaccumulation of Cd, Pb, Hg, and other metals from polluted water | [24,105] |
Biodegradable products | Processed into bioplastics, textiles, and building materials; reduces plastic pollution and supports circular economy | [107] |
Species/System | Function/Method | Effect/Benefits | References |
---|---|---|---|
Chlorella, Scenedesmus | Wastewater treatment | Remove nitrate, phosphate, ammonium, heavy metals (Cu, Zn, Pb, Cr, Cd), dyes, organic pollutants (90–98% removal); generate valuable biomass feedstock | [26,108,109] |
Micractinium pusillum | Cultivation in flue gases | CO2 fixation ~137 mg L−1 d−1; lipid yield ~32%; biomass 1.3 g L−1 | [110,111] |
Multi-strain biorefineries: Freshwater Chlorella vulgaris, Scenedesmus obliquus, Ankistrodesmus falcatus, Desmodesmus spp. Saltwater Tetraselmis suecica, Nannochloropsis gaditana Dunaliella salina, Isochrysis galbana | Co-treatment of pollutants and effluents | Production of biodiesel, biogas, bioethanol, omega-3 oils, proteins, pigments, biofertilizers, bioplastics (zero-waste model) | [26,112] |
Schizochytrium sp., Nannochloropsis spp. | Cultivation on food waste hydrolysates | >45% lipid content; up to 49% lipid accumulation; 32% FAME yield | [112] |
Nostoc sp., Arthrospira platensis, Porphyridium purpureum | Industrial wastewater treatment | COD removal 98%, nitrogen 94%, phosphate 100%; phycocyanin yields up to 103 mg g−1 | [113] |
Residual biomass (Chlorella vulgaris) | Biochar production | Biomass productivity of 0.87 g L−1 day−1, improves soil fertility, water retention, and long-term carbon sequestration | [114,122,123] |
Arthrospira platensis (EU Horizon project) | Brewery effluent treatment | Removed 90% nutrients and CO2; produced phycocyanin (EUR 221 kg−1), biogas (93 mL CH4 g−1 VS), biochar | [115] |
Pilot-scale systems (municipal and industrial wastewater) | Hybrid ponds/bioreactors | >90% N and P removal; production of biogas and biofertilizers | [105] |
Cascading biorefinery models | Sequential biomass valorization | Lipid → protein → pigment → carbohydrate recovery | [112,117] |
Scenedesmus almeriensis (Spain) | Tubular photobioreactor | Biomass cost ~EUR 69 kg−1, projected EUR 12–13 kg−1 at 200 t y−1 scale | [118] |
Tetraselmis suecica (Italy, Green Wall Panel system) | Large-scale cultivation | Biomass cost EUR 12.4 kg−1 (1 ha), reduced to EUR 5.1 kg−1 (100 ha), potentially EUR 3.2 kg−1 optimal | [119] |
Global microalgae industry | Market outlook | Expected growth from USD 782.6 M (2024) to USD 1.38 B (2032), CAGR 7.29% | [121] |
Challenges | Scale-up, regulation, logistics | High energy demand in harvesting/drying/extraction; regulatory and infrastructure gaps hinder adoption | [120] |
Species | Benefits | References |
---|---|---|
Chlorella vulgaris | Removes pollutants from textile wastewater below legal limits; growth rate 0.234–0.290 d−1; productivity 78–112.39 mg DW L−1 d−1; pigment production; carbon sequestration 1.6–2 t CO2 per t biomass; improves rice yield (20.9%); co-inoculation enhances bean yield/profit | [27,56,62,84] |
Chlorella sp. | Cultivation with organic fertilizer + urea increases biomass (1.04 g L−1 d−1) and lutein (6.03 mg g−1); reduces costs by 96–97%; lutein reduces ROS in mammal cells | [28] |
Spirulina (Arthrospira) sp. | Major contributor to global biomass (>90%); used in nutraceuticals, wastewater treatment, biofuel, medicine, and green technologies; improves soil and crop yield | [29,56,115] |
Chlorococcum mexicana, C. sajao | Improve soil aggregate stability in temperate agriculture | [38] |
Desmodesmus, Heterochlorella | Acidophilic; stabilize acidic soils and raise pH | [39] |
Scytonema javanicum | Nitrogen-fixer; enhances EPS production, biocrust formation, and soil stability | [40] |
Phormidium ambiguum | Non-N-fixer; contributes to EPS production and biocrusts for erosion resistance | [40] |
Chlamydomonas spp. | Soil particle aggregation via electrostatic forces and flagella | [42] |
Nostoc spp. | Nitrogen fixation in paddy rice; reduces synthetic N fertilizer by 25–50%; improves soil fertility; enhances maize fertility (humus ↑ 17–20%); EPS improves soil structure | [4,52,53,55,59,63,64] |
Anabaena spp. | Nitrogen fixation; improves crop yield, disease resistance, and soil fertility (wheat, maize, rice); symbiosis with Azolla enhances soil fertility | [52,53,60,63] |
Tolypothrix spp. | Nitrogen fixation in paddy rice cultivation | [52,53] |
Aulosira spp. | Nitrogen fixation in paddy rice | [52,53] |
Azolla–Anabaena symbiosis | Biofertilizer combination improves soil fertility and crop growth | [52,53] |
Monoraphidium sp. | Tomato inoculation → shoot biomass ↑ 32%, chlorophyll-a ↑ 12% | [58] |
Scenedesmus obliquus | Extracts act as bio-stimulants: ↑ germination (40%), auxin-like (60%), cytokinin-like (187.5%); also, wastewater nutrient removal | [67,108,109,115] |
Micractinium pusillum | Grows on flue gases; CO2 fixation ~137 mg L−1 d−1; lipid yield ~32%; biomass 1.3 g L−1 | [111] |
Schizochytrium sp. | High lipid content (>45%); up to 49% lipid accumulation; biodiesel and omega-3 production | [112] |
Nannochloropsis spp. | High lipid producers (>45% DW); biofuels and multiproduct biorefinery | [112] |
Porphyridium purpureum | Industrial wastewater treatment; phycocyanin yield 103 mg g−1 DW | [113] |
Tetraselmis suecica | Large-scale cultivation; biomass cost reduction to EUR 3.2 kg−1 under optimal conditions | [119] |
Haematococcus sp. | Bioactive compounds (e.g., astaxanthin) | [26] |
Arthrospira platensis, Chlorella vulgaris, Nostoc muscorum, Anabaena azollae, Scenedesmus spp., Dunaliella salina, Nostoc calcicole, Scytonema sp. | Soil enrichment, EPS secretion, carbon sequestration, wastewater purification, pollutant remediation, biocrust formation, biofertilizers, and bioplastics | [4,9,26,31,32,33,70,104,107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoque, M.M.; Iannelli, V.; Padula, F.; Radice, R.P.; Saha, B.K.; Martelli, G.; Scopa, A.; Drosos, M. Microalgae: Green Engines for Achieving Carbon Sequestration, Circular Economy, and Environmental Sustainability—A Review Based on Last Ten Years of Research. Bioengineering 2025, 12, 909. https://doi.org/10.3390/bioengineering12090909
Hoque MM, Iannelli V, Padula F, Radice RP, Saha BK, Martelli G, Scopa A, Drosos M. Microalgae: Green Engines for Achieving Carbon Sequestration, Circular Economy, and Environmental Sustainability—A Review Based on Last Ten Years of Research. Bioengineering. 2025; 12(9):909. https://doi.org/10.3390/bioengineering12090909
Chicago/Turabian StyleHoque, Md. Muzammal, Valeria Iannelli, Francesca Padula, Rosa Paola Radice, Biplob Kumar Saha, Giuseppe Martelli, Antonio Scopa, and Marios Drosos. 2025. "Microalgae: Green Engines for Achieving Carbon Sequestration, Circular Economy, and Environmental Sustainability—A Review Based on Last Ten Years of Research" Bioengineering 12, no. 9: 909. https://doi.org/10.3390/bioengineering12090909
APA StyleHoque, M. M., Iannelli, V., Padula, F., Radice, R. P., Saha, B. K., Martelli, G., Scopa, A., & Drosos, M. (2025). Microalgae: Green Engines for Achieving Carbon Sequestration, Circular Economy, and Environmental Sustainability—A Review Based on Last Ten Years of Research. Bioengineering, 12(9), 909. https://doi.org/10.3390/bioengineering12090909