The Current Role and Future Applications of Machine Perfusion in Liver Transplantation
Abstract
1. Introduction
2. Hypothermic MP
3. Normothermic MP
4. Normothermic Regional Perfusion
5. Viability Assessment during MP
6. Management of IC
7. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Carrel, A.; Lindbergh, C.A. The Culture of Whole Organs. Science 1935, 81, 621–623. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Starzl, T.E.; Groth, C.G.; Brettschneider, L.; Penn, I.; Fulginiti, V.A.; Moon, J.B.; Blanchard, H.; Martin, A.J., Jr.; Porter, K.A. Orthotopic Homotransplantation of the Human Liver. Ann. Surg. 1968, 168, 392–415. [Google Scholar] [CrossRef] [PubMed]
- Wahlberg, J.A.; Southard, J.H.; Belzer, F.O. Development of a Cold Storage Solution for Pancreas Preservation. Cryobiology 1986, 23, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Belzer, F.O.; Ashby, B.S.; Dunphy, J.E. 24-hour and 72-hour preservation of canine kidneys. Lancet 1967, 290, 536–539. [Google Scholar] [CrossRef]
- Saidi, R.F.; Kenari, S.K.H. Liver Ischemia/Reperfusion Injury: An Overview. J. Investig. Surg. 2014, 27, 366–379. [Google Scholar] [CrossRef]
- Adam, R.; Bismuth, H.; Diamond, T.; Morino, M.; Astarcioglu, I.; Johann, M.; Azoulay, D.; Chiche, L.; Bao, Y.M.; Castaing, D.; et al. Effect of Extended Cold Ischaemia with UW Solution on Graft Function after Liver Transplantation. Lancet 1992, 340, 1373–1376. [Google Scholar] [CrossRef]
- Vogel, T.; Brockmann, J.G.; Coussios, C.; Friend, P.J. The Role of Normothermic Extracorporeal Perfusion in Minimizing Ischemia Reperfusion Injury. Transplant. Rev. 2012, 26, 156–162. [Google Scholar] [CrossRef]
- Shingina, A.; DeWitt, P.E.; Dodge, J.L.; Biggins, S.W.; Gralla, J.; Sprague, D.; Bambha, K. Future Trends in Demand for Liver Transplant: Birth Cohort Effects Among Patients with NASH and HCC. Transplantation 2019, 103, 140–148. [Google Scholar] [CrossRef]
- NHS NHS Blood and Transplant. Organ Donation Activity. 2023. Available online: https://www.odt.nhs.uk/statistics-and-reports/annual-activity-report/ (accessed on 7 March 2023).
- The Lancet Gastroenterology & Hepatology. Obesity: Another Ongoing Pandemic. Lancet Gastroenterol. Hepatol. 2021, 6, 411. [Google Scholar] [CrossRef]
- Orman, E.S.; Barritt IV, A.S.; Wheeler, S.B.; Hayashi, P.H. Declining Liver Utilization for Transplantation in the United States and the Impact of Donation after Cardiac Death. Liver Transplant. 2013, 19, 59–68. [Google Scholar] [CrossRef][Green Version]
- Elmer, A.; Rohrer, M.-L.; Benden, C.; Krügel, N.; Beyeler, F.; Immer, F.F. Organ Donation after Circulatory Death as Compared with Organ Donation after Brain Death in Switzerland – an Observational Study. Swiss. Med. Wkly. 2022, 152, w30132. [Google Scholar] [CrossRef] [PubMed]
- Foley, D.P.; Fernandez, L.A.; Leverson, G.; Chin, L.T.; Krieger, N.; Cooper, J.T.; Shames, B.D.; Becker, Y.T.; Odorico, J.S.; Knechtle, S.J.; et al. Donation After Cardiac Death: The University of Wisconsin Experience with Liver Transplantation. Ann. Surg. 2005, 242, 724–731. [Google Scholar] [CrossRef] [PubMed]
- Otero, A.; Vázquez, M.A.; Suárez, F.; Pértega, S.; Rivas, J.I.; Mosteiro, F.; Gómez, M. Results in Liver Transplantation Using Grafts from Donors after Controlled Circulatory Death: A Single-Center Experience Comparing Donor Grafts Harvested after Controlled Circulatory Death to Those Harvested after Brain Death. Clin. Transplant. 2020, 34, e13763. [Google Scholar] [CrossRef] [PubMed]
- Goldaracena, N.; Cullen, J.M.; Kim, D.-S.; Ekser, B.; Halazun, K.J. Expanding the Donor Pool for Liver Transplantation with Marginal Donors. Int. J. Surg. 2020, 82, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Jakubauskas, M.; Jakubauskiene, L.; Leber, B.; Strupas, K.; Stiegler, P.; Schemmer, P. Machine Perfusion in Liver Transplantation: A Systematic Review and Meta-Analysis. Visc. Med. 2022, 38, 243–254. [Google Scholar] [CrossRef]
- Karangwa, S.; Panayotova, G.; Dutkowski, P.; Porte, R.J.; Guarrera, J.V.; Schlegel, A. Hypothermic Machine Perfusion in Liver Transplantation. Int. J. Surg. 2020, 82, 44–51. [Google Scholar] [CrossRef]
- Watson, C.J.E.; Jochmans, I. From “Gut Feeling” to Objectivity: Machine Preservation of the Liver as a Tool to Assess Organ Viability. Curr. Transplant. Rep. 2018, 5, 72–81. [Google Scholar] [CrossRef][Green Version]
- Kubal, C.; Roll, G.R.; Ekser, B.; Muiesan, P. Donation after Circulatory Death Liver Transplantation: What Are the Limits for an Acceptable DCD Graft? Int. J. Surg. 2020, 82, 36–43. [Google Scholar] [CrossRef]
- Guarrera, J.V.; Henry, S.D.; Samstein, B.; Odeh-Ramadan, R.; Kinkhabwala, M.; Goldstein, M.J.; Ratner, L.E.; Renz, J.F.; Lee, H.T.; Brown, R.S., Jr.; et al. Hypothermic Machine Preservation in Human Liver Transplantation: The First Clinical Series. Am. J. Transplant. 2010, 10, 372–381. [Google Scholar] [CrossRef]
- Dutkowski, P.; Schlegel, A.; de Oliveira, M.; Müllhaupt, B.; Neff, F.; Clavien, P.-A. HOPE for Human Liver Grafts Obtained from Donors after Cardiac Death. J. Hepatol. 2014, 60, 765–772. [Google Scholar] [CrossRef]
- Dutkowski, P.; Polak, W.G.; Muiesan, P.; Schlegel, A.; Verhoeven, C.J.; Scalera, I.; DeOliveira, M.L.; Kron, P.; Clavien, P.-A. First Comparison of Hypothermic Oxygenated PErfusion Versus Static Cold Storage of Human Donation After Cardiac Death Liver Transplants: An International-Matched Case Analysis. Ann. Surg. 2015, 262, 764–770. [Google Scholar] [CrossRef] [PubMed][Green Version]
- van Rijn, R.; Schurink, I.J.; de Vries, Y.; van den Berg, A.P.; Cortes Cerisuelo, M.; Darwish Murad, S.; Erdmann, J.I.; Gilbo, N.; de Haas, R.J.; Heaton, N.; et al. Hypothermic Machine Perfusion in Liver Transplantation—A Randomized Trial. N. Engl. J. Med. 2021, 384, 1391–1401. [Google Scholar] [CrossRef] [PubMed]
- Czigany, Z.; Tacke, F.; Lurje, G. Evolving Trends in Machine Liver Perfusion: Comments on Clinical End Points and Selection Criteria. Gastroenterology 2019, 157, 1166–1167. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ravaioli, M.; Germinario, G.; Dajti, G.; Sessa, M.; Vasuri, F.; Siniscalchi, A.; Morelli, M.C.; Serenari, M.; Del Gaudio, M.; Zanfi, C.; et al. Hypothermic Oxygenated Perfusion in Extended Criteria Donor Liver Transplantation—A Randomized Clinical Trial. Am. J. Transplant. 2022, 22, 2401–2408. [Google Scholar] [CrossRef]
- Rossignol, G.; Muller, X.; Hervieu, V.; Collardeau-Frachon, S.; Breton, A.; Boulanger, N.; Lesurtel, M.; Dubois, R.; Mohkam, K.; Mabrut, J.-Y. Liver Transplantation of Partial Grafts after Ex Situ Splitting during Hypothermic Oxygenated Perfusion—The HOPE–Split Pilot Study. Liver Transplant. 2022, 28, 1576–1587. [Google Scholar] [CrossRef]
- Czigany, Z.; Pratschke, J.; Froněk, J.; Guba, M.; Schöning, W.; Raptis, D.A.; Andrassy, J.; Kramer, M.; Strnad, P.; Tolba, R.H.; et al. Hypothermic Oxygenated Machine Perfusion Reduces Early Allograft Injury and Improves Post-Transplant Outcomes in Extended Criteria Donation Liver Transplantation From Donation After Brain Death: Results From a Multicenter Randomized Controlled Trial (HOPE ECD-DBD). Ann. Surg. 2021, 274, 705–712. [Google Scholar]
- Markmann, J.F.; Abouljoud, M.S.; Ghobrial, R.M.; Bhati, C.S.; Pelletier, S.J.; Lu, A.D.; Ottmann, S.; Klair, T.; Eymard, C.; Roll, G.R.; et al. Impact of Portable Normothermic Blood-Based Machine Perfusion on Outcomes of Liver Transplant: The OCS Liver PROTECT Randomized Clinical Trial. JAMA Surg. 2022, 157, 189–198. [Google Scholar] [CrossRef]
- Nasralla, D.; Coussios, C.C.; Mergental, H.; Akhtar, M.Z.; Butler, A.J.; Ceresa, C.D.L.; Chiocchia, V.; Dutton, S.J.; García-Valdecasas, J.C.; Heaton, N.; et al. A Randomized Trial of Normothermic Preservation in Liver Transplantation. Nature 2018, 557, 50–56. [Google Scholar] [CrossRef]
- Ghinolfi, D.; Rreka, E.; De Tata, V.; Franzini, M.; Pezzati, D.; Fierabracci, V.; Masini, M.; Cacciatoinsilla, A.; Bindi, M.L.; Marselli, L.; et al. Pilot, Open, Randomized, Prospective Trial for Normothermic Machine Perfusion Evaluation in Liver Transplantation From Older Donors. Liver Transplant. 2019, 25, 436–449. [Google Scholar] [CrossRef][Green Version]
- Ceresa, C.D.L.; Nasralla, D.; Coussios, C.C.; Friend, P.J. The Case for Normothermic Machine Perfusion in Liver Transplantation. Liver Transplant. 2018, 24, 269–275. [Google Scholar] [CrossRef][Green Version]
- Brockmann, J.; Reddy, S.; Coussios, C.; Pigott, D.; Guirriero, D.; Hughes, D.; Morovat, A.; Roy, D.; Winter, L.; Friend, P.J. Normothermic Perfusion: A New Paradigm for Organ Preservation. Ann. Surg. 2009, 250, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Ravikumar, R.; Jassem, W.; Mergental, H.; Heaton, N.; Mirza, D.; Perera, M.T.P.R.; Quaglia, A.; Holroyd, D.; Vogel, T.; Coussios, C.C.; et al. Liver Transplantation After Ex Vivo Normothermic Machine Preservation: A Phase 1 (First-in-Man) Clinical Trial. Am. J. Transplant. 2016, 16, 1779–1787. [Google Scholar] [CrossRef] [PubMed]
- Mergental, H.; Laing, R.W.; Kirkham, A.J.; Perera, M.T.P.R.; Boteon, Y.L.; Attard, J.; Barton, D.; Curbishley, S.; Wilkhu, M.; Neil, D.A.H.; et al. Transplantation of Discarded Livers Following Viability Testing with Normothermic Machine Perfusion. Nat. Commun. 2020, 11, 2939. [Google Scholar] [CrossRef] [PubMed]
- Watson, C.J.E.; Gaurav, R.; Fear, C.; Swift, L.; Selves, L.; Ceresa, C.D.L.; Upponi, S.S.; Brais, R.; Allison, M.; Macdonald-Wallis, C.; et al. Predicting Early Allograft Function After Normothermic Machine Perfusion. Transplantation 2022, 106, 2391–2398. [Google Scholar] [CrossRef] [PubMed]
- Meszaros, A.T.; Hofmann, J.; Buch, M.L.; Cardini, B.; Dunzendorfer-Matt, T.; Nardin, F.; Blumer, M.J.; Fodor, M.; Hermann, M.; Zelger, B.; et al. Mitochondrial Respiration during Normothermic Liver Machine Perfusion Predicts Clinical Outcome. eBioMedicine 2022, 85, 104311. [Google Scholar] [CrossRef] [PubMed]
- Webb, A.N.; Lester, E.L.W.; Shapiro, A.M.J.; Eurich, D.T.; Bigam, D.L. Cost-Utility Analysis of Normothermic Machine Perfusion Compared to Static Cold Storage in Liver Transplantation in the Canadian Setting. Am. J. Transplant. 2022, 22, 541–551. [Google Scholar] [CrossRef]
- van Leeuwen, O.B.; de Vries, Y.; Fujiyoshi, M.; Nijsten, M.W.N.; Ubbink, R.; Pelgrim, G.J.; Werner, M.J.M.; Reyntjens, K.M.E.M.; van den Berg, A.P.; de Boer, M.T.; et al. Transplantation of High-Risk Donor Livers After Ex Situ Resuscitation and Assessment Using Combined Hypo- and Normothermic Machine Perfusion: A Prospective Clinical Trial. Ann. Surg. 2019, 270, 906–914. [Google Scholar] [CrossRef]
- van Leeuwen, O.B.; Bodewes, S.B.; Lantinga, V.A.; Haring, M.P.D.; Thorne, A.M.; Brüggenwirth, I.M.A.; van den Berg, A.P.; de Boer, M.T.; de Jong, I.E.M.; de Kleine, R.H.J.; et al. Sequential Hypothermic and Normothermic Machine Perfusion Enables Safe Transplantation of High-Risk Donor Livers. Am. J. Transplant. 2022, 22, 1658–1670. [Google Scholar] [CrossRef]
- Hessheimer, A.J.; Coll, E.; Torres, F.; Ruíz, P.; Gastaca, M.; Rivas, J.I.; Gómez, M.; Sánchez, B.; Santoyo, J.; Ramírez, P.; et al. Normothermic Regional Perfusion vs. Super-Rapid Recovery in Controlled Donation after Circulatory Death Liver Transplantation. J. Hepatol. 2019, 70, 658–665. [Google Scholar] [CrossRef]
- Mohkam, K.; Nasralla, D.; Mergental, H.; Muller, X.; Butler, A.; Jassem, W.; Imber, C.; Monbaliu, D.; Perera, M.T.P.R.; Laing, R.W.; et al. In Situ Normothermic Regional Perfusion versus Ex Situ Normothermic Machine Perfusion in Liver Transplantation from Donation after Circulatory Death. Liver Transplant. 2022, 28, 1716–1725. [Google Scholar] [CrossRef]
- Schurink, I.J.; van de Leemkolk, F.E.M.; Fondevila, C.; De Carlis, R.; Savier, E.; Oniscu, G.C.; Huurman, V.A.L.; de Jonge, J. Donor Eligibility Criteria and Liver Graft Acceptance Criteria during Normothermic Regional Perfusion: A Systematic Review. Liver Transplant. 2022, 28, 1563–1575. [Google Scholar] [CrossRef] [PubMed]
- De Beule, J.; Vandendriessche, K.; Pengel, L.H.M.; Bellini, M.I.; Dark, J.H.; Hessheimer, A.J.; Kimenai, H.J.A.N.; Knight, S.R.; Neyrinck, A.P.; Paredes, D.; et al. A Systematic Review and Meta-Analyses of Regional Perfusion in Donation after Circulatory Death Solid Organ Transplantation. Transpl. Int. 2021, 34, 2046–2060. [Google Scholar] [CrossRef]
- Liew, B.; Nasralla, D.; Iype, S.; Pollok, J.-M.; Davidson, B.; Raptis, D.A. Liver Transplant Outcomes after Ex Vivo Machine Perfusion: A Meta-Analysis. Br. J. Surg. 2021, 108, 1409–1416. [Google Scholar] [CrossRef] [PubMed]
- Martins, P.N.; Rizzari, M.D.; Ghinolfi, D.; Jochmans, I.; Attia, M.; Jalan, R.; Friend, P.J. ILTS Special Interest Group “DCD, P. and M.P. Design, Analysis, and Pitfalls of Clinical Trials Using Ex Situ Liver Machine Perfusion: The International Liver Transplantation Society Consensus Guidelines. Transplantation 2021, 105, 796–815. [Google Scholar] [CrossRef] [PubMed]
- Ceresa, C.D.L.; Nasralla, D.; Pollok, J.-M.; Friend, P.J. Machine Perfusion of the Liver: Applications in Transplantation and Beyond. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.; Greenwood, J.; Maniakin, N.; Bhattacharjya, S.; Zilvetti, M.; Brockmann, J.; James, T.; Pigott, D.; Friend, P. Non-Heart-Beating Donor Porcine Livers: The Adverse Effect of Cooling. Liver Transplant. 2005, 11, 35–38. [Google Scholar] [CrossRef]
- Matton, A.P.M.; de Vries, Y.; Burlage, L.C.; van Rijn, R.; Fujiyoshi, M.; de Meijer, V.E.; de Boer, M.T.; de Kleine, R.H.J.; Verkade, H.J.; Gouw, A.S.H.; et al. Biliary Bicarbonate, PH, and Glucose Are Suitable Biomarkers of Biliary Viability During Ex Situ Normothermic Machine Perfusion of Human Donor Livers. Transplantation 2019, 103, 1405–1413. [Google Scholar] [CrossRef][Green Version]
- Watson, C.J.E.; Kosmoliaptsis, V.; Pley, C.; Randle, L.; Fear, C.; Crick, K.; Gimson, A.E.; Allison, M.; Upponi, S.; Brais, R.; et al. Observations on the Ex Situ Perfusion of Livers for Transplantation. Am. J. Transplant. 2018, 18, 2005–2020. [Google Scholar] [CrossRef][Green Version]
- Liu, Q.; Vekemans, K.; Iania, L.; Komuta, M.; Parkkinen, J.; Heedfeld, V.; Wylin, T.; Monbaliu, D.; Pirenne, J.; van Pelt, J. Assessing Warm Ischemic Injury of Pig Livers at Hypothermic Machine Perfusion. J. Surg. Res. 2014, 186, 379–389. [Google Scholar] [CrossRef]
- Patrono, D.; Roggio, D.; Mazzeo, A.T.; Catalano, G.; Mazza, E.; Rizza, G.; Gambella, A.; Rigo, F.; Leone, N.; Elia, V.; et al. Clinical Assessment of Liver Metabolism during Hypothermic Oxygenated Machine Perfusion Using Microdialysis. Artif. Organs 2022, 46, 281–295. [Google Scholar] [CrossRef]
- Muller, X.; Schlegel, A.; Kron, P.; Eshmuminov, D.; Würdinger, M.; Meierhofer, D.; Clavien, P.-A.; Dutkowski, P. Novel Real-Time Prediction of Liver Graft Function During Hypothermic Oxygenated Machine Perfusion Before Liver Transplantation. Ann. Surg. 2019, 270, 783–790. [Google Scholar] [CrossRef] [PubMed]
- Schlegel, A.; Muller, X.; Mueller, M.; Stepanova, A.; Kron, P.; de Rougemont, O.; Muiesan, P.; Clavien, P.-A.; Galkin, A.; Meierhofer, D.; et al. Hypothermic Oxygenated Perfusion Protects from Mitochondrial Injury before Liver Transplantation. eBioMedicine 2020, 60, 103014. [Google Scholar] [CrossRef] [PubMed]
- Fasullo, M.; Patel, M.; Khanna, L.; Shah, T. Post-Transplant Biliary Complications: Advances in Pathophysiology, Diagnosis, and Treatment. BMJ Open Gastro 2022, 9, e000778. [Google Scholar] [CrossRef] [PubMed]
- Watson, C.J.E.; Hunt, F.; Messer, S.; Currie, I.; Large, S.; Sutherland, A.; Crick, K.; Wigmore, S.J.; Fear, C.; Cornateanu, S.; et al. In Situ Normothermic Perfusion of Livers in Controlled Circulatory Death Donation May Prevent Ischemic Cholangiopathy and Improve Graft Survival. Am. J. Transplant. 2019, 19, 1745–1758. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Antoine, C.; Jasseron, C.; Dondero, F.; Savier, E.; French National Steering Committee of Donors after Circulatory Death. Liver Transplantation From Controlled Donors after Circulatory Death Using Normothermic Regional Perfusion: An Initial French Experience. Liver Transplant. 2020, 26, 1516–1521. [Google Scholar] [CrossRef]
- Schlegel, A.; Muller, X.; Kalisvaart, M.; Muellhaupt, B.; Perera, M.T.P.R.; Isaac, J.R.; Clavien, P.-A.; Muiesan, P.; Dutkowski, P. Outcomes of DCD Liver Transplantation Using Organs Treated by Hypothermic Oxygenated Perfusion before Implantation. J. Hepatol. 2019, 70, 50–57. [Google Scholar] [CrossRef]
- Muller, X.; Mohkam, K.; Mueller, M.; Schlegel, A.; Dondero, F.; Sepulveda, A.; Savier, E.; Scatton, O.; Bucur, P.; Salame, E.; et al. Hypothermic Oxygenated Perfusion Versus Normothermic Regional Perfusion in Liver Transplantation From Controlled Donation After Circulatory Death: First International Comparative Study. Ann. Surg. 2020, 272, 751–758. [Google Scholar] [CrossRef]
- Ceresa, C.D.L.; Nasralla, D.; Watson, C.J.E.; Butler, A.J.; Coussios, C.C.; Crick, K.; Hodson, L.; Imber, C.; Jassem, W.; Knight, S.R.; et al. Transient Cold Storage Prior to Normothermic Liver Perfusion May Facilitate Adoption of a Novel Technology. Liver Transplant. 2019, 25, 1503–1513. [Google Scholar] [CrossRef]
- Gaurav, R.; Butler, A.J.; Kosmoliaptsis, V.; Mumford, L.; Fear, C.; Swift, L.; Fedotovs, A.; Upponi, S.; Khwaja, S.; Richards, J.; et al. Liver Transplantation Outcomes From Controlled Circulatory Death Donors: SCS vs in Situ NRP vs. Ex Situ NMP. Ann. Surg. 2022, 275, 1156–1164. [Google Scholar] [CrossRef]
- Dengu, F.; Abbas, S.H.; Ebeling, G.; Nasralla, D. Normothermic Machine Perfusion (NMP) of the Liver as a Platform for Therapeutic Interventions during Ex-Vivo Liver Preservation: A Review. J. Clin. Med. 2020, 9, 1046. [Google Scholar] [CrossRef][Green Version]
- Koneru, B.; Dikdan, G. Hepatic steatosis and liver transplantation current clinical and experimental perspectives. Transplantation 2002, 73, 325–330. [Google Scholar] [CrossRef] [PubMed]
- Spitzer, A.L.; Lao, O.B.; Dick, A.A.S.; Bakthavatsalam, R.; Halldorson, J.B.; Yeh, M.M.; Upton, M.P.; Reyes, J.D.; Perkins, J.D. The Biopsied Donor Liver: Incorporating Macrosteatosis into High-Risk Donor Assessment. Liver Transplant. 2010, 16, 874–884. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, R.W.; Zilvetti, M.; Roy, D.; Hughes, D.; Morovat, A.; Coussios, C.C.; Friend, P.J. Hepatic Steatosis and Normothermic Perfusion—Preliminary Experiments in a Porcine Model. Transplantation 2011, 92, 289–295. [Google Scholar] [CrossRef]
- Nagrath, D.; Xu, H.; Tanimura, Y.; Zuo, R.; Berthiaume, F.; Avila, M.; Yarmush, R.; Yarmush, M.L. Metabolic Preconditioning of Donor Organs: Defatting Fatty Livers by Normothermic Perfusion Ex Vivo. Metab. Eng. 2009, 11, 274–283. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Banan, B.; Watson, R.; Xu, M.; Lin, Y.; Chapman, W. Development of a Normothermic Extracorporeal Liver Perfusion System toward Improving Viability and Function of Human Extended Criteria Donor Livers. Liver Transplant. 2016, 22, 979–993. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Boteon, Y.L.; Attard, J.; Boteon, A.P.C.S.; Wallace, L.; Reynolds, G.; Hubscher, S.; Mirza, D.F.; Mergental, H.; Bhogal, R.H.; Afford, S.C. Manipulation of Lipid Metabolism During Normothermic Machine Perfusion: Effect of Defatting Therapies on Donor Liver Functional Recovery. Liver Transplant. 2019, 25, 1007–1022. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ceresa, C.D.L.; Nasralla, D. Cornfield T Exploring the Structural and Functional Effects of Normothermic Machine Perfusion and De-Fatting Interventions on Human Steatotic Livers. Hepatology 2018, 68, 1–183. [Google Scholar] [CrossRef][Green Version]
- Watson, C.J.E.; Brais, R.; Gaurav, R.; Swift, L.; Fear, C.; Foukaneli, T.; Butler, A.J. Peribiliary Intravascular Fibrin Occlusions and Bile Duct Necrosis in DCD Livers During Ex Situ Perfusion: Prevention With Tissue Plasminogen Activator and Fresh Frozen Plasma. Transplantation 2021, 105, e401–e402. [Google Scholar] [CrossRef]
- DiRito, J.R.; Hosgood, S.A.; Reschke, M.; Albert, C.; Bracaglia, L.G.; Ferdinand, J.R.; Stewart, B.J.; Edwards, C.M.; Vaish, A.G.; Thiru, S.; et al. Lysis of Cold-Storage-Induced Microvascular Obstructions for Ex Vivo Revitalization of Marginal Human Kidneys. Am. J. Transplant. 2021, 21, 161–173. [Google Scholar] [CrossRef]
- Watson, C.J.E.; MacDonald, S.; Bridgeman, C.; Brais, R.; Upponi, S.S.; Foukaneli, T.; Swift, L.; Fear, C.; Selves, L.; Kosmoliaptsis, V.; et al. D-Dimer Release From Livers During Ex Situ Normothermic Perfusion and after In Situ Normothermic Regional Perfusion: Evidence for Occult Fibrin Burden Associated With Adverse Transplant Outcomes and Cholangiopathy. Transplantation 2023. [Google Scholar] [CrossRef]
- Eshmuminov, D.; Becker, D.; Bautista Borrego, L.; Hefti, M.; Schuler, M.J.; Hagedorn, C.; Muller, X.; Mueller, M.; Onder, C.; Graf, R.; et al. An Integrated Perfusion Machine Preserves Injured Human Livers for 1 Week. Nat. Biotechnol. 2020, 38, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Lau, N.-S.; Ly, M.; Dennis, C.; Liu, K.; Kench, J.; Crawford, M.; Pulitano, C. Long-Term Normothermic Perfusion of Human Livers for Longer than 12 Days. Artif. Organs 2022, 46, 2504–2510. [Google Scholar] [CrossRef] [PubMed]
Trial Identifier | Study Type | Intervention | Primary End Point | No. of Participants | Location | End Date |
---|---|---|---|---|---|---|
NCT02478151 | Single-arm, prospective | NMP | PNF 90 days; | 40 | Canada | 2023 |
re-transplantation after 90 days; | ||||||
recipient mortality after 90 days | ||||||
NCT04812054 | RCT | HOPE | EAD | 104 | Poland | 2024 |
SCS | ||||||
NCT03456284 | Single-arm, prospective | NMP | PNF and recipient mortality at 90 days | 30 | United States | 2023 |
NCT04644744 | RCT | HOPE | Postoperative complications (CCI) | 213 | Germany | 2024 |
NMP | ||||||
SCS | ||||||
NCT05045794 | RCT | SCS + HOPE | EAD | 244 | United States | 2024 |
SCS | ||||||
NCT05574361 | Single-arm, prospective | HOPE | EAD | 120 | United States | 2023 |
NCT03484455 | RCT | HOPE | EAD | 142 | United States | 2022 * |
SCS | ||||||
NCT04483102 | Single-arm, prospective | NMP | Graft failure at 6 months, total number of patients treated (declined livers) | 25 | United States | 2023 |
NCT04023773 | Single-arm, prospective | HOPE + NMP | 1-month recipient and graft survival | 15 | United States | 2024 |
NCT02775162 | RCT | NMP | EAD | 267 | United States | 2021 * |
SCS | ||||||
NCT04862156 | Single-arm, prospective | NMP | EAD | 105 | United States | 2024 |
NCT03929523 | RCT | End ischemic HOPE | EAD | 266 | France | 2023 |
ISRCTN14957538 | RCT | NMP | Transplanted livers | 60 | United Kingdom | 2024 |
NMP + defatting | ||||||
ISRCTN11552402 | Prospective, observational | NMP | Transplanted livers | 3264 | United Kingdom, international | 2026 |
ISRCTN36453355 | RCT | NMP | Transcriptome | 250 | United Kingdom | 2025 |
ISRCTN15211703 | Single-arm, prospective | NMP + thrombolytic treatment | Post-reperfusion blood loss | 60 | United Kingdom | 2023 |
Intervention | Primary End Point | Results | No. of Participants | Comments | References |
---|---|---|---|---|---|
HOPE | Non-anastomotic biliary strictures at 6 months | HOPE, 6% strictures; SCS, 18% strictures (RR, 0.36; 95% CI, 0.14–0.94; p = 0.03) | 160 (78; 78), 4 no liver | Post-reperfusion, 12% vs. 27%; EAD, 26% vs. 40% | [23] |
SCS | |||||
HOPE | Peak ALT levels | 47% decrease in serum peak ALT (p = 0.030) | 46 (23, 23) | ECD livers | [27] |
SCS | |||||
Portable NMP | EAD | EAD (27/150 [18%] vs. 44/141 [31%]; p = 0.01) | 293 (151; 142) | [28] | |
SCS | |||||
NMP | Peak ALT | 50% decrease in NMP compared with SCS | (137, 133) | 50% lower discharge rate in NMP | [29] |
SCS | |||||
NMP | Patient and graft survival after 6 months | 1 death in the SCS group | 20 (10,10) | [30] | |
SCS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staubli, S.M.; Ceresa, C.D.L.; Pollok, J.M. The Current Role and Future Applications of Machine Perfusion in Liver Transplantation. Bioengineering 2023, 10, 593. https://doi.org/10.3390/bioengineering10050593
Staubli SM, Ceresa CDL, Pollok JM. The Current Role and Future Applications of Machine Perfusion in Liver Transplantation. Bioengineering. 2023; 10(5):593. https://doi.org/10.3390/bioengineering10050593
Chicago/Turabian StyleStaubli, Sebastian M., Carlo D. L. Ceresa, and Joerg M. Pollok. 2023. "The Current Role and Future Applications of Machine Perfusion in Liver Transplantation" Bioengineering 10, no. 5: 593. https://doi.org/10.3390/bioengineering10050593
APA StyleStaubli, S. M., Ceresa, C. D. L., & Pollok, J. M. (2023). The Current Role and Future Applications of Machine Perfusion in Liver Transplantation. Bioengineering, 10(5), 593. https://doi.org/10.3390/bioengineering10050593