Modeling Estuarine Algal Bloom Dynamics with Satellite Data and Spectral Index-Based Classification
Abstract
1. Introduction
Overview of Existing Indices
2. Methods
2.1. Selection of “Candidates” for the Optimal Index
Remote Sensing and Multi-Spectral Data Processing | AND Algorithms and Indices | AND Macroalgal Blooms |
“Satellite Remote Sensing” OR “Remote sensing” OR “Multi spectral” OR “Chlorophyll Index” OR “Spectral signature” OR “Chlorophyll fluorescence” OR “Vegetation monitoring” OR “Water leaving radiance” OR “Reflectance” OR “Red edge effect” OR “MODIS” OR “ERTS” OR “MERIS” OR “Sentinel” OR “Bloom monitoring” | “ABDI” OR “Algal Bloom Detection Index” OR “FAI” OR “Floating Algae Index” OR “FGTI” OR “Floating Green Tide Index” OR “MCI” OR “Maximum Chlorophyll Index” OR “NDAI” OR “Normalized Difference Algae Index” OR “NDVI” OR “Normalized Difference Vegetation Index” OR “SABI” OR “Surface Algal Bloom Index” OR “SAI” OR “Scaled Algae Index” OR “TVI” OR “Transformed Vegetation Index” OR “VB-FAH” OR “Virtual Baseline Floating macroAlgae Height” OR “FLH” OR “Fluorescence Line Height” OR “Spectral Index” OR “Chlorophyll Index” | “Macroalgae” OR “Macroalgal Blooms” OR “Floating vegetation” OR “Chlorophyll content” OR “Green macroalgae” OR “Floating macroalgae” OR “Ulva” OR “Enteromorpha” OR “Chaetomorpha” |
2.2. Study Area
2.3. Logistic Regression Model
3. Results
3.1. Selection of the Optimal Index
- High Classification Accuracy: Among the evaluated indices, FAI demonstrated the highest accuracy in distinguishing between “bloom” and “non-bloom” pixels when compared with ground-truth data derived from drone imagery. This was confirmed through pixel-based performance evaluation, where FAI yielded the highest number of correctly classified pixels.
- Sensitivity to Surface-Floating Algae: FAI was specifically designed to detect chlorophyll-rich surface features using the red-edge effect, making it well suited for identifying floating macroalgae. FAI effectively captures the spectral signature of floating mats rather than submerged vegetation or suspended phytoplankton.
- Compatibility with Sentinel-2 Data: The index can be accurately implemented using Sentinel-2 MSI imagery, which offers relatively high spatial resolution (20 m)—a critical factor for detecting comparatively small and spatially complex bloom areas in estuarine environments. FAI’s reliance on red, NIR, and SWIR bands aligns well with Sentinel-2’s spectral capabilities.
- Robustness in Shallow, Turbid Waters: In comparison to indices like NDVI or MCI, which may be confounded by bottom reflectance or suspended sediment, FAI provided more consistent results in shallow and optically complex areas of Tuggerah Lakes.
- Transferability and Simplicity: FAI’s mathematical formulation is relatively simple and does not rely on sensor-specific calibration, making it suitable for application across different satellite platforms and study sites. This makes it a scalable option for future estuarine monitoring efforts.
3.2. Model Training and Cross-Validation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABDI | Algal Bloom Detection Index |
BRP | Band Ratio Parameter |
FAI | Floating Algae Index |
FGTI | Floating Green Tide Index |
FLH | Fluorescence Line Height |
MCI | Maximum Chlorophyll Index |
MERIS | Medium Resolution Imaging Spectrometer |
MODIS | Moderate Resolution Imaging Spectroradiometer |
MSS | Multi-spectral Scanner |
NDAI | Normalized Difference Algae Index |
NDVI | Normalized Difference Vegetation Index |
NIR | Near Infra-Red |
SABI | Surface Algal Bloom Index |
SAI | Scaled Algae Index |
SWIR | Short-Wave Infra-Red |
TVI | Transformed Vegetation Index |
VB-FAH | Virtual Baseline Floating macroAlgae Height |
References
- Valiela, I.; McClelland, J.; Hauxwell, J.; Behr, P.J.; Hersh, D.; Fereman, K. Macroalgal blooms in shallow estuaries Controls and ecophysiological and ecosystem consequences. Limnol. Oceanogr. 1997, 42, 1105–1118. [Google Scholar] [CrossRef]
- Lavery, P.S.; Lukatelich, R.J.; McComb, A.J. Changes in the Biomass and Species Composition of Macroalgae in Eutrophic Estuary. Estuar. Coast. Shelf Sci. 1991, 33, 1–22. [Google Scholar] [CrossRef]
- Raffaelli, D.G.; Raven, J.A.; Poole, L.J. Ecological Impact of Green Macroalgal Blooms. Oceanogr. Mar. Biol. Annu. Rev. 1998, 36, 97–125. [Google Scholar]
- Cummins, S.P.; Roberts, D.E.; Zimmerman, K.D. Effects of the green macroalga Enteromorpha intestinalis on microbenthic and seagrass assemblages in shallow coastal estuary. Mar. Ecol. Prog. Ser. 2004, 266, 77–87. [Google Scholar] [CrossRef]
- Lyons, D.A.; Mant, R.C.; Bullen, F.; Kotta, J.; Rilov, G.; Crowe, T.P. What are the effects of macroalgal blooms on the structure and functioning of marine ecosystems? A systematic review protocol. Environ. Evid. J. 2012, 1, 7. [Google Scholar] [CrossRef]
- Wang, C.; Yu, R.; Zhou, M.J. Effects of the decomposing green macroalga Ulva (Enteromorpha) prolifera on the growth of four red-tide species. Harmful Algae 2012, 16, 12–19. [Google Scholar] [CrossRef]
- Lewis, N.S.; DeWitt, T.H. Effect of Green Macroalgal Blooms on the Behaviour, Growth, and Survival of Cockles (Clinocardium nuttallii) in Pacific NW Estuaries. Mar. Ecol. Prog. Ser. 2017, 582, 105–120. [Google Scholar] [CrossRef] [PubMed]
- Larcher, W. Physiological Plant Ecology: Ecophysiology and Stress Physiology of Functional Groups, 2nd ed.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1980. [Google Scholar]
- Deng, X.; Liu, T.; Liu, C.Y.; Liang, S.K.; Hu, Y.B.; Jin, Y.M.; Wang, X.C. Effects of Ulva prolifera blooms on the carbonate system in the coastal waters of Qingdao. Mar. Ecol. Prog. Ser. 2018, 605, 73–86. [Google Scholar] [CrossRef]
- Paulimer, A.; Tatlian, T.; Reveillac, E.; Le Luherne, E.; Ballu, S.; Lepage, M.; Le Pape, O. Impacts of green tides on estuarine fish assemblages. Estuar. Coast. Shelf Sci. 2018, 213, 176–184. [Google Scholar]
- Cohen, R. The Effects of Runoff on the Physiology of Enteromorpha Intestinalis: Implications for Use as a Bioindicator of Freshwater and Nutrient Influx to Estuarine and Coastal Areas; UC Office of the President, UC Marine Council: Oakland, CA, USA, 2002. [Google Scholar]
- Alharbi, B. Remote sensing techniques for monitoring algal blooms in the area between Jeddah and Rabigh on the Red Sea Coast. Remote Sens. Appl. Soc. Environ. 2022, 30, 100935. [Google Scholar] [CrossRef]
- Medina-Lopez, E.; Navarro, G.; Santos-Echeandia, J.; Bernardes, P.; Caballero, I. Machine Learning for Detection of Macroalgal Blooms in the Mar Menor Coastal Lagoon Using Sentinel-2. Remote Sens. 2023, 15, 1208. [Google Scholar] [CrossRef]
- Scanlan, C.M.; Foden, J.; Wells, E.; Best, M.A. The monitoring of opportunistic macroalgal blooms for the water framework directive. Mar. Pollut. Bull. 2007, 55, 162–171. [Google Scholar] [CrossRef]
- Zhang, H.; Qiu, Z.; Devred, E.; Sun, D.; Wang, S.; Yu, Y. A simple and effective method for monitoring floating green macroalgae blooms: A case study in the Yellow Sea. Opt. Express 2019, 27, 4528–4548. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. In Goddard Space Flight Center 3d ERTS-1 Symposium; NASA: Washington, DC, USA, 1974; Volume 1, Section A; pp. 309–317. [Google Scholar]
- Richardson, L.L. Remote sensing of algal bloom dynamics. Bioscience 1996, 46, 492–501. [Google Scholar] [CrossRef]
- Buschmann, C.; Lenk, S.; Lichtenthaler, H.K. Reflectance spectra and images of green leaves with different tissue structure and chlorophyll content. Isr. J. Plant Sci. 2012, 60, 49–64. [Google Scholar] [CrossRef]
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation, 7th ed.; Wiley: Hoboken, NJ, USA, 2015. [Google Scholar]
- Morton, A.M. Biochemical Spectroscopy; Wiley and Sons: Hoboken, NJ, USA, 1975; Volume 1. [Google Scholar]
- Horler, D.N.H.; Dockray, M.; Barber, J. The red edge of plant leaf reflectance. Int. J. Remote Sens. 1983, 4, 273–288. [Google Scholar] [CrossRef]
- Gower, J.F.R.; Brown, L.; Borstad, G.A. Observation of chlorophyll fluorescence in west coast waters of Canada using the MODIS satellite sensor. Can. J. Remote Sens. 2004, 30, 17–25. [Google Scholar] [CrossRef]
- Miyashita, H.; Ikemoto, H.; Kurano, N.; Adachi, K.; Chihara, M.; Miyachi, S. Chlorophyll-d as a major pigment. Nature 1996, 383, 402. [Google Scholar] [CrossRef]
- Croft, H.; Chen, J.M. Leaf Pigment Content. Reference Module in Earth Systems and Environmental Sciences; University of Toronto: Toronto, ON, Canada, 2017. [Google Scholar]
- Hu, C. A novel ocean colour index to detect floating algae in the global oceans. Remote Sens. Environ. 2009, 113, 2118–2129. [Google Scholar] [CrossRef]
- Keith, D.J. Estimating Chlorophyll Conditions in Southern New England Coastal Waters from Hyperspectral Aircraft Remote Sensing. In Remote Sensing of Coastal Environments; Weng, Q., Ed.; Indiana State University: Terre Haute, IN, USA, 2009; pp. 151–172. [Google Scholar]
- Alawadi, F. Detection of surface algal blooms using the newly developed algorithm surface algal bloom index (SABI). Remote Sens. Ocean Sea Ice Large Water Reg. 2010, 7825, 782506. [Google Scholar]
- Xing, Q.; Hu, C. Mapping macroalgal blooms in the Yellow Sea and East China Sea using HJ-1 and Landsat data: Application of a virtual baseline reflectance height technique. Remote Sens. Environ. 2016, 178, 113–126. [Google Scholar] [CrossRef]
- Hu, L.; Hu, C.; Ming-Xia, H.E. Remote estimation of biomass of Ulva prolifera macroalgae in the Yellow Sea. Remote Sens. Environ. 2017, 192, 217–227. [Google Scholar] [CrossRef]
- Rowan, G.; Kalacska, M.; Inamdar, D.; Arroyo-Mora, J.; Soffer, R. Multi-Scale Spectral Separability of Submerged Aquatic Vegetation Species in a Freshwater Ecosystem. Front. Environ. Sci. 2021, 9, 760372. [Google Scholar] [CrossRef]
- Luo, J.; Ni, G.; Zhang, Y.; Wang, K.; Shen, M.; Cao, Z.; Qi, T.; Xiao, Q.; Qiu, Y.; Cai, Y.; et al. A new technique for quantifying algal bloom, floating/emergent and submerged vegetation in eutrophic shallow lakes using Landsat imagery. Remote Sens. Environ. 2023, 287, 113480. [Google Scholar] [CrossRef]
- Shen, L.; Xu, H.; Guo, X. Satellite remote sensing of harmful algal blooms (HABS) and a potential synthesized framework. Sensors 2012, 12, 7778–7803. [Google Scholar] [CrossRef]
- Cao, M.; Qing, S.; Jin, E.; Hao, Y.; Zhao, W. A spectral index for the detection of algal blooms using Sentinel-2 Multispectral Instrument (MSI) imagery: A case study of Hulun Lake, China. Int. J. Remote Sens. 2021, 42, 4514–4535. [Google Scholar] [CrossRef]
- Maciel, F.P.; Haakonsson, S.; Ponce de León, L.; Bonilla, S.; Pedocchi, F. Challenges for chlorophyll-a remote sensing in a highly variable turbidity estuary, an implementation with sentinel-2. Geocarto Int. 2023, 38, 2160017. [Google Scholar] [CrossRef]
- Joniver, C.; Moore, P.; Woolmer, A.; Adams, J. Is sustainable harvesting of opportunistic macroalgae blooms an ecological, social and economic solution? In Proceedings of the International Seaweed Symposium 2019, Jeju Island, Republic of Korea, 28 April–3 May 2019.
- Diruit, W.; Burel, T.; Bajjouk, T.; Le Bris, A.; Richier, S.; Terrin, S.; Helias, M.; Stiger-Pouvreau, V.; Ar Gall, E. Comparison of supervised classifications to discriminate seaweed-dominated habitats through hyperspectral imaging data. J. Appl. Phycol. 2024, 36, 1047–1071. [Google Scholar] [CrossRef]
- Park, J.; Patel, K.; Lee, W.H. Recent advances in algal bloom detection and prediction technology using machine learning. Sci. Total Environ. 2024, 938, 173546. [Google Scholar] [CrossRef]
- Sheik, A.G.; Kumar, A.; Patnaik, R.; Kumari, S.; Bux, F. Machine learning-based design and monitoring of algae blooms: Recent trends and future perspectives—A short review. Crit. Rev. Environ. Sci. Technol. 2023, 54, 509–532. [Google Scholar] [CrossRef]
- Sukhinov, A.; Belova, Y.; Chistyakov, A.; Beskopylny, A.; Meskhi, B. Mathematical Modeling of the Phytoplankton Populations Geographic Dynamics for Possible Scenarios of Changes in the Azov Sea Hydrological Regime. Mathematics 2021, 9, 3025. [Google Scholar] [CrossRef]
- Da Silva e Souza, G.; Gomes, E.G.; de Andrade Alves, E.R. Two-part fractional regression model with conditional FDH responses: An application to Brazilian agriculture. Ann. Oper. Res. 2022, 314, 393–409. [Google Scholar] [CrossRef]
- Albornoz, V.M.; Araneda, L.C.; Ortega, R. Planning and scheduling of selective harvest with management zones delineation. Ann. Oper. Res. 2022, 316, 873–890. [Google Scholar] [CrossRef]
- Gordon, H.R.; Wang, M. Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: A preliminary algorithm. Appl. Opt. 1994, 33, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Matthews, M.W.; Bernard, S.; Lain, L.R. An algorithm for detecting trophic status (chlorophyll-a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters. Remote Sens. Environ. 2012, 124, 637–652. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Buschmann, C.; Lichtenthaler, H.K. The Chlorophyll Fluorescence Ratio F735/F700 as an Accurate Measure of the Chlorophyll Content in Plants. Remote Sens. Environ. 1999, 69, 296–302. [Google Scholar] [CrossRef]
- Wang, X.H.; Qiao, F.; Lu, J.; Gong, F. The turbidity maxima of the northern Jiangsu shoal-water in the Yellow Sea, China. Estuar. Coast. Shelf Sci. 2011, 93, 202–211. [Google Scholar] [CrossRef]
- Garcia, R.A.; Fearns, P.; Keesing, J.K.; Liu, D. Quantification of floating macroalgae blooms using the scaled algae index. J. Geophys. Res. Ocean 2013, 118, 26–42. [Google Scholar] [CrossRef]
- Shi, W.; Wang, M. Green macroalgae blooms in the Yellow Sea during the spring and summer of 2008. J. Geophys. Res. B. Solid Earth 2009, 114. [Google Scholar] [CrossRef]
- Binding, C.E.; Greenberg, T.A.; Bukata, R.P. The MERIS Maximum Chlorophyll Index; its merits and limitations for inland water algal bloom monitoring. J. Great Lakes Res. 2013, 39, 100–107. [Google Scholar] [CrossRef]
- Li, S.; Ganguly, S.; Dungan, J.L.; Wang, W.L.; Nemani, R.R. Sentinel-2 MSI Radiometric Characterization and Cross-Calibration with Landsat-8 OLI. Adv. Remote Sens. 2017, 6, 147–159. [Google Scholar] [CrossRef]
- Lee, Z.; Carder, K.L.; Steward, R.G.; Peacock, T.G.; Davis, C.O.; Mueller, J.L. Remote sensing reflectance and inherent optical properties of oceanic waters derived from above-water measurements. Proc. Int. Soc. Opt. Eng. 1997, 2963, 160–166. [Google Scholar]
- Batley, G.E.; Body, D.N.; Cook, B.G.; Dibb, L.; Fleming, P.M.; Skyring, G.W.; Boon, P.I.; Mitchell, D.S.; Sinclair, R.L. The Ecology of the Tuggerah Lakes System: A Review: With Special Reference to the Impact of the Munmorah Power Station. Stage 1: Hydrology, Aquatic Macrophytes, Heavy Metals, Nutrient Dynamics; Report prepared for the Electricity Commission of New South Wales, Wyong Shire Council and the State Pollution Control Commission [consultancy report]; Murray-Darling Freshwater Research Centre: Wodonga, Australia, 1990. [Google Scholar]
- Scott, A. Ecological History of the Tuggerah Lakes; CSIRO Land and Water: Canberra, Australia, 1999. [Google Scholar]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R.; Taylor, J. An Introduction to Statistical Learning with Applications in Python; Springer: Berlin/Heidelberg, Germany, 2023; pp. 212–229. [Google Scholar]
- Kutser, T. Passive optical remote sensing of cyanobacteria and other intense phytoplankton blooms in coastal and inland waters. Int. J. Remote Sens. 2009, 30, 4401–4425. [Google Scholar] [CrossRef]
- Huang, Z.; Jiang, C.; Xu, S.; Zheng, X.; Lv, P.; Wang, C.; Wang, D.; Zhuang, X. Spatiotemporal changes of bacterial communities during a cyanobacterial bloom in a subtropical water source reservoir ecosystem in China. Sci. Rep. 2022, 12, 14573. [Google Scholar] [CrossRef]
- Yun, H. Prediction model of algal blooms using logistic regression and confusion matrix. Int. J. Electr. Comput. Eng. 2021, 11, 2407–2413. [Google Scholar] [CrossRef]
- Blondeau-Patissier, D.; Gower, J.F.R.; Dekker, A.G.; Phinn, S.R.; Brando, V.E. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Prog. Oceanogr. 2014, 123, 123–144. [Google Scholar] [CrossRef]
- Kislik, C.; Dronova, I.; Grantham, T.E.; Kelly, M. Mapping algal bloom dynamics in small reservoirs using Sentinel-2 imagery in Google Earth Engine. Ecol. Indic. 2022, 140, 109041. [Google Scholar] [CrossRef]
- Fournier, C.; Quesada, A.; Cirés, S.; Saberioon, M. Discriminating bloom-forming cyanobacteria using lab-based hyperspectral imagery and machine learning: Validation with toxic species under environmental ranges. Sci. Total Environ. 2024, 932, 172741. [Google Scholar] [CrossRef]
Point No | Easting, m | Northing, m |
---|---|---|
1 | 357,890.569753 | 6,311,269.813781 |
2 | 357,370.163757 | 6,311,489.306143 |
3 | 356,730.669376 | 6,311,869.203515 |
4 | 356,209.303138 | 6,312,129.859963 |
5 | 363,589.900503 | 6,315,810.054487 |
6 | 363,909.516793 | 6,316,170.319257 |
7 | 362,030.190004 | 6,319,230.106045 |
8 | 363,110.595170 | 6,320,249.915563 |
9 | 360,550.229186 | 6,315,129.416644 |
10 | 355,610.573403 | 6,308,610.073060 |
11 | 366,549.164813 | 6,323,110.228673 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
TP | 43 | 49 | 52 | 52 | 9 | 18 | 37 |
FP | 9 | 3 | 7 | 10 | 1 | 3 | 2 |
TN | 107 | 99 | 90 | 100 | 153 | 137 | 116 |
FN | 7 | 15 | 17 | 4 | 3 | 8 | 11 |
Overall Classification Error: (FP + FN)/ (FP + TP + FN + TN) | 0.0963855 | 0.1084337 | 0.1445783 | 0.0843373 | 0.0240963 | 0.066265 | 0.0783132 |
Sensitivity TP/(TP + FN) | 0.9386 | 0.8684 | 0.8411 | 0.9615 | 0.9808 | 0.9448 | 0.9134 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
TP | 50 | 44 | 47 | 57 | 9 | 13 | 34 |
FP | 2 | 8 | 12 | 5 | 1 | 8 | 5 |
TN | 103 | 113 | 101 | 98 | 153 | 144 | 125 |
FN | 11 | 1 | 6 | 6 | 3 | 1 | 2 |
Overall Classification Error: (FP + FN)/ (FP + TP + FN + TN) | 0.0783132 | 0.0542169 | 0.108433 | 0.066265 | 0.0240963 | 0.0542169 | 0.0421686 |
Sensitivity TP/(TP + FN) | 0.9035 | 0.9912 | 0.9439 | 0.9423 | 0.9808 | 0.9931 | 0.9843 |
Sample Point Number | |||||||
---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
−0.2268212 | −1.541815 | −0.9437874 | −0.0013445 | −1.673069 | −1.42642 | −1.921111 | |
0.04458782 | 0.03542325 | 0.03794499 | 0.0367267 | 0.0248626 | 0.02434152 | 0.0313547 | |
po | 0.22 | 0.56 | 0.53 | 0.45 | 0.16 | 0.56 | 0.54 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
TP | 43 | 44 | 47 | 57 | 8 | 16 | 34 |
FP | 9 | 8 | 12 | 5 | 2 | 5 | 5 |
TN | 107 | 112 | 100 | 96 | 153 | 139 | 123 |
FN | 7 | 2 | 7 | 8 | 3 | 6 | 4 |
Overall Classification Error: (FP + FN)/(FP + TP + FN + TN) | 0.09638554 | 0.06024096 | 0.114457 | 0.0783132 | 0.0301204 | 0.066265 | 0.54216 |
Sensitivity TP/(TP + FN) | 0.9386 | 0.9825 | 0.9346 | 0.9231 | 0.9808 | 0.9586 | 0.9685 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
−0.1870363 | −1.600238 | −0.972799 | 0.0372666 | −3.437035 | −1.490092 | −2.935952 | |
0.04724447 | 0.03808789 | 0.03936414 | 0.0391434 | 0.110245 | 0.02668866 | 0.0487624 | |
po | 0.41243 | 0.54342 | 0.52528 | 0.43889 | 0.23194 | 0.4202 | 0.40988 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Podsosonnaya, M.; Schreider, M.J.; Schreider, S. Modeling Estuarine Algal Bloom Dynamics with Satellite Data and Spectral Index-Based Classification. Hydrology 2025, 12, 130. https://doi.org/10.3390/hydrology12060130
Podsosonnaya M, Schreider MJ, Schreider S. Modeling Estuarine Algal Bloom Dynamics with Satellite Data and Spectral Index-Based Classification. Hydrology. 2025; 12(6):130. https://doi.org/10.3390/hydrology12060130
Chicago/Turabian StylePodsosonnaya, Mayya, Maria J. Schreider, and Sergei Schreider. 2025. "Modeling Estuarine Algal Bloom Dynamics with Satellite Data and Spectral Index-Based Classification" Hydrology 12, no. 6: 130. https://doi.org/10.3390/hydrology12060130
APA StylePodsosonnaya, M., Schreider, M. J., & Schreider, S. (2025). Modeling Estuarine Algal Bloom Dynamics with Satellite Data and Spectral Index-Based Classification. Hydrology, 12(6), 130. https://doi.org/10.3390/hydrology12060130