Research on the Index Calculation Method for the Impact of Drought on Water Quality in the Nakdong River, Korea
Abstract
1. Introduction
2. Methods
2.1. Study Area and Factors
2.2. Environmental Drought Index Calculation Method
2.3. Setting up Environmental Drought Index Calculation Items
2.4. Weights and Normalization Methods
3. Results and Discussion
3.1. Environmental Drought Index Applicability Assessment
3.2. Class Interval Settings
3.3. Environmental Drought Index Calculation Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poff, N.L.; Brinson, M.M.; Day, J.W. Aquatic ecosystems and global climate change. Pew Cent. Glob. Clim. Chang. Arlingt. VA 2002, 44, 1–36. [Google Scholar]
- Park, J.H.; Duan, L.; Kim, B.; Mitchell, M.J.; Shibata, H. Potential effects of climate change and variability on watershed biogeochemical processes and water quality in Northeast Asia. Environ. Int. 2010, 36, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Sjerps, R.M.; Ter Laak, T.L.; Zwolsman, G.J. Projected impact of climate change and chemical emissions on the water quality of the European rivers Rhine and Meuse: A drinking water perspective. Sci. Total Environ. 2017, 601, 1682–1694. [Google Scholar] [CrossRef] [PubMed]
- Zavareh, M.M.; Mahjouri, N.; Rahimzadegan, M.; Rahimpour, M. A drought index based on groundwater quantity and quality: Application of multivariate copula analysis. J. Clean. Prod. 2023, 417, 137959. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, S. Research progress, challenges, and prospects in drought propagation. Adv. Earth Sci. 2023, 38, 563–579. [Google Scholar]
- Zhang, Y.; You, Q.; Ullah, S.; Chen, C.; Shen, L.; Liu, Z. Substantial increase in abrupt shifts between drought and flood events in China based on observations and model simulations. Sci. Total Environ. 2023, 876, 162822. [Google Scholar] [CrossRef]
- Wang, H.; Wang, S.; Shu, X.; He, Y.; Huang, J. Increasing occurrence of sudden turns from drought to flood over China. J. Geophys. Res. Atmos. 2024, 129, e2023JD039974. [Google Scholar] [CrossRef]
- Macintosh, K.A.; Jordan, P.; Cassidy, R.; Arnscheidt, J.; Ward, C. Low flow water quality in rivers; septic tank systems and high-resolution phosphorus signals. Sci. Total Environ. 2011, 412, 58–65. [Google Scholar] [CrossRef]
- Burt, T.P.; Worrall, F.; Howden, N.J.; Anderson, M.G. Shifts in discharge-concentration relationships as a small catchment recover from severe drought. Hydrol. Process. 2015, 29, 498–507. [Google Scholar] [CrossRef]
- Seo, J.; Won, J.; Lee, H.; Kim, S. Probabilistic monitoring of meteorological drought impacts on water quality of major rivers in South Korea using copula models. Water Res. 2024, 251, 121175. [Google Scholar] [CrossRef]
- Fabian, P.S.; Kwon, H.H.; Vithanage, M.; Lee, J.H. Modeling, challenges, and strategies for understanding impacts of climate extremes (droughts and floods) on water quality in Asia: A review. Environ. Res. 2023, 225, 115617. [Google Scholar] [CrossRef] [PubMed]
- Van Vliet, M.T.H.; Zwolsman, J.J.G. Impact of summer droughts on the water quality of the Meuse river. J. Hydrol. 2008, 353, 1–17. [Google Scholar] [CrossRef]
- Safavi, H.R.; Malek Ahmadi, K. Prediction and assessment of drought effects on surface water quality using artificial neural networks: Case study of Zayandehrud River, Iran. J. Environ. Health Sci. Eng. 2015, 13, 68. [Google Scholar] [CrossRef] [PubMed]
- Zwolsman, J.J.G.; Van Bokhoven, A.J. Impact of summer droughts on water quality of the Rhine River-a preview of climate change? Water Sci. Technol. 2007, 56, 45–55. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- Barker, L.J.; Hannaford, J.; Chiverton, A.; Svensson, C. From meteorological to hydrological drought using standardised indicators. Hydrol. Earth Syst. Sci. 2016, 20, 2483–2505. [Google Scholar] [CrossRef]
- Lee, J.W.; Kim, K.H.; Kim, S.; Woo, S.; Kim, S.J. Evaluation of the Relationship between Meteorological Drought and Agricultural Drought of Geum River Basin during 2014~2016. J. Wetl. Res. 2019, 21, 80–89. [Google Scholar] [CrossRef]
- Kim, S.H.; Chung, E.S. Analysis of peak drought severity time and period using meteorological and hydrological drought indices. J. Korea Water Resour. Assoc. 2018, 51, 471–479. [Google Scholar] [CrossRef]
- Kwak, J.S.; Kim, G.S.; Jung, Y.H.; Um, M.J. Drought Assessment with SPI and DRI in Uiryeong-Gun. KSCE J. Civ. Environ. Eng. Res. 2022, 42, 457–467. [Google Scholar]
- Kim, J.S.; Jain, S.; Lee, J.H.; Chen, H.; Park, S.Y. Quantitative vulnerability assessment of water quality to extreme drought in a changing climate. Ecol. Indic. 2019, 103, 688–697. [Google Scholar] [CrossRef]
- Yoo, J.; Ryu, J.H.; Lee, J.H.; Kim, T.W. Probabilistic assessment of causal relationship between drought and water quality management in the Nakdong River basin using the Bayesian network model. J. Korea Water Resour. Assoc. 2021, 54, 769–777. [Google Scholar] [CrossRef]
- Park, K.D.; Kang, D.H.; So, Y.H.; Kim, I.K. Temporal-spatial variations of water quality level and water quality index on the living environmental standards in the west Nakdong River. J. Environ. Sci. Int. 2019, 28, 1071–1083. [Google Scholar] [CrossRef]
- Nayak, J.G.; Patil, L.G.; Patki, V.K. Development of water quality index for Godavari River (India) based on fuzzy inference system. Groundw. Sustain. Dev. 2020, 10, 100350. [Google Scholar] [CrossRef]
- Tyagi, S.; Sharma, B.; Singh, P.; Dobhal, R. Water quality assessment in terms of water quality index. Am. J. Water Resour. 2013, 1, 34–38. [Google Scholar] [CrossRef]
- Park, J.; Kal, B.; Kim, S. Long-term trend analysis of major tributaries of Nakdong River using water quality index. J. Wetl. Res. 2018, 20, 201–209. [Google Scholar]
- Peña-Guerrero, M.D.; Nauditt, A.; Muñoz-Robles, C.; Ribbe, L.; Meza, F. Drought impacts on water quality and potential implications for agricultural production in the Maipo River Basin. Cent. Chile Hydrol. Sci. J. 2020, 65, 1005–1021. [Google Scholar] [CrossRef]
- Giri, S.; Mishra, A.; Zhang, Z.; Lathrop, R.G.; Alnahit, A.O. Meteorological and hydrological drought analysis and its impact on water quality and stream integrity. Sustainability 2021, 13, 8175. [Google Scholar] [CrossRef]
- Study on Establishing Management Standards for Total Water Pollution Load Management in the Four Major Rivers (I) Nakdong River System; National Institute of Environmental Research: Inchon, Republic of Korea, 2017.
- Nazir, H.M.; Hussain, I.; Zafar, M.I.; Ali, Z.; AbdEl-Salam, N.M. Classification of drinking water quality index and identification of significant factors. Water Resour. Manag. 2016, 30, 4233–4246. [Google Scholar] [CrossRef]
- Blaen, P.J.; Khamis, K.; Lloyd, C.E.; Bradley, C.; Hannah, D.; Krause, S. Real-time monitoring of nutrients and dissolved organic matter in rivers: Capturing event dynamics, technological opportunities and future directions. Sci. Total Environ. 2016, 569, 647–660. [Google Scholar] [CrossRef]
- Pellerin, B.A.; Bergamaschi, B.A.; Gilliom, R.J.; Crawford, C.G.; Saraceno, J.; Frederick, C.P.; Downing, B.D.; Murphy, J.C. Mississippi River nitrate loads from high frequency sensor measurements and regression-based load estimation. Environ. Sci. Technol. 2014, 48, 12612–12619. [Google Scholar] [CrossRef]
- Wong, B.P.; Kerkez, B. Real-time environmental sensor data: An application to water quality using web services. Environ. Model. Softw. 2016, 84, 505–517. [Google Scholar] [CrossRef]
- Martinez, K.; Hart, J.K. Environmental Sensor Networks: A revolution in Earth System Science? In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 10–14 December 2007. IN11A-0095. [Google Scholar]
- Jordan, P.; Arnscheidt, A.; McGrogan, H.; McCormick, S. Characterising phosphorus transfers in rural catchments using a continuous bank-side analyser. Hydrol. Earth Syst. Sci. 2007, 11, 372–381. [Google Scholar] [CrossRef]
- Kirchner, J.W.; Feng, X.; Neal, C. The Fine Structure of Water-Quality Dynamics: The Wave of the Future in Catchment Hydrochemistry? In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 13–17 December 2004. H51G-02. [Google Scholar]
- Sinshaw, T.A.; Surbeck, C.Q.; Yasarer, H.; Najjar, Y. Artificial neural network for prediction of total nitrogen and phosphorus in US lakes. J. Environ. Eng. 2019, 145, 04019032. [Google Scholar] [CrossRef]
- Jo, B.G.; Lee, S.W.; Kim, Y.D.; Lee, J.H. Drought impact on water quality environment through linkage analysis with meteorological data in Gamcheon mid-basin. J. Korea Water Resour. Assoc. 2023, 56, 823–835. [Google Scholar]
- Booysen, F. An overview and evaluation of composite indices of development. Soc. Indic. Res. 2002, 59, 115–151. [Google Scholar] [CrossRef]
- Salzman, J. Methodological Choices Encountered in the Construction of Composite Indices of Economic and Social Well-Being; Centre for the Study of Living Standards: Oxford, UK, 2003. [Google Scholar]
- Mazziotta, M.; Pareto, A. Normalization methods for spatio-temporal analysis of environmental performance: Revisiting the Min–Max method. Environmetrics 2022, 33, e2730. [Google Scholar] [CrossRef]
Survey | Moist Conditions | Normal Conditions | Dry Conditions | Low Flow |
---|---|---|---|---|
Naesung River (NS) | 13.819~44.458 (22.617) | 9.316~13.79 (11.444) | 5.069~9.288 (7.019) | 2.26~5.069 (4.187) |
Young River (YO) | 6.683~21.464 (11.255) | 4.361~6.683 (5.417) | 1.92~4.361 (3.131) | 0.697~1.917 (1.382) |
Byeongseong River (BS) | 2.973~8.41 (4.811) | 2.036~2.973 (2.474) | 0.946~2.033 (1.470) | 0.351~0.946 (0.708) |
Wi River (WI) | 7.023~22.172 (11.957) | 4.191~7.023 (5.370) | 1.58~4.191 (2.863) | 0.235~1.577 (1.114) |
Gam River (GA) | 6.201~14.951 (9.175) | 4.361~6.201 (5.215) | 2.517~4.361 (3.438) | 0.898~2.503 (2.005) |
Hoe River (HO) | 26.108~58.899 (36.165) | 21.011~26.108 (23.281) | 14.243~21.011 (17.635) | 9.883~14.243 (12.649) |
Geumho River (GH) | 8.212~21.861 (13.110) | 5.409~8.212 (6.637) | 2.302~5.409 (3.744) | 0.442~2.294 (1.585) |
Hwang River (HW) | 23.446~41.343 (30.484) | 18.604~23.446 (20.730) | 9.684~18.576 (14.721) | 4.361~9.684 (6.910) |
Nam River (NA) | 45.307~133.373 (77.294) | 27.836~45.307 (35.575) | 12.006~27.836 (21.121) | 4.389~12.006 (8.805) |
Miryang River (MY) | 10.307~24.579 (15.021) | 7.023~10.307 (8.702) | 3.313~6.994 (5.100) | 1.416~3.313 (2.617) |
Watershed | Corr. | All Flow R2 | Dry/Low R2 |
---|---|---|---|
Naesung River | 0.66 | 0.36 | 0.26 |
Young River | 0.73 | 0.53 | 0.56 |
Byeongseong River | 0.79 | 0.53 | 0.53 |
Wi River | 0.64 | 0.42 | 0.39 |
Gam River | 0.71 | 0.47 | 0.34 |
Hoe River | 0.67 | 0.40 | 0.42 |
Geumho River | 0.83 | 0.77 | 0.84 |
Hwang River | 0.46 | 0.10 | 0.06 |
Nam River | 0.75 | 0.57 | 0.57 |
Miryang River | 0.86 | 0.74 | 0.74 |
Value | Classification |
---|---|
0~2 | Normal |
2~3 | Concern |
3~4 | Attention |
4~5 | Warning |
5< | Critical |
Watershed | All Flow | ||||
---|---|---|---|---|---|
Normal | Concern | Attention | Warning | Critical | |
Naesung River | 9.5% (29/304) | 37.0% (47/127) | 100.0% (9/9) | 100.0% (4/4) | - |
Young River | 25.0% (2/8) | 27.8% (40/144) | 71.4% (80/112) | 90.7% (49/54) | 100.0% (28/28) |
Byeongseong River | 0.0% (0/23) | 9.3% (20/216) | 47.0% (31/66) | 81.5% (22/27) | 100.0% (5/5) |
Wi River | 0.0% (0/2) | 0.0% (0/17) | 21.9% (21/96) | 46.0% (46/100) | 83.6% (117/140) |
Gam River | 21.2% (24/113) | 49.2% (90/183) | 75.7% (28/37) | 100.0% (6/6) | 100.0% (4/4) |
Hoe River | 0.0% (0/36) | 5.7% (9/158) | 26.8% (30/112) | 50.0% (19/38) | 100.0% (10/10) |
Geumho River | 1.6% (1/63) | 11.9% (18/151) | 55.3% (57/103) | 92.6% (63/68) | 92.6% (63/68) |
Hwang River | 11.9% (10/84) | 11.4% (20/175) | 18.0% (9/50) | 50.0% (4/8) | 50.0% (3/6) |
Nam River | 0.0% (0/1) | 18.8% (3/16) | 13.3% (12/90) | 40.4% (46/114) | 92.6% (199/215) |
Watershed | Dry, Low Flow | ||||
---|---|---|---|---|---|
Normal | Concern | Attention | Warning | Critical | |
Naesung River | 8.7% (17/196) | 46.4% (26/56) | 100.0% (2/2) | - | - |
Young River | 0.0% (0/3) | 26.2% (17/65) | 77.8% (42/54) | 95.0% (38/40) | 100.0% (22/22) |
Byeongseong River | 0.0% (0/7) | 8.7% (10/115) | 41.7% (15/36 | 62.5% (5/8) | 100.0% (3/3) |
Wi River | - | 0.0% (0/11) | 23.9% (17/71) | 52.5% (31/59) | 81.2% (69/85) |
Gam River | 34.7% (17/49) | 50.5% (51/101) | 85.0% (17/20) | 100.0% (2/2) | 100.0% (1/1) |
Hoe River | 0.0% (0/15) | 4.4% (4/90) | 32.2% (28/87) | 48.6% (17/35) | 100.0% (9/9) |
Geumho River | 2.7% (1/37) | 9.4% (9/96) | 51.9% (28/54) | 90.0% (27/30) | 100.0% (44/44) |
Hwang River | 12.8% (5/39) | 7.1% (6/84) | 7.1% (2/28) | 33.3% (2/6) | 50.0% (1/2) |
Nam River | - | 25.0% (1/4) | 15.8% (3/19) | 46.7% (21/45) | 92.5% (86/93) |
Miryang River | 0.0% (0/18) | 27.5% (30/109) | 86.6% (58/67) | 100.0% (30/30) | 100.0% (21/21) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jo, B.G.; Lim, J.; Lee, J.-H.; Kim, Y.D. Research on the Index Calculation Method for the Impact of Drought on Water Quality in the Nakdong River, Korea. Hydrology 2024, 11, 190. https://doi.org/10.3390/hydrology11110190
Jo BG, Lim J, Lee J-H, Kim YD. Research on the Index Calculation Method for the Impact of Drought on Water Quality in the Nakdong River, Korea. Hydrology. 2024; 11(11):190. https://doi.org/10.3390/hydrology11110190
Chicago/Turabian StyleJo, Bu Geon, Jaeyeon Lim, Joo-Heon Lee, and Young Do Kim. 2024. "Research on the Index Calculation Method for the Impact of Drought on Water Quality in the Nakdong River, Korea" Hydrology 11, no. 11: 190. https://doi.org/10.3390/hydrology11110190
APA StyleJo, B. G., Lim, J., Lee, J.-H., & Kim, Y. D. (2024). Research on the Index Calculation Method for the Impact of Drought on Water Quality in the Nakdong River, Korea. Hydrology, 11(11), 190. https://doi.org/10.3390/hydrology11110190