The Effectiveness of Polyvinylidene Fluoride Membranes Modified with Poloxamer and Single/Multi-Walled Carbon Nanotubes for Lactalbumin Purification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Membrane
2.3. Swelling Analysis
2.4. Membrane Composition and Morphological Analysis
2.5. Identification of Chemical Functional Groups
2.6. Porosity and Pore Size
2.7. Surface Hydrophilicity
2.8. Membrane Mechanical Properties
2.9. Membrane Filtration Performance
3. Result and Discussions
3.1. Swelling
3.2. Tensile Strength
3.3. Membrane Morphology
3.4. Functional Groups of the Membranes
3.5. Porosity and Pore Size
3.6. Membrane Hydrophilicity
3.7. Filtration Performance
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Copriady, J.; Azmi, J.; Maharani, M. Isolasi Karakterisasi dan Penentuan Kadar Laktalbumin Susu Sapi Fries Holdstein dengan Metode Lowry. J. Nat. Indones. 2012, 13, 134–137. [Google Scholar] [CrossRef] [Green Version]
- Barone, G.; Moloney, C.; O’Regan, J.; Kelly, A.L.; O’Mahony, J.A. Chemical composition, protein profile and physicochemical properties of whey protein concentrate ingredients enriched in α-lactalbumin. J. Food Compos. Anal. 2020, 92, 103546. [Google Scholar] [CrossRef]
- Jiang, B.; Wang, L.; Na, J.; Zhang, X.; Yuan, Y.; Liu, C.; Feng, Z. Environmentally-friendly strategy for separation of α-lactalbumin from whey by aqueous two phase flotation. Arab. J. Chem. 2018, 13, 3391–3402. [Google Scholar] [CrossRef]
- El-Sayed, M.M.H.; Chase, H.A. Trends in whey protein fractionation. Biotechnol. Lett. 2011, 33, 1501–1511. [Google Scholar] [CrossRef] [PubMed]
- Ganjali, M.R.; Al-Naqshabandi, M.A.; Larijani, B.; Badiei, A.; Vatanpour, V.; Rajabi, H.R.; Rezania, H.; Paziresh, S.; Mahmodi, G.; Kim, S.-J.; et al. Improvement of dye and protein filtration efficiency using modified PES membrane with 2-mercaptoethanol capped zinc sulfide quantum dots. Chem. Eng. Res. Des. 2021, 168, 109–121. [Google Scholar] [CrossRef]
- Fahrina, A.; Yusuf, M.; Muchtar, S.; Fitriani, F.; Mulyati, S.; Aprilia, S.; Rosnelly, C.M.; Bilad, M.R.; Ismail, A.F.; Takagi, R.; et al. Development of anti-microbial polyvinylidene fluoride (PVDF) membrane using bio-based ginger extract-silica nanoparticles (GE-SiNPs) for bovine serum albumin (BSA) filtration. J. Taiwan Inst. Chem. Eng. 2021, 125, 323–331. [Google Scholar] [CrossRef]
- Fahrina, A.; Arahman, N.; Aprilia, S.; Bilad, M.R.; Silmina, S.; Sari, W.P.; Sari, I.M.; Gunawan, P.; Pasaoglu, M.E.; Vatanpour, V.; et al. Functionalization of PEG-AgNPs Hybrid Material to Alleviate Biofouling Tendency of Polyethersulfone Membrane. Polymers 2022, 14, 1908. [Google Scholar] [CrossRef] [PubMed]
- Arahman, N.; Rosnelly, C.M.; Yusni, Y.; Fahrina, A.; Silmina, S.; Ambarita, A.C.; Bilad, M.R.; Gunawan, P.; Rajabzadeh, S.; Takagi, R.; et al. Ultrafiltration of α-Lactalbumin Protein: Acquaintance of the Filtration Performance by Membrane Structure and Surface Alteration. Polymers 2021, 13, 3632. [Google Scholar] [CrossRef]
- Arahman, N.; Fahrina, A.; Wahab, M.Y.; Fathanah, U. Morphology and performance of polyvinyl chloride membrane modified with Pluronic F127. F1000Research 2018, 7, 726. [Google Scholar] [CrossRef]
- Fahrina, A.; Arahman, N.; Mulyati, S.; Aprilia, S.; Nawi, N.I.M.; Aqsha, A.; Bilad, M.R.; Takagi, R.; Matsuyama, H. Development of Polyvinylidene Fluoride Membrane by Incorporating Bio-Based Ginger Extract as Additive. Polymers 2020, 12, 2003. [Google Scholar] [CrossRef]
- Yu, H.; Gu, L.; Wu, S.; Dong, G.; Qiao, X.; Zhang, K.; Lu, X.; Wen, H.; Zhang, D. Hydrothermal carbon nanospheres assisted-fabrication of PVDF ultrafiltration membranes with improved hydrophilicity and antifouling performance. Sep. Purif. Technol. 2020, 247, 116889. [Google Scholar] [CrossRef]
- Muchtar, S.; Wahab, M.Y.; Mulyati, S.; Arahman, N.; Riza, M. Superior fouling resistant PVDF membrane with enhanced filtration performance fabricated by combined blending and the self-polymerization approach of dopamine. J. Water Process. Eng. 2019, 28, 293–299. [Google Scholar] [CrossRef]
- Paredes, L.; Murgolo, S.; Dzinun, H.; Othman, M.H.D.; Ismail, A.F.; Carballa, M.; Mascolo, G. Application of immobilized TiO2 on PVDF dual layer hollow fibre membrane to improve the photocatalytic removal of pharmaceuticals in different water matrices. Appl. Catal. B Environ. 2018, 240, 9–18. [Google Scholar] [CrossRef]
- Lin, Y.-C.; Liu, K.-M.; Chao, C.-M.; Wang, D.K.; Tung, K.-L.; Tseng, H.-H. Enhanced anti–protein fouling of PVDF membrane via hydrophobic–hydrophobic adsorption of styrene–terminated amphiphilic linker. Chem. Eng. Res. Des. 2020, 156, 273–280. [Google Scholar] [CrossRef]
- Vatanpour, V.; Khorshidi, S. Surface modification of polyvinylidene fluoride membranes with ZIF-8 nanoparticles layer using interfacial method for BSA separation and dye removal. Mater. Chem. Phys. 2019, 241, 122400. [Google Scholar] [CrossRef]
- Hazmo, N.H.W.; Naim, R.; Jye, L.W.; Ismail, A.F. Effect of composite multi-walled carbon nanotube and zeolitic imidazolate framework-8 on the performance and fouling of PVDF membranes. J. Membr. Sci. Res. 2020, 6, 424–432. [Google Scholar] [CrossRef]
- Dmitrenko, M.; Penkova, A.; Atta, R.; Zolotarev, A.; Plisko, T.; Mazur, A.; Solovyev, N.; Ermakov, S. The development and study of novel membrane materials based on polyphenylene isophthalamide-Pluronic F127 composite. Mater. Des. 2019, 165, 107596. [Google Scholar] [CrossRef]
- Kamulyan, B.; Hasanah, U.; Matulesi, F. Kajian Campuran Pelarut Akuades-Aseton Pada Pembuatan Membran Selulosa Propionat. JKPK J. Kim. Dan Pendidik. Kim. 2018, 3, 109. [Google Scholar]
- Lin, Y.-C.; Tseng, H.-H.; Wang, D.K. Uncovering the effects of PEG porogen molecular weight and concentration on ultrafiltration membrane properties and protein purification performance. J. Membr. Sci. 2020, 618, 118729. [Google Scholar] [CrossRef]
- Lusiana, R.A.; Prasetya, N.B.A. Indonesian Journal of Chemical Science Pengaruh Penambahan Aditif terhadap Karakterisasi Fisikokimia Membran Polisulfon, Indones. J. Chem. Sci. 2020, 9, 197. [Google Scholar]
- Bouleklab, M.; Hamamda, S.; Naoui, Y.; Nedilko, S.; Avramenko, T.; Ivanenko, K.; Revo, S.; Teselko, P.; Strelchuk, V.; Nikolenko, A. Influence of the multiwall carbon nanotubes on the thermal properties of the Fe–Cu nanocomposites. J. Alloy Compd. 2019, 816, 152525. [Google Scholar] [CrossRef]
- Mulder, M. Basic Principles of Membrane Technology; Kluwer Academic Publishers: Enschede, The Netherlands, 1996. [Google Scholar]
- Hudayawan, R.N.; Kusuma, D.Y.; Fisika, P.S.; Dan, F.M.; Pengetahuan, I. Pengaruh Dosis Implantasi Ion Nitrogen Pada Sifat Kapasitansi Polimer Pvdf Dan Pvdf-Hfp Effect of Nitrogen Ion Implantation Dose on Capacitance Properties of Pvdf and Pvdf-Hfp Polymer. J. Iptek Nukl. Ganendra 2018, 21, 89–99. [Google Scholar] [CrossRef]
- Arahman, N.; Mulyati, S.; Fahrina, A.; Muchtar, S.; Yusuf, M.; Takagi, R.; Matsuyama, H.; Nordin, N.A.H.; Bilad, M.R. Improving Water Permeability of Hydrophilic PVDF Membrane Prepared via Blending with Organic and Inorganic Additives for Humic Acid Separation. Molecules 2019, 24, 4099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garala, K.; Joshi, P.; Patel, J.; Ramkishan, A.; Shah, M. Formulation and evaluation of periodontal in situ gel. Int. J. Pharm. Investig. 2013, 3, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Alagöz, D.; Toprak, A.; Yildirim, D.; Tükel, S.; Fernandez-Lafuente, R. Modified silicates and carbon nanotubes for immobilization of lipase from Rhizomucor miehei: Effect of support and immobilization technique on the catalytic performance of the immobilized biocatalysts. Enzym. Microb. Technol. 2020, 144, 109739. [Google Scholar] [CrossRef]
- He, M.; Zhang, S.; Su, Y.; Zhang, R.; Liu, Y.; Jiang, Z. Manipulating membrane surface porosity and pore size by in-situ assembly of Pluronic F127 and tannin. J. Membr. Sci. 2018, 556, 285–292. [Google Scholar] [CrossRef]
- Köhler, M.H.; Bordin, J.R.; da Silva, L.B.; Barbosa, M.C. Structure and dynamics of water inside hydrophobic and hydrophilic nanotubes. Phys. A Stat. Mech. Its Appl. 2018, 490, 331–337. [Google Scholar] [CrossRef]
- Wang, W.; Zhu, L.; Shan, B.; Xie, C.; Liu, C.; Cui, F.; Li, G. Preparation and characterization of SLS-CNT/PES ultrafiltration membrane with antifouling and antibacterial properties. J. Membr. Sci. 2018, 548, 459–469. [Google Scholar] [CrossRef]
Membrane | Composition (%) | ||||
---|---|---|---|---|---|
PVDF | Pol | S-CnT | M-CnT | NMP | |
M0 | 20 | 0 | 0 | 0 | 80 |
M1 | 20 | 3 | 0 | 0 | 77 |
M2 | 20 | 3 | 0.1 | 0 | 76.9 |
M3 | 20 | 3 | 0 | 0.1 | 76.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arahman, N.; Sari, W.P.; Sari, I.M.; Rosnelly, C.M.; Mulyati, S.; Fahrina, A.; Bilad, M.R.; Gunawan, P.; Pasaoglu, M.E.; Teber, O.O.; et al. The Effectiveness of Polyvinylidene Fluoride Membranes Modified with Poloxamer and Single/Multi-Walled Carbon Nanotubes for Lactalbumin Purification. ChemEngineering 2022, 6, 88. https://doi.org/10.3390/chemengineering6060088
Arahman N, Sari WP, Sari IM, Rosnelly CM, Mulyati S, Fahrina A, Bilad MR, Gunawan P, Pasaoglu ME, Teber OO, et al. The Effectiveness of Polyvinylidene Fluoride Membranes Modified with Poloxamer and Single/Multi-Walled Carbon Nanotubes for Lactalbumin Purification. ChemEngineering. 2022; 6(6):88. https://doi.org/10.3390/chemengineering6060088
Chicago/Turabian StyleArahman, Nasrul, Widia Puspita Sari, Indah Maulana Sari, Cut Meurah Rosnelly, Sri Mulyati, Afrillia Fahrina, Muhammad Roil Bilad, Poernomo Gunawan, Mehmet Emin Pasaoglu, Oğuz Orhun Teber, and et al. 2022. "The Effectiveness of Polyvinylidene Fluoride Membranes Modified with Poloxamer and Single/Multi-Walled Carbon Nanotubes for Lactalbumin Purification" ChemEngineering 6, no. 6: 88. https://doi.org/10.3390/chemengineering6060088
APA StyleArahman, N., Sari, W. P., Sari, I. M., Rosnelly, C. M., Mulyati, S., Fahrina, A., Bilad, M. R., Gunawan, P., Pasaoglu, M. E., Teber, O. O., Vatanpour, V., Koyuncu, I., & Yusni, Y. (2022). The Effectiveness of Polyvinylidene Fluoride Membranes Modified with Poloxamer and Single/Multi-Walled Carbon Nanotubes for Lactalbumin Purification. ChemEngineering, 6(6), 88. https://doi.org/10.3390/chemengineering6060088