Hydrogel Formation of Enzymatically Solubilized Corn Bran Feruloylated Arabinoxylan by Laccase-Catalyzed Cross-Linking
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Enzymatic Preparation of Soluble Feruloylated Arabinoxylan
2.3. Carbohydrate Analysis of Soluble Feruloylated Arabinoxylan
2.4. Analysis of Ferulic Acid and Diferulic Acid of FAX Samples
2.5. Hydrogel Formation of Feruloylated Arabinoxylan
2.6. Rheological Properties Analysis
2.7. Water Holding Capacity
2.8. SEM Analysis
2.9. Structural Characterisation of Hydrogels
2.10. Statistical Analysis
3. Results and Discussions
3.1. Structural Characteristics of Feruloylated Arabinoxylan
3.2. Dynamic Analysis of FAX Hydrogel Formation Under Optimal Conditions
3.3. The Effect of Substrate Concentration on FAX Hydrogel Formation
3.3.1. Rheological Properties of FAX Gel with Different Substrate Concentrations
3.3.2. Water Holding Capacities of FAX Gel with Different Substrate Concentrations
3.3.3. Microstructure of FAX Gel with Different Substrate Concentrations
3.4. The Effect of Enzyme Concentration on FAX Hydrogel Formation
3.4.1. Rheological Properties of FAX Gel with Different Enzyme Concentrations
3.4.2. Water Holding Capacities of FAX Gel with Different Enzyme Concentrations
3.4.3. Microstructure of FAX Gel with Different Enzyme Concentrations
3.5. The Effect of Reaction pH on Arabinoxylan Hydrogel Formation
3.5.1. Rheological Properties of FAX Gel with Different Reaction pH
3.5.2. Water Holding Capacities of FAX Gel with Different Reaction pH
3.5.3. Microstructure of FAX Gel with Different Reaction pH
3.5.4. Hydrogel Formation Under Alkaline Conditions
3.6. The Effect of Reaction Temperature on Arabinoxylan Hydrogel Formation
3.6.1. Rheological Properties of FAX Gel with Different Reaction Temperature
3.6.2. Water Holding Capacities of FAX Gel with Different Reaction Temperature
3.6.3. Microstructure of FAX Gel with Different Reaction Temperature
3.7. Characteristics of the Hydrogel Structure Under Optimal Experimental Conditions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dutta, P.; Giri, S.; Giri, T.K. Xyloglucan as Green Renewable Biopolymer Used in Drug Delivery and Tissue Engineering. Int. J. Biol. Macromol. 2020, 160, 55–68. [Google Scholar] [CrossRef]
- Chatterjee, S.; Hui, P.C. Review of Applications and Future Prospects of Stimuli-Responsive Hydrogel Based on Thermo-Responsive Biopolymers in Drug Delivery Systems. Polymers 2021, 13, 2086. [Google Scholar] [CrossRef]
- Mirab, F.; Eslamian, M.; Bagheri, R. Fabrication and Characterization of a Starch-Based Nanocomposite Scaffold with Highly Porous and Gradient Structure for Bone Tissue Engineering. Biomed. Phys. Eng. Express 2018, 4, 055021. [Google Scholar] [CrossRef]
- Hu, H.; Xu, F.-J. Rational Design and Latest Advances of Polysaccharide-Based Hydrogels for Wound Healing. Biomater. Sci. 2020, 8, 2084–2101. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, K.; Zhuang, J.; Chen, C.; Wang, X.; Xu, M.; Xu, Z. Gradient Diffusion Anisotropic Carboxymethyl Cellulose Hydrogels for Strain Sensors. Biomacromolecules 2021, 22, 5033–5041. [Google Scholar] [CrossRef] [PubMed]
- Fu, K.; Wang, H.; Pan, T.; Cai, Z.; Yang, Z.; Liu, D.; Wang, W. Gel-Forming Polysaccharides of Traditional Gel-like Foods: Sources, Structure, Gelling Mechanism, and Advanced Applications. Food Res. Int. 2024, 198, 115329. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, S.; Wang, F.; Liu, Y.; Hu, Z.; Li, M.; Wu, Y.; Li, Z.; Qian, J.; Wang, L.; Ma, S. Current Status of Research on Polysaccharide-Based Functional Gradient Gel Materials: A Review. Carbohydr. Polym. 2024, 344, 122520. [Google Scholar] [CrossRef]
- Li, K.; Liu, X.; Jiang, F.; Zhang, B.; Qiao, D.; Xie, F. In the Process of Polysaccharide Gel Formation: A Review of the Role of Competitive Relationship between Water and Alcohol Molecules. Int. J. Biol. Macromol. 2024, 281, 136398. [Google Scholar] [CrossRef]
- Duan, J.; Sun, Y.; Wang, B.; Xie, Q.; Ju, Y.; Wang, F.; Fan, B. Structural Characterization, Phenolic Acid Modification, and Antioxidant Activities of Polysaccharide From Mogroside Waste Liquid of Siraitia grosvenorii. Food Front. 2025, 6, 1530–1543. [Google Scholar] [CrossRef]
- Ji, X.; Hou, C.; Yan, Y.; Shi, M.; Liu, Y. Comparison of Structural Characterization and Antioxidant Activity of Polysaccharides from Jujube (Ziziphus jujuba Mill.) Fruit. Int. J. Biol. Macromol. 2020, 149, 1008–1018. [Google Scholar] [CrossRef]
- Hou, C.; Chen, L.; Yang, L.; Ji, X. An Insight into Anti-Inflammatory Effects of Natural Polysaccharides. Int. J. Biol. Macromol. 2020, 153, 248–255. [Google Scholar] [CrossRef]
- Lu, Y.; He, S.; Zhao, Z.; Liu, C.; Lei, Y.; Liu, M.; Zhang, Q.; Lin, D.; Liu, Y.; Lin, S.; et al. Structural Characteristics, Gelling Properties, In Vitro Antioxidant Activity and Immunomodulatory Effects of Rhamnogalacturonan-I Rich Pectic Polysaccharides Alkaline-Extracted from Wax Apple (Syzygium samarangense). Foods 2025, 14, 1227. [Google Scholar] [CrossRef]
- Moghiseh, N.; Arianfar, A.; Salehi, E.A.; Rafe, A. Effect of Inulin/Kefiran Mixture on the Rheological and Structural Properties of Mozzarella Cheese. Int. J. Biol. Macromol. 2021, 191, 1079–1086. [Google Scholar] [CrossRef]
- Onipe, O.O.; Jideani, A.I.O.; Beswa, D. Composition and Functionality of Wheat Bran and Its Application in Some Cereal Food Products. Int. J. Food Sci. Technol. 2015, 50, 2509–2518. [Google Scholar] [CrossRef]
- Stevenson, L.; Phillips, F.; O’sullivan, K.; Walton, J. Wheat Bran: Its Composition and Benefits to Health, a European Perspective. Int. J. Food Sci. Nutr. 2012, 63, 1001–1013. [Google Scholar] [CrossRef]
- Wang, J.; Bai, J.; Fan, M.; Li, T.; Li, Y.; Qian, H.; Wang, L.; Zhang, H.; Qi, X.; Rao, Z. Cereal-Derived Arabinoxylans: Structural Features and Structure–Activity Correlations. Trends Food Sci. Technol. 2020, 96, 157–165. [Google Scholar] [CrossRef]
- Lin, S.; Agger, J.W.; Wilkens, C.; Meyer, A.S. Feruloylated Arabinoxylan and Oligosaccharides: Chemistry, Nutritional Functions, and Options for Enzymatic Modification. Annu. Rev. Food Sci. Technol. 2021, 12, 331–354. [Google Scholar] [CrossRef] [PubMed]
- Munk, L.; Muschiol, J.; Li, K.; Liu, M.; Perzon, A.; Meier, S.; Ulvskov, P.; Meyer, A.S. Selective Enzymatic Release and Gel Formation by Cross-Linking of Feruloylated Glucurono-Arabinoxylan from Corn Bran. ACS Sustain. Chem. Eng. 2020, 8, 8164–8174. [Google Scholar] [CrossRef]
- Yilmaz-Turan, S.; Lopez-Sanchez, P.; Jiménez-Quero, A.; Plivelic, T.S.; Vilaplana, F. Revealing the Mechanisms of Hydrogel Formation by Laccase Crosslinking and Regeneration of Feruloylated Arabinoxylan from Wheat Bran. Food Hydrocoll. 2022, 128, 107575. [Google Scholar] [CrossRef]
- Seera, S.D.K.; Kundu, D.; Gami, P.; Naik, P.K.; Banerjee, T. Synthesis and Characterization of Xylan-Gelatin Cross-Linked Reusable Hydrogel for the Adsorption of Methylene Blue. Carbohydr. Polym. 2021, 256, 117520. [Google Scholar] [CrossRef]
- Long, J.; Zhou, G.; Yu, X.; Xu, J.; Hu, L.; Pranovich, A.; Yong, Q.; Xie, Z.-H.; Xu, C. Harnessing Chemical Functionality of Xylan Hemicellulose towards Carbohydrate Polymer-Based pH/Magnetic Dual-Responsive Nanocomposite Hydrogel for Drug Delivery. Carbohydr. Polym. 2024, 343, 122461. [Google Scholar] [CrossRef]
- Xu, Y.; Liu, K.; Yang, Y.; Kim, M.-S.; Lee, C.-H.; Zhang, R.; Xu, T.; Choi, S.-E.; Si, C. Hemicellulose-Based Hydrogels for Advanced Applications. Front. Bioeng. Biotechnol. 2023, 10, 1110004. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Zhang, Y.; Xu, Z.; Pan, W.; Shen, M.; Han, J.; Sun, X.; Zhang, Y.; Xie, J.; Zhang, X.; et al. Cross-Linked Corn Bran Arabinoxylan Improves the Pasting, Rheological, Gelling Properties of Corn Starch and Reduces Its in Vitro Digestibility. Food Hydrocoll. 2022, 126, 107440. [Google Scholar] [CrossRef]
- Zhu, Q.; Han, K.; Wang, S.; Muhindo, E.M.; Wei, W.; Li, J.; Wu, T.; Fersht, V.; Zhang, M. Design and Structural Characterization of Edible Double Network Gels Based on Wheat Bran Arabinoxylan and Pea Protein Isolate. Int. J. Biol. Macromol. 2022, 213, 824–833. [Google Scholar] [CrossRef] [PubMed]
- Lv, D.; Chen, F.; Yin, L.; Zhang, P.; Rashid, M.T.; Yu, J. Wheat Bran Arabinoxylan-Soybean Protein Isolate Emulsion-Filled Gels as a β-Carotene Delivery Carrier: Effect of Polysaccharide Content on Textural and Rheological Properties. Int. J. Biol. Macromol. 2023, 253, 126465. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Y.; Xu, Z.; Liu, W.; Gao, B.; Xie, J.; Chen, T.; Li, E.; Li, B.; Li, C. The Addition of Crosslinked Corn Bran Arabinoxylans with Different Gelling Characteristics Was Associated with the Pasting, Rheological, Structural, and Digestion Properties of Corn Starch. Int. J. Biol. Macromol. 2023, 236, 123906. [Google Scholar] [CrossRef]
- Yu, Z.; Zhang, X.; Li, S.; Yang, J.; Wu, M.; Wu, Q.; Wang, J. Characterization of Feruloylated Arabinoxylan—Acorn Starch Double Network Gel Composite Film and Its Application in Postharvest Preservation of Agaricus bisporus. Int. J. Biol. Macromol. 2024, 271, 132571. [Google Scholar] [CrossRef]
- Khalighi, S.; Berger, R.G.; Ersoy, F. Cross-Linking of Wheat Bran Arabinoxylan by Fungal Laccases Yields Firm Gels. Processes 2020, 8, 36. [Google Scholar] [CrossRef]
- Carvajalmillan, E.; Guilbert, S.; Morel, M.; Micard, V. Impact of the Structure of Arabinoxylan Gels on Their Rheological and Protein Transport Properties. Carbohydr. Polym. 2005, 60, 431–438. [Google Scholar] [CrossRef]
- Berlanga-Reyes, C.M.; Carvajal-Millan, E.; Lizardi-Mendoza, J.; Islas-Rubio, A.R.; Rascón-Chu, A. Enzymatic Cross-Linking of Alkali Extracted Arabinoxylans: Gel Rheological and Structural Characteristics. Int. J. Mol. Sci. 2011, 12, 5853–5861. [Google Scholar] [CrossRef]
- Morales-Burgos, A.; Carvajal-Millan, E.; López-Franco, Y.; Rascón-Chu, A.; Lizardi-Mendoza, J.; Sotelo-Cruz, N.; Brown-Bojórquez, F.; Burgara-Estrella, A.; Pedroza-Montero, M. Syneresis in Gels of Highly Ferulated Arabinoxylans: Characterization of Covalent Cross-Linking, Rheology, and Microstructure. Polymers 2017, 9, 164. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz-Turan, S.; Jiang, K.; Lopez-Sanchez, P.; Jiménez-Quero, A.; Crouzier, T.; Plivelic, T.S.; Vilaplana, F. Hydrogels with Protective Effects against Cellular Oxidative Stress via Enzymatic Crosslinking of Feruloylated Arabinoxylan from Corn Fibre. Green Chem. 2022, 24, 9114–9127. [Google Scholar] [CrossRef]
- Lara-Espinoza, C.; Rascón-Chu, A.; Micard, V.; Antoine-Assor, C.; Carvajal-Millan, E.; Troncoso-Rojas, R.; Ohlmaier-Delgadillo, F.; Brown-Bojorquez, F. Covalent Pectin/Arabinoxylan Hydrogels: Rheological and Microstructural Characterization. Polymers 2024, 16, 2939. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wang, L.; Chen, Z.; Li, Y.; Li, J. Facile and Green Preparation of Diverse Arabinoxylan Hydrogels from Wheat Bran by Combining Subcritical Water and Enzymatic Crosslinking. Carbohydr. Polym. 2020, 241, 116317. [Google Scholar] [CrossRef]
- Marquez-Escalante, J.A.; Carvajal-Millan, E.; Yadav, M.P.; Kale, M.; Rascon-Chu, A.; Gardea, A.A.; Valenzuela-Soto, E.M.; Lopez-Franco, Y.L.; Lizardi-Mendoza, J.; Faulds, C.B. Rheology and Microstructure of Gels Based on Wheat Arabinoxylans Enzymatically Modified in Arabinose to Xylose Ratio. J. Sci. Food Agric. 2018, 98, 914–922. [Google Scholar] [CrossRef]
- Carvajal-Millan, E.; Landillon, V.; Morel, M.-H.; Rouau, X.; Doublier, J.-L.; Micard, V. Arabinoxylan Gels: Impact of the Feruloylation Degree on Their Structure and Properties. Biomacromolecules 2005, 6, 309–317. [Google Scholar] [CrossRef]
- Lin, S.; Brask, J.; Munk, L.; Holck, J.; Krogh, K.B.R.M.; Meyer, A.S.; Wittrup Agger, J.; Wilkens, C. Enzymatic Cleavage of Diferuloyl Cross-Links in Corn Bran Arabinoxylan by Two Bacterial Feruloyl Esterases. J. Agric. Food Chem. 2022, 70, 13349–13357. [Google Scholar] [CrossRef]
- Sun, N.; Zhuang, F.; Wang, C.; Wu, J.; Liu, S.; Chang, W.; Jin, W.; Wang, D. Enzymatically Cross-Linked Arabinoxylan Hydrogel: Effect of Glucose Oxidase on the Gel Characteristics and Oral Colon-Targeted Delivery for Naja atra Neurotoxin. J. Food Eng. 2024, 383, 112248. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, P.; Yang, J.; Ren, D.; Lu, Z.; Zhao, H.; Lu, F. Oxidative Crosslinking of Water-Extractable Wheat Arabinoxylans by Recombinant Lipoxygenase and Its Effect on Bread Properties. LWT 2019, 103, 1–7. [Google Scholar] [CrossRef]
- Lin, S.; Xu, X.; Holck, J.; Wittrup Agger, J.; Wilkens, C.; Xie, Z.; Khakimov, B.; Nielsen, D.S.; Meyer, A.S. Soluble, Diferuloylated Corn Bran Glucuronoarabinoxylans Modulate the Human Gut Microbiota in Vitro. J. Agric. Food Chem. 2023, 71, 3885–3897. [Google Scholar] [CrossRef]
- Martínez-López, A.L.; Carvajal-Millan, E.; Lizardi-Mendoza, J.; López-Franco, Y.L.; Rascón-Chu, A.; Salas-Muñoz, E.; Barron, C.; Micard, V. The Peroxidase/H2O2 System as a Free Radical-Generating Agent for Gelling Maize Bran Arabinoxylans: Rheological and Structural Properties. Molecules 2011, 16, 8410–8418. [Google Scholar] [CrossRef]
- Elkihel, A.; Christie, C.; Vernisse, C.; Ouk, T.-S.; Lucas, R.; Chaleix, V.; Sol, V. Xylan-Based Cross-Linked Hydrogel for Photodynamic Antimicrobial Chemotherapy. ACS Appl. Bio Mater. 2021, 4, 7204–7212. [Google Scholar] [CrossRef]
- Gami, P.; Kundu, D.; Seera, S.D.K.; Banerjee, T. Chemically Crosslinked Xylan–β-Cyclodextrin Hydrogel for the in Vitro Delivery of Curcumin and 5-Fluorouracil. Int. J. Biol. Macromol. 2020, 158, 18–31. [Google Scholar] [CrossRef] [PubMed]
- Martínez-López, A.L.; Carvajal-Millan, E.; Micard, V.; Rascón-Chu, A.; Brown-Bojorquez, F.; Sotelo-Cruz, N.; López-Franco, Y.L.; Lizardi-Mendoza, J. In Vitro Degradation of Covalently Cross-Linked Arabinoxylan Hydrogels by Bifidobacteria. Carbohydr. Polym. 2016, 144, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Rafe, A.; Vahedi, E.; Hasan-Sarei, A.G. Rheology and Microstructure of Binary Mixed Gel of Rice Bran Protein–Whey: Effect of Heating Rate and Whey Addition. J. Sci. Food Agric. 2016, 96, 3890–3896. [Google Scholar] [CrossRef]
- Morales-Ortega, A.; Carvajal-Millan, E.; López-Franco, Y.; Rascón-Chu, A.; Lizardi-Mendoza, J.; Torres-Chavez, P.; Campa-Mada, A. Characterization of Water Extractable Arabinoxylans from a Spring Wheat Flour: Rheological Properties and Microstructure. Molecules 2013, 18, 8417–8428. [Google Scholar] [CrossRef]
- González-Estrada, R.; Calderón-Santoyo, M.; Carvajal-Millan, E.; Valle, F.D.J.A.; Ragazzo-Sánchez, J.A.; Brown-Bojorquez, F.; Rascón-Chu, A. Covalently Cross-Linked Arabinoxylans Films for Debaryomyces hansenii Entrapment. Molecules 2015, 20, 11373–11386. [Google Scholar] [CrossRef]
- Requena, R.; Jiménez-Quero, A.; Vargas, M.; Moriana, R.; Chiralt, A.; Vilaplana, F. Integral Fractionation of Rice Husks into Bioactive Arabinoxylans, Cellulose Nanocrystals, and Silica Particles. ACS Sustain. Chem. Eng. 2019, 7, 6275–6286. [Google Scholar] [CrossRef]
- Nandini, C.D.; Salimath, P.V. Structural Features of Arabinoxylans from Sorghum Having Good Roti-Making Quality. Food Chem. 2001, 74, 417–422. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, L.; Qiu, S.; Liu, C.; Zhang, P.; Yin, L.; Chen, F. Rheological Properties and Structural Characteristics of Arabinoxylan Hydrogels Prepared from Three Wheat Bran Sources. J. Cereal Sci. 2019, 88, 79–86. [Google Scholar] [CrossRef]
- Farshchi-Andisi, A.; Salami, M.; Miran, M.; Siloto, N.A.; Askari, G.; Emam-Djomeh, Z.; Saldaña, M.D.A. Hydrogel Composite for Curcumin Encapsulation Using Whey Protein Isolate and Arabinoxylan Extracted from Sesame Hull Waste. Int. J. Biol. Macromol. 2025, 319, 145575. [Google Scholar] [CrossRef]
Extraction Yield | Total Polysaccharide | Total Protein | Mw (kDa) | Molar Ratio of Monosaccharide Compositions | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Man | Rha | GlcA | GalA | Glc | Gal | Xyl | Ara | |||||
FAX | 0.75% ± 0.1 | 80.1% ± 1.8 | 2.3% ± 0.4 | 339.8 ± 12.1 | 0.2 | 0.2 | 0.2 | 0.3 | 0.3 | 1.0 | 3.1 | 2.3 |
FA (µM) | 8-5′ diFA (10−3 µM) | 5-5′ diFA (10−3 µM) | 8-O-4′ diFA (10−3 µM) | 8-5′ Benzofuran diFA (10−3 µM) | |
---|---|---|---|---|---|
FAX | 33.3 | 14.4 | 6.5 | 208.2 | 3.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Zhao, Z.; Zhong, W.; Su, Z.; Zhang, Q.; Zhang, Y.; Lin, S.; Lu, X.; Qin, W. Hydrogel Formation of Enzymatically Solubilized Corn Bran Feruloylated Arabinoxylan by Laccase-Catalyzed Cross-Linking. Foods 2025, 14, 2819. https://doi.org/10.3390/foods14162819
Liu C, Zhao Z, Zhong W, Su Z, Zhang Q, Zhang Y, Lin S, Lu X, Qin W. Hydrogel Formation of Enzymatically Solubilized Corn Bran Feruloylated Arabinoxylan by Laccase-Catalyzed Cross-Linking. Foods. 2025; 14(16):2819. https://doi.org/10.3390/foods14162819
Chicago/Turabian StyleLiu, Changxin, Zifan Zhao, Weijie Zhong, Zilong Su, Qing Zhang, Yiqing Zhang, Shang Lin, Xuesong Lu, and Wen Qin. 2025. "Hydrogel Formation of Enzymatically Solubilized Corn Bran Feruloylated Arabinoxylan by Laccase-Catalyzed Cross-Linking" Foods 14, no. 16: 2819. https://doi.org/10.3390/foods14162819
APA StyleLiu, C., Zhao, Z., Zhong, W., Su, Z., Zhang, Q., Zhang, Y., Lin, S., Lu, X., & Qin, W. (2025). Hydrogel Formation of Enzymatically Solubilized Corn Bran Feruloylated Arabinoxylan by Laccase-Catalyzed Cross-Linking. Foods, 14(16), 2819. https://doi.org/10.3390/foods14162819