Effect of Cooking and in vitro Digestion on the Polyphenols and Antioxidant Properties of Asparagus officinalis L. cultivars
Abstract
1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Sample Collection and Preparation
2.3. Polyphenolic Compound Extraction
2.4. Ultra-High Liquid Chromatography Coupled to Mass Spectrometry Analysis
2.5. Cooking Procedure
2.6. Simulated In Vitro Digestion
2.7. Antioxidant Activity Assays
2.7.1. ABTS Assay
2.7.2. DPPH Assay
2.7.3. FRAP Assay
2.8. Total Phenolic Content
2.9. Statistical Analysis
3. Results
3.1. Chemical Characterization of Polyphenols in Aqueous Extract of Asparagus by UHPLC Q-Exactive
3.2. Chemical Quantification of Polyphenols in the Aqueous Extract of Asparagus Edible Portions
3.3. Chemical Quantification of Polyphenols in the Aqueous Extract of Asparagus Cooked Portions
3.4. Chemical Quantification of Polyphenols in the Aqueous Extract of Digested Asparagus Portions
3.5. Analysis of TPC in the Aqueous Extract of Asparagus officinalis
3.6. Antioxidant Assays of the Aqueous Extract of Asparagus officinalis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Moreno-Pinel, R.; Castro-López, P.; Die-Ramón, J.V.; Gil-Ligero, J. Asparagus (Asparagus officinalis L.) Breeding. In Advances in Plant Breeding Strategies: Vegetable Crops: Volume 9: Fruits and Young Shoots; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 425–469. ISBN 978-3-030-66961-4. [Google Scholar]
- Guo, Q.; Wang, N.; Liu, H.; Li, Z.; Lu, L.; Wang, C. The Bioactive Compounds and Biological Functions of Asparagus officinalis L.–A Review. J. Funct. Foods 2020, 65, 103727. [Google Scholar] [CrossRef]
- Pegiou, E.; Mumm, R.; Acharya, P.; de Vos, R.C.; Hall, R.D. Green and White Asparagus (Asparagus officinalis): A Source of Developmental, Chemical and Urinary Intrigue. Metabolites 2019, 10, 17. [Google Scholar] [CrossRef]
- Papoulias, E.; Siomos, A.S.; Koukounaras, A.; Gerasopoulos, D.; Kazakis, E. Effects of Genetic, Pre-and Post-Harvest Factors on Phenolic Content and Antioxidant Capacity of White Asparagus Spears. Int. J. Mol. Sci. 2009, 10, 5370–5380. [Google Scholar] [CrossRef] [PubMed]
- FAO. On-Line Statistical Database of the Food and Agricultural Organization of the United Nations. 2022. Available online: https://www.fao.org/faostat/en/#data/FBS (accessed on 25 June 2025).
- Mistura, L.; Donne, C.L.; D’Addezio, L.; Ferrari, M.; Comendador, F.J.; Piccinelli, R.; Martone, D.; Sette, S.; Catasta, G.; Turrini, A. The Italian IV SCAI Dietary Survey: Main Results on Food Consumption. Nutr. Metab. Cardiovasc. Dis. 2025, 35, 103863. [Google Scholar] [CrossRef]
- Olas, B. A Review of the Pro-Health Activity of Asparagus officinalis L. and Its Components. Foods 2024, 13, 288. [Google Scholar] [CrossRef]
- Agricultural Research Service, United States Department of Agriculture (USDA) FoodData Central. Available online: https://fdc.nal.usda.gov/ (accessed on 25 June 2025).
- Li, C.X.; Mao, R.Q.; Li, Z.Z.; Wang, Y.G.; Liu, X.F. Composition Analysis and Nutritional Evaluation of the Asparagus. Mod. Food Sci. Technol. 2011, 27, 1260–1263. [Google Scholar]
- Al-Snafi, A.E. The Pharmacological Importance of Asparagus officinalis—A Review. J. Pharm. Biol. 2015, 5, 93–98. [Google Scholar]
- Liu, M.; Tang, L.; Li, Y.; Lv, G.; Zhang, M. Research Status and Prospects of Chinese Medicine Herb Asparagus cochinchinensis. Pharmacol. Res.—Mod. Chin. Med. 2025, 15, 100625. [Google Scholar] [CrossRef]
- Fuentes-Alventosa, J.; Jaramillo-Carmona, S.; Rodríguez-Gutiérrez, G.; Guillén-Bejarano, R.; Jiménez-Araujo, A.; Fernández-Bolaños, J.; Rodríguez-Arcos, R. Preparation of Bioactive Extracts from Asparagus By-Product. Food Bioprod. Process. 2013, 91, 74–82. [Google Scholar] [CrossRef]
- Kobus-Cisowska, J.; Szymanowska, D.; Szczepaniak, O.M.; Gramza-Michałowska, A.; Kmiecik, D.; Kulczyński, B.; Szulc, P.; Górnaś, P. Composition of Polyphenols of Asparagus Spears (Asparagus officinalis) and Their Antioxidant Potential. Ciência Rural 2019, 49, e20180863. [Google Scholar] [CrossRef]
- Elsaid, F.G.; Shati, A.A.; Sarhan, M.A. Role of Matricaria recutita L. and Asparagus officinalis L. against the Neurotoxicity of Diazinon in Rats. J. Basic Appl. Zool. 2015, 72, 26–35. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, W.; Pang, X.; Wang, J.; Zhao, J.; Qu, W. Hypolipidemic Effect of N-Butanol Extract from Asparagus officinalis L. in Mice Fed a High-Fat Diet. Phytother. Res. 2011, 25, 1119–1124. [Google Scholar] [CrossRef]
- Iaccarino, N.; Amato, J.; Pagano, B.; Di Porzio, A.; Micucci, M.; Bolelli, L.; Aldini, R.; Novellino, E.; Budriesi, R.; Randazzo, A. Impact of Phytosterols on Liver and Distal Colon Metabolome in Experimental Murine Colitis Model: An Explorative Study. J. Enzym. Inhib. Med. Chem. 2019, 34, 1041–1050. [Google Scholar] [CrossRef]
- Miura, T.; Yasueda, A.; Sakaue, M.; Maeda, K.; Hayashi, N.; Ohno, S.; Ito, T. SUN-LB271: A Double-Blind Randomized Controlled Trial Regarding the Safety and Efficacy of Enzyme-Treated Asparagus Extract Intake in Healthy Human Subjects. Clin. Nutr. 2016, 35, S145. [Google Scholar] [CrossRef]
- Wang, N.; Zhang, X.; Wang, S.; Guo, Q.; Li, Z.; Liu, H.; Wang, C. Structural Characterisation and Immunomodulatory Activity of Polysaccharides from White Asparagus Skin. Carbohydr. Polym. 2020, 227, 115314. [Google Scholar] [CrossRef]
- Rosado-Álvarez, C.; Molinero-Ruiz, L.; Rodríguez-Arcos, R.; Basallote-Ureba, M.J. Antifungal Activity of Asparagus Extracts against Phytopathogenic Fusarium oxysporum. Sci. Hortic. 2014, 171, 51–57. [Google Scholar] [CrossRef]
- Li, X.-M.; Cai, J.-L.; Wang, L.; Wang, W.-X.; Ai, H.-L.; Mao, Z.-C. Two New Phenolic Compounds and Antitumor Activities of Asparinin A from Asparagus officinalis. J. Asian Nat. Prod. Res. 2017, 19, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, S.A.; Tran, A.; Xu, G.; Yin, Y.; Zhou, C.; Bae-Jump, V.L. Asparagus Polysaccharide Inhibits Cell Proliferation, Adhesion and Invasion in Endometrial Cancer Cells. Gynecol. Oncol. 2017, 145, 133. [Google Scholar] [CrossRef]
- Russo, C.; Volpe, C.; Santoro, F.; Brancaccio, D.; Di Porzio, A.; Carotenuto, A.; Randazzo, A.; Grimaud, L.; Vitale, M.R.; Protti, S.; et al. Visible Light-Promoted C (Sp3)-H α-Carbamoylation of Cyclic Ethers with Isocyanides. Chem.–A Eur. J. 2024, 30, e202401997. [Google Scholar] [CrossRef]
- Yu, Q.; Fan, L. Improving the Bioactive Ingredients and Functions of Asparagus from Efficient to Emerging Processing Technologies: A Review. Food Chem. 2021, 358, 129903. [Google Scholar] [CrossRef]
- Jiménez-Sánchez, C.; Lozano-Sánchez, J.; Rodríguez-Pérez, C.; Segura-Carretero, A.; Fernández-Gutiérrez, A. Comprehensive, Untargeted, and Qualitative RP-HPLC-ESI-QTOF/MS2 Metabolite Profiling of Green Asparagus (Asparagus officinalis). J. Food Compos. Anal. 2016, 46, 78–87. [Google Scholar] [CrossRef]
- Solana, M.; Boschiero, I.; Dall’Acqua, S.; Bertucco, A. A Comparison between Supercritical Fluid and Pressurized Liquid Extraction Methods for Obtaining Phenolic Compounds from Asparagus officinalis L. J. Supercrit. Fluids 2015, 100, 201–208. [Google Scholar] [CrossRef]
- Eichholz, I.; Rohn, S.; Gamm, A.; Beesk, N.; Herppich, W.B.; Kroh, L.W.; Ulrichs, C.; Huyskens-Keil, S. UV-B-Mediated Flavonoid Synthesis in White Asparagus (Asparagus officinalis L.). Food Res. Int. 2012, 48, 196–201. [Google Scholar] [CrossRef]
- Vázquez-Castilla, S.; Jaramillo-Carmona, S.; Fuentes-Alventosa, J.M.; Jimenez-Araujo, A.; Rodriguez-Arcos, R.; Cermeno-Sacristan, P.; Espejo-Calvo, J.A.; Guillen-Bejarano, R. Optimization of a Method for the Profiling and Quantification of Saponins in Different Green Asparagus Genotypes. J. Agric. Food Chem. 2013, 61, 6250–6258. [Google Scholar] [CrossRef] [PubMed]
- Potì, F.; Santi, D.; Spaggiari, G.; Zimetti, F.; Zanotti, I. Polyphenol Health Effects on Cardiovascular and Neurodegenerative Disorders: A Review and Meta-Analysis. Int. J. Mol. Sci. 2019, 20, 351. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.-N.; Mu, T.-H.; Xi, L.-S. Effect of pH, Heat, and Light Treatments on the Antioxidant Activity of Sweet Potato Leaf Polyphenols. Int. J. Food Prop. 2017, 20, 318–332. [Google Scholar] [CrossRef]
- Juániz, I.; Ludwig, I.A.; Huarte, E.; Pereira-Caro, G.; Moreno-Rojas, J.M.; Cid, C.; De Peña, M.-P. Influence of Heat Treatment on Antioxidant Capacity and (Poly) Phenolic Compounds of Selected Vegetables. Food Chem. 2016, 197, 466–473. [Google Scholar] [CrossRef]
- Murador, D.; Braga, A.R.; Da Cunha, D.; De Rosso, V. Alterations in Phenolic Compound Levels and Antioxidant Activity in Response to Cooking Technique Effects: A Meta-Analytic Investigation. Crit. Rev. Food Sci. Nutr. 2018, 58, 169–177. [Google Scholar] [CrossRef]
- Fanasca, S.; Rouphael, Y.; Venneria, E.; Azzini, E.; Durazzo, A.; Maiani, G. Antioxidant Properties of Raw and Cooked Spears of Green Asparagus Cultivars. Int. J. Food Sci. Technol. 2009, 44, 1017–1023. [Google Scholar] [CrossRef]
- Andlauer, W.; Stumpf, C.; Hubert, M.; Rings, A.; Fürst, P. Influence of Cooking Process on Phenolic Marker Compounds of Vegetables. Int. J. Vitam. Nutr. Res. 2003, 73, 152–159. [Google Scholar] [CrossRef]
- Rawel, H.M.; Rohn, S.; Kroll, J. Reactions of Selected Secondary Plant Metabolites (Glucosinolates and Phenols) with Food Proteins and Enzymes-Influence on Physico-Chemical Protein Properties, Enzyme Activity and Proteolytic Degradation. 2000. [Google Scholar]
- Shahidi, F.; Peng, H. Bioaccessibility and Bioavailability of Phenolic Compounds. J. Food Bioact. 2018, 4, 11–68. [Google Scholar] [CrossRef]
- Bié, J.; Sepodes, B.; Fernandes, P.C.; Ribeiro, M.H. Polyphenols in Health and Disease: Gut Microbiota, Bioaccessibility, and Bioavailability. Compounds 2023, 3, 40–72. [Google Scholar] [CrossRef]
- Fuentes, J.; Jaramillo, S.; Guillén, R.; Jiménez, A.; Rodríguez, R.; Lama, A.; Fdez-Bolanos, J.; Rodríguez, R. Influence of Environmental Factors on Green Asparagus Flavonoids. Czech J. Food Sci. 2009, 27, 211. [Google Scholar] [CrossRef]
- Castaldo, L.; Izzo, L.; Narváez, A.; Rodríguez-Carrasco, Y.; Grosso, M.; Ritieni, A. Colon Bioaccessibility under in Vitro Gastrointestinal Digestion of Different Coffee Brews Chemically Profiled through UHPLC-Q-Orbitrap HRMS. Foods 2021, 10, 179. [Google Scholar] [CrossRef] [PubMed]
- Minekus, M.; Alminger, M.; Alvito, P.; Ballance, S.; Bohn, T.; Bourlieu, C.; Carrière, F.; Boutrou, R.; Corredig, M.; Dupont, D.; et al. A Standardised Static in Vitro Digestion Method Suitable for Food—An International Consensus. Food Funct. 2014, 5, 1113–1124. [Google Scholar] [CrossRef] [PubMed]
- Izzo, L.; Castaldo, L.; Lombardi, S.; Gaspari, A.; Grosso, M.; Ritieni, A. Bioaccessibility and Antioxidant Capacity of Bioactive Compounds from Various Typologies of Canned Tomatoes. Front. Nutr. 2022, 9, 849163. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT—Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Rajurkar, N.S.; Hande, S.M. Estimation of Phytochemical Content and Antioxidant Activity of Some Selected Traditional Indian Medicinal Plants. Indian. J. Pharm. Sci. 2011, 73, 146–151. [Google Scholar] [CrossRef]
- Tenore, G.C.; Campiglia, P.; Ciampaglia, R.; Izzo, L.; Novellino, E. Antioxidant and Antimicrobial Properties of Traditional Green and Purple “Napoletano” Basil Cultivars (Ocimum basilicum L.) from Campania Region (Italy). Nat. Prod. Res. 2017, 31, 2067–2071. [Google Scholar] [CrossRef]
- Lee, E.J.; Yoo, K.S.; Patil, B.S. Development of a Rapid HPLC-UV Method for Simultaneous Quantification of Protodioscin and Rutin in White and Green Asparagus Spears. J. Food Sci. 2010, 75, C703–C709. [Google Scholar] [CrossRef]
- Ku, Y.G.; Bae, J.H.; Namieśnik, J.; Barasch, D.; Nemirovski, A.; Katrich, E.; Gorinstein, S. Detection of Bioactive Compounds in Organically and Conventionally Grown Asparagus Spears. Food Anal. Methods 2018, 11, 309–318. [Google Scholar] [CrossRef]
- Sonoda, T.; Motoki, S.; Maekawa, K.; Suzuki, T.; Oosawa, K.; Maeda, T.; Kakuta, H. Differences in Antioxidative Polyphenols Contents of Asparagus Related to Cultivars and Seasonal Change under Various Cultural Conditions of the Mother-Fern Culture. In Proceedings of the XI International Asparagus Symposium 776, Horst, The Netherlands, 16–19 June 2005; pp. 227–234. [Google Scholar]
- Maeda, T.; Honda, K.; Sonoda, T.; Motoki, S.; Inoue, K.; Suzuki, T.; Oosawa, K.; Suzuki, M. Light Condition Influences Rutin and Polyphenol Contents in Asparagus Spears in the Mother-Fern Culture System during the Summer–Autumn Harvest. J. Jpn. Soc. Hortic. Sci. 2010, 79, 161–167. [Google Scholar] [CrossRef]
- Sergio, L.; Boari, F.; Di Venere, D.; Gonnella, M.; Cantore, V.; Renna, M. Quality Evaluation of Wild and Cultivated Asparagus: A Comparison between Raw and Steamed Spears. Agriculture 2021, 11, 1213. [Google Scholar] [CrossRef]
- Minatel, I.O.; Borges, C.V.; Ferreira, M.I.; Gomez, H.A.G.; Chen, C.-Y.O.; Lima, G.P.P. Phenolic Compounds: Functional Properties, Impact of Processing and Bioavailability. Phenolic Compd. Biol. Act. 2017, 8, 1–24. [Google Scholar] [CrossRef]
- Carbonell-Capella, J.M.; Buniowska, M.; Barba, F.J.; Esteve, M.J.; Frígola, A. Analytical Methods for Determining Bioavailability and Bioaccessibility of Bioactive Compounds from Fruits and Vegetables: A Review. Compr. Rev. Food Sci. Food Saf. 2014, 13, 155–171. [Google Scholar] [CrossRef]
- Rawson, A.; Patras, A.; Tiwari, B.; Noci, F.; Koutchma, T.; Brunton, N. Effect of Thermal and Non Thermal Processing Technologies on the Bioactive Content of Exotic Fruits and Their Products: Review of Recent Advances. Food Res. Int. 2011, 44, 1875–1887. [Google Scholar] [CrossRef]
- Sánchez-Velázquez, O.A.; Mulero, M.; Cuevas-Rodríguez, E.O.; Mondor, M.; Arcand, Y.; Hernández-Álvarez, A.J. In Vitro Gastrointestinal Digestion Impact on Stability, Bioaccessibility and Antioxidant Activity of Polyphenols from Wild and Commercial Blackberries (Rubus spp.). Food Funct. 2021, 12, 7358–7378. [Google Scholar] [CrossRef]
- Brodkorb, A.; Egger, L.; Alminger, M.; Alvito, P.; Assunção, R.; Ballance, S.; Bohn, T.; Bourlieu-Lacanal, C.; Boutrou, R.; Carrière, F.; et al. INFOGEST Static in Vitro Simulation of Gastrointestinal Food Digestion. Nat. Protoc. 2019, 14, 991–1014. [Google Scholar] [CrossRef]
- Tagliazucchi, D.; Verzelloni, E.; Bertolini, D.; Conte, A. In Vitro Bio-Accessibility and Antioxidant Activity of Grape Polyphenols. Food Chem. 2010, 120, 599–606. [Google Scholar] [CrossRef]
- Vallejo, F.; Gil-Izquierdo, A.; Pérez-Vicente, A.; García-Viguera, C. In Vitro Gastrointestinal Digestion Study of Broccoli Inflorescence Phenolic Compounds, Glucosinolates, and Vitamin C. J. Agric. Food Chem. 2004, 52, 135–138. [Google Scholar] [CrossRef]
- Zhang, Q.; Xing, B.; Sun, M.; Zhou, B.; Ren, G.; Qin, P. Changes in Bio-Accessibility, Polyphenol Profile and Antioxidants of Quinoa and Djulis Sprouts during in Vitro Simulated Gastrointestinal Digestion. Food Sci. Nutr. 2020, 8, 4232–4241. [Google Scholar] [CrossRef] [PubMed]
- Drinkwater, J.M.; Tsao, R.; Liu, R.; Defelice, C.; Wolyn, D.J. Effects of Cooking on Rutin and Glutathione Concentrations and Antioxidant Activity of Green Asparagus (Asparagus officinalis) Spears. J. Funct. Foods 2015, 12, 342–353. [Google Scholar] [CrossRef]
- Alventosa, J.M.F.; Rojas, J.M.M. Bioactive Compounds in Asparagus and Impact of Storage and Processing. In Processing and Impact on Active Components in Food; Elsevier: Amsterdam, The Netherlands, 2015; pp. 103–110. [Google Scholar]
- Danowska-Oziewicz, M.; Narwojsz, A.; Draszanowska, A.; Marat, N. The Effects of Cooking Method on Selected Quality Traits of Broccoli and Green Asparagus. Int. J. Food Sci. Technol. 2020, 55, 127–135. [Google Scholar] [CrossRef]
Compound | RT (min) | Adduct ion | Chemical Formula | Theoretical Mass (m/z) | Measured Mass (m/z) | Accuracy (Δ ppm) | LOD (mg/kg) | LOQ (mg/kg) |
---|---|---|---|---|---|---|---|---|
Quinic acid | 0.64 | [M-H]− | C7H12O6 | 191.05528 | 191.05534 | 0.314 | 0.019 | 0.039 |
Protocatechuic acid | 3.05 | [M-H]− | C7H6O4 | 153.01811 | 153.01819 | 0.523 | 0.019 | 0.039 |
Quercetin | 3.67 | [M-H]− | C15H10O7 | 301.03549 | 301.03549 | 0.000 | 0.019 | 0.057 |
Chlorogenic acid | 3.94 | [M-H]− | C16H18O9 | 353.08847 | 353.08798 | −1.388 | 0.019 | 0.039 |
Caffeic acid | 4.11 | [M-H]− | C9H8O4 | 179.03403 | 179.03410 | 0.391 | 0.013 | 0.039 |
Epicatechin | 4.12 | [M-H]− | C15H14O6 | 289.07205 | 289.07199 | −0.208 | 0.002 | 0.004 |
Catechin | 4.16 | [M-H]− | C15H14O6 | 289.07196 | 289.07199 | 0.104 | 0.002 | 0.004 |
Daidzin | 4.32 | [M-H]− | C21H20O9 | 415.10388 | 415.10391 | 0.072 | 0.039 | 0.078 |
p-coumaric acid | 4.34 | [M-H]− | C9H8O3 | 163.03894 | 163.03899 | 0.307 | 0.013 | 0.039 |
Ellagic acid | 4.36 | [M-H]− | C14H6O8 | 300.99911 | 300.99905 | −0.199 | 0.002 | 0.004 |
Rutin | 4.40 | [M-H]− | C27H30O16 | 609.14648 | 609.14697 | 0.804 | 0.013 | 0.039 |
Isoquercetin | 4.43 | [M-H]− | C21H20O12 | 463.08862 | 463.08881 | 0.410 | 0.002 | 0.004 |
Rosmarinic acid | 4.46 | [M-H]− | C18H16O8 | 359.07745 | 359.07773 | 0.780 | 0.002 | 0.004 |
Ferulic acid | 4.49 | [M-H]− | C10H10O4 | 193.04964 | 193.0499 | 1.347 | 0.026 | 0.078 |
Kaempferol-3-O-glucoside | 4.55 | [M-H]− | C21H20O11 | 447.09360 | 447.09372 | 0.268 | 0.002 | 0.004 |
Luteolin-7-glucoside | 4.55 | [M-H]− | C21H20O11 | 447.09360 | 447.09402 | 0.939 | 0.004 | 0.019 |
Isorhamnetin-3-rutinoside | 4.57 | [M-H]− | C28H32O16 | 623.16211 | 623.16260 | 0.786 | 0.002 | 0.004 |
Myricetin | 4.59 | [M-H]− | C15H10O8 | 317.03018 | 317.03027 | 0.284 | 0.002 | 0.004 |
Naringin | 4.69 | [M-H]− | C27H32O14 | 579.17242 | 579.17291 | 0.846 | 0.013 | 0.039 |
Hesperidin | 4.78 | [M-H]- | C28H34O15 | 609.18256 | 609.18317 | 1.001 | 0.002 | 0.004 |
Diosmin | 4.81 | [M-H]− | C28H32O15 | 607.16736 | 607.16803 | 1.103 | 0.004 | 0.009 |
Luteolin | 4.93 | [M-H]− | C15H10O6 | 285.04062 | 285.04062 | 0.000 | 0.026 | 0.078 |
Daidzein | 4.98 | [M-H]− | C15H10O4 | 253.05061 | 253.05057 | −0.158 | 0.004 | 0.009 |
Kaempferol | 5.11 | [M-H]− | C15H10O6 | 285.04062 | 285.04037 | −0.877 | 0.013 | 0.039 |
Naringenin | 5.22 | [M-H]− | C15H12O5 | 271.06143 | 271.06125 | −0.664 | 0.002 | 0.004 |
Apigenin | 5.23 | [M-H]− | C15H10O5 | 269.04555 | 269.04562 | 0.260 | 0.013 | 0.039 |
Genistein | 5.27 | [M-H]− | C15H10O5 | 269.04555 | 269.04556 | 0.037 | 0.002 | 0.039 |
Edible Portion (mg/kg) ± SD | ||||
---|---|---|---|---|
Placoseps | Darlise | |||
Compound | February 2024 | April 2024 | February 2024 | April 2024 |
PHENOLIC ACID | ||||
Cinnamic acid | ||||
Chlorogenic acid | 1.80 ± 0.06 | 90.24 ± 0.11 | 10.80 ± 0.11 | 26.08 ± 0.34 |
Ferulic acid | 36.76 ± 0.06 | 75.68 ± 0.11 | 11.72 ± 0.51 | 42.24 ± 1.30 |
p-Coumaric acid | 1.60 ± 0.28 | 1.34 ± 1.50 | 2.00 ± 1.13 | 3.70 ± 0.14 |
Quinic acid | 298.81 ± 5.32 | 214.00 ± 2.60 | 327.12 ± 6.01 | 265.48 ± 1.19 |
SUM | 338.97 ± 5.72 | 381.26 ± 4.32 | 351.64 ± 7.76 | 337.50 ± 2.97 |
FLAVONOIDS | ||||
Flavones | ||||
Luteolin | nf | <LOQ | nf | <LOQ |
Kaempferol | nf | <LOQ | nf | <LOQ |
SUM | - | - | - | - |
Flavonols | ||||
Isoquercetin | 29.87 ± 0.04 | 32.84 ± 1.07 | 5.44 ± 0.11 | 29.36 ± 0.00 |
Rutin | 12.13 ± 0.23 | 1770.72 ± 1.02 | 164.92 ± 0.06 | 995.20 ± 5.77 |
Isorhamnetin-3-rutinoside | 29.36 ± 0.00 | 152.5 ± 0.40 | 13.88 ± 0.17 | 81.04 ± 0.34 |
SUM | 71.36 ± 0.27 | 1956.08 ± 2.49 | 184.24 ± 0.34 | 1105.60 ± 6.11 |
TOTAL POLYPHENOLS | 410.33 ± 5.99 | 2337.34 ± 6.81 | 535.88 ± 8.10 | 1443.10 ± 9.08 |
Cooked Portion (mg/kg) ± SD | ||||
---|---|---|---|---|
Placoseps | Darlise | |||
Compounds | February 2024 | April 2024 | February 2024 | April 2024 |
PHENOLIC ACIDS | ||||
Cinnamic acid | ||||
Chlorogenic acid | 37.80 ± 0.17 | 357.96 ± 0.40 | 145.12 ± 0.79 | 444.48 ± 0.34 |
Ferulic acid | 16.10 ± 0.12 | 27.10 ± 1.47 | 19.12 ± 1.00 | 24.68 ± 0.40 |
Quinic acid | 186.60 ± 2.21 | 171.56 ± 6.62 | 190.40 ± 2.26 | 232.20 ± 2.09 |
SUM | 240.50 ± 2.50 | 556.62 ± 8.49 | 354.64 ± 4.05 | 703.36 ± 2.83 |
FLAVONOIDS | ||||
Flavones | ||||
Luteolin | nf | <LOQ | nf | <LOQ |
Kaempferol | nf | <LOQ | nf | <LOQ |
SUM | - | - | - | - |
Flavanons | ||||
Naringin | 0.84 ± 0.06 | 0.56 ± 0.23 | 1.72 ± 0.06 | 0.76 ± 0.06 |
SUM | 0.84 ± 0.06 | 0.56 ± 0.23 | 1.72 ± 0.06 | 0.76 ± 0.06 |
Flavonols | ||||
Isoquercetin | 127.07 ± 1.05 | 40.84 ± 0.06 | 113.56 ± 0.71 | 31.64 ± 0.62 |
Rutin | 705.28 ± 2.10 | 1966.00 ± 2.60 | 347.32 ± 0.40 | 2042.44 ± 2.88 |
Isorhamnetin-3-rutinoside | 100.60 ± 0.28 | 123.80 ± 1.19 | 32.32 ± 0.11 | 107.76 ± 1.24 |
SUM | 932.95 ± 3.43 | 2130.64 ± 3.85 | 493.20 ± 1.22 | 2181.84 ± 4.74 |
TOTAL POLYPHENOLS | 1174.29 ± 5.99 | 2687.82 ± 12.57 | 849.96 ± 5.39 | 2885.96 ± 7.63 |
Cooked-Digested Portion (mg/kg) ± SD | ||||
---|---|---|---|---|
Placoseps | Darlise | |||
Compounds | February 2024 | April 2024 | February 2024 | April 2024 |
PHENOLIC ACIDS | ||||
Cinnamic acid | ||||
Chlorogenic acid | 0.46 ± 0.07 | 13.50 ± 0.62 | 0.39 ± 0.03 | 20.65 ± 0.22 |
Ferulic acid | 5.46 ± 0.00 | 28.91 ± 0.03 | 15.38 ± 0.00 | 26.29 ± 0.01 |
p-Coumaric acid | 0.73 ± 0.02 | 7.71 ± 0.09 | 0.52 ± 0.08 | 5.93 ± 0.57 |
Quinic acid | 68.94 ± 1.84 | 111.49 ±1.17 | 69.08 ± 0.22 | 121.91 ± 0.66 |
SUM | 75.59 ± 1.79 | 161.61 ± 1.92 | 85.37 ± 0.33 | 174.78 ± 1.47 |
FLAVONOIDS | ||||
Flavanons | ||||
Naringin | 0.14 ± 0.03 | 0.38 ± 0.04 | nf | 0.27 ± 0.04 |
SUM | 0.14 ± 0.03 | 0.38 ± 0.04 | nf | 0.27 ± 0.04 |
Flavonols | ||||
Isoquercetin | 12.40 ± 0.00 | 0.92 ± 0.07 | 11.37 ± 0.00 | 1.37 ± 0.31 |
Rutin | 43.60 ± 0.06 | 218.82 ± 0.06 | 45.21 ± 0.11 | 240.46 ± 3.03 |
Isorhamnetin-3-rutinoside | 15.22 ± 0.10 | 38.55 ± 0.78 | 19.09 ± 0.00 | 37.71 ± 1.02 |
SUM | 71.22 ± 0.16 | 258.29 ± 0.91 | 75.67 ± 0.11 | 279.53 ± 4.36 |
TOTAL POLYPHENOLS | 146.95 ± 1.98 | 420.286 ± 2.868 | 161.040 ± 0.441 | 454.581 ± 5.88 |
TPC-Edible Part (mg GAE/g) ± SD | |||
---|---|---|---|
Placoseps | Darlise | ||
February 2024 | April 2024 | February 2024 | April 2024 |
2.86 ± 0.04 | 7.01 ± 0.07 | 2.93 ± 0.01 | 5.89 ± 0.00 |
TPC-Cooked portion (mg GAE/g) ± SD | |||
Placoseps | Darlise | ||
February 2024 | April 2024 | February 2024 | April 2024 |
6.34 ± 0.18 | 15.88 ± 0.16 | 6.03 ± 0.21 | 10.53 ± 0.00 |
TPC-Cooked-digested portion (mg GAE/g) ± SD | |||
Placoseps | Darlise | ||
February 2024 | April 2024 | February 2024 | April 2024 |
1.65 ± 0.01 | 4.24 ± 0.08 | 1.70 ± 0.02 | 3.61 ± 0.01 |
Edible Part (mmol Trolox/kg) ± SD | ||||
---|---|---|---|---|
Placoseps | Darlise | |||
February 2024 | April 2024 | February 2024 | April 2024 | |
DPPH | 6.74 ± 0.01 | 18.31 ± 0.06 | 10.48 ± 0.01 | 15.05 ± 0.06 |
ABTS | 38.12 ± 0.15 | 64.14 ± 0.49 | 27.47 ± 0.27 | 32.99 ± 0.14 |
FRAP | 13.26 ± 0.02 | 21.11 ± 0.08 | 19.15 ± 0.05 | 19.60 ± 0.09 |
Cooked portion (mmol Trolox/kg) ± SD | ||||
Placoseps | Darlise | |||
February 2024 | April 2024 | February 2024 | April 2024 | |
DPPH | 10.23 ± 0.01 | 23.71 ± 0.22 | 12.13 ± 0.01 | 21.69 ± 0.03 |
ABTS | 53.65 ± 0.04 | 67.69 ± 0.32 | 51.72 ± 0.36 | 59.88 ± 0.31 |
FRAP | 15.71 ± 0.09 | 25.38 ± 0.11 | 17.83 ± 0.07 | 23.24 ± 0.03 |
Cooked–Digested portion (mmol Trolox/kg) ± SD | ||||
Placoseps | Darlise | |||
February 2024 | April 2024 | February 2024 | April 2024 | |
DPPH | 1.56 ± 0.01 | 5.42 ± 0.01 | 2.44 ± 0.00 | 4.30 ± 0.02 |
ABTS | 11.71 ± 0.13 | 18.12 ± 0.06 | 15.79 ± 0.68 | 14.22 ± 0.04 |
FRAP | 10.05 ± 0.20 | 13.46 ± 0.05 | 12.46 ± 0.23 | 11.44 ± 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Matteo, A.; Paolillo, A.; Ciriaco, L.; Silva, J.L.d.; Pascale, S.D.; Izzo, L. Effect of Cooking and in vitro Digestion on the Polyphenols and Antioxidant Properties of Asparagus officinalis L. cultivars. Foods 2025, 14, 2367. https://doi.org/10.3390/foods14132367
Di Matteo A, Paolillo A, Ciriaco L, Silva JLd, Pascale SD, Izzo L. Effect of Cooking and in vitro Digestion on the Polyphenols and Antioxidant Properties of Asparagus officinalis L. cultivars. Foods. 2025; 14(13):2367. https://doi.org/10.3390/foods14132367
Chicago/Turabian StyleDi Matteo, Angela, Antonio Paolillo, Lidia Ciriaco, Juliane Lima da Silva, Stefania De Pascale, and Luana Izzo. 2025. "Effect of Cooking and in vitro Digestion on the Polyphenols and Antioxidant Properties of Asparagus officinalis L. cultivars" Foods 14, no. 13: 2367. https://doi.org/10.3390/foods14132367
APA StyleDi Matteo, A., Paolillo, A., Ciriaco, L., Silva, J. L. d., Pascale, S. D., & Izzo, L. (2025). Effect of Cooking and in vitro Digestion on the Polyphenols and Antioxidant Properties of Asparagus officinalis L. cultivars. Foods, 14(13), 2367. https://doi.org/10.3390/foods14132367