Cold Atmospheric Plasma Improves Shear Bond Strength of Veneering Composite to Zirconia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Computer-Aided Design/Computer-Aided Manufacturing (Cad/Cam) Fabrication of Zirconia Specimens
2.2. Study Groups
2.3. Surface Treatment
2.4. Bonding Agents
2.5. Treatment with Cold Atmospheric Plasma
2.6. Specimen Preparation
2.7. Artificial Aging
2.8. Shear Bond Strength (SBS) Measurement
2.9. Energy-Dispersive X-ray Spectroscopy (EDS)
2.10. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Conrad, H.J.; Seong, W.J.; Pesun, I.J. Current ceramic materials and systems with clinical recommendations: A systematic review. J. Prosthet. Dent 2007, 98, 389–404. [Google Scholar] [CrossRef]
- Ji, M.K.; Park, J.H.; Park, S.W.; Yun, K.D.; Oh, G.J.; Lim, H.P. Evaluation of marginal fit of 2 CAD-CAM anatomic contour zirconia crown systems and lithium disilicate glass-ceramic crown. J. Adv. Prosthodont. 2015, 7, 271–277. [Google Scholar] [CrossRef] [Green Version]
- Weber, K.K.; R, A.N. Biomaterials, Zirconia. In StatPearls; StatPearls Publishing LLC.: Treasure Island, FL, USA, 2018. [Google Scholar]
- Daou, E.E. The zirconia ceramic: Strengths and weaknesses. Open Dent. J. 2014, 8, 33–42. [Google Scholar] [CrossRef]
- Ghodsi, S.; Jafarian, Z. A Review on Translucent Zirconia. Eur. J. Prosthodont. Restor. Dent. 2018, 26, 62–74. [Google Scholar] [CrossRef] [PubMed]
- Özcan, M.; Dündar, M.; Erhan Çömlekoğlu, M. Adhesion concepts in dentistry: Tooth and material aspects. J. Adhes. Sci. Technol. 2012, 26, 2661–2681. [Google Scholar] [CrossRef] [Green Version]
- Sailer, I.; Feher, A.; Filser, F.; Gauckler, L.J.; Luthy, H.; Hammerle, C.H. Five-year clinical results of zirconia frameworks for posterior fixed partial dentures. Int. J. Prosthodont. 2007, 20, 383–388. [Google Scholar]
- Sailer, I.; Pjetursson, B.E.; Zwahlen, M.; Hammerle, C.H. A systematic review of the survival and complication rates of all-ceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part II: Fixed dental prostheses. Clin. Oral Implant. Res. 2007, 18 (Suppl. 3), 86–96. [Google Scholar] [CrossRef] [PubMed]
- Schmitt, J.; Holst, S.; Wichmann, M.; Reich, S.; Gollner, M.; Hamel, J. Zirconia posterior fixed partial dentures: A prospective clinical 3-year follow-up. Int. J. Prosthodont. 2009, 22, 597–603. [Google Scholar]
- Marchack, B.W.; Sato, S.; Marchack, C.B.; White, S.N. Complete and partial contour zirconia designs for crowns and fixed dental prostheses: A clinical report. J. Prosthet. Dent. 2011, 106, 145–152. [Google Scholar] [CrossRef]
- Guler, A.U.; Yilmaz, F.; Yenisey, M.; Guler, E.; Ural, C. Effect of acid etching time and a self-etching adhesive on the shear bond strength of composite resin to porcelain. J. Adhes. Dent. 2006, 8, 21–25. [Google Scholar] [PubMed]
- Han, I.H.; Kang, D.W.; Chung, C.H.; Choe, H.C.; Son, M.K. Effect of various intraoral repair systems on the shear bond strength of composite resin to zirconia. J. Adv. Prosthodont. 2013, 5, 248–255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagis, B.; Ustaomer, S.; Lassila, L.V.; Vallittu, P.K. Provisional repair of a zirconia fixed partial denture with fibre-reinforced restorative composite: A clinical report. J. Can. Dent. Assoc. 2009, 75, 133–137. [Google Scholar] [PubMed]
- Barragan, G.; Chasqueira, F.; Arantes-Oliveira, S.; Portugal, J. Ceramic repair: Influence of chemical and mechanical surface conditioning on adhesion to zirconia. Oral Health Dent. Manag. 2014, 13, 155–158. [Google Scholar]
- Arami, S.; Hasani Tabatabaei, M.; Namdar, F.; Safavi, N.; Chiniforush, N. Shear bond strength of the repair composite resin to zirconia ceramic by different surface treatment. J. Lasers Med. Sci. 2014, 5, 171–175. [Google Scholar]
- El-Shrkawy, Z.R.; El-Hosary, M.M.; Saleh, O.; Mandour, M.H. Effect of different surface treatments on bond strength, surface and microscopic structure of zirconia ceramic. Future Dent. J. 2016, 2, 41–53. [Google Scholar] [CrossRef]
- Aboushelib, M.N.; Kleverlaan, C.J.; Feilzer, A.J. Selective infiltration-etching technique for a strong and durable bond of resin cements to zirconia-based materials. J. Prosthet. Dent. 2007, 98, 379–388. [Google Scholar] [CrossRef]
- Piascik, J.R.; Wolter, S.D.; Stoner, B.R. Development of a novel surface modification for improved bonding to zirconia. Dent. Mater. 2011, 27, e99–e105. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Chae, S.Y.; Lee, Y.; Han, G.J.; Cho, B.H. Effects of multipurpose, universal adhesives on resin bonding to zirconia ceramic. Oper. Dent. 2015, 40, 55–62. [Google Scholar] [CrossRef]
- Fazi, G.; Vichi, A.; Ferrari, M. Influence of surface pretreatment on the short-term bond strength of resin composite to a zirconia-based material. Am. J. Dent. 2012, 25, 73–78. [Google Scholar] [CrossRef]
- Blatz, M.B.; Sadan, A.; Martin, J.; Lang, B. In vitro evaluation of shear bond strengths of resin to densely-sintered high-purity zirconium-oxide ceramic after long-term storage and thermal cycling. J. Prosthet. Dent. 2004, 91, 356–362. [Google Scholar] [CrossRef]
- Tsuo, Y.; Yoshida, K.; Atsuta, M. Effects of alumina-blasting and adhesive primers on bonding between resin luting agent and zirconia ceramics. Dent. Mater. J. 2006, 25, 669–674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, B.; Barloi, A.; Kern, M. Influence of air-abrasion on zirconia ceramic bonding using an adhesive composite resin. Dent. Mater. 2010, 26, 44–50. [Google Scholar] [CrossRef]
- Smeets, R.; Henningsen, A.; Heuberger, R.; Hanisch, O.; Schwarz, F.; Precht, C. Influence of Ultraviolet Irradiation and Cold Atmospheric Pressure Plasma on Zirconia Surfaces: An In Vitro Study. Int. J. Oral Maxillofac. Implant. 2019, 34. [Google Scholar]
- Ito, Y.; Okawa, T.; Fujii, T.; Tanaka, M. Influence of plasma treatment on surface properties of zirconia. J. Osaka Dent. Univ. 2016, 50, 79–84. [Google Scholar]
- Canullo, L.; Micarelli, C.; Bettazzoni, L.; Koci, B.; Baldissara, P. Zirconia-composite bonding after plasma of argon treatment. Int. J. Prosthodont. 2014, 27, 267–269. [Google Scholar] [CrossRef] [Green Version]
- Schwitalla, A.D.; Bötel, F.; Zimmermann, T.; Sütel, M.; Müller, W.-D. The impact of argon/oxygen low-pressure plasma on shear bond strength between a veneering composite and different PEEK materials. Dent. Mater. 2017, 33, 990–994. [Google Scholar] [CrossRef]
- Bunz, O.; Benz, C.I.; Arnold, W.H.; Piwowarczyk, A. Shear bond strength of veneering composite to high performance polymers. Dent. Mater. J. 2020, 2019–2300. [Google Scholar] [CrossRef] [PubMed]
- Seabra, B.; Arantes-Oliveira, S.; Portugal, J. Influence of multimode universal adhesives and zirconia primer application techniques on zirconia repair. J. Prosthet. Dent. 2014, 112, 182–187. [Google Scholar] [CrossRef]
- Tsujimoto, A.; Barkmeier, W.W.; Takamizawa, T.; Wilwerding, T.; Latta, M.A.; Miyazaki, M. Interfacial characteristics and bond durability of universal adhesive to various substrates. Oper. Dent. 2017, 42, E59–E70. [Google Scholar] [CrossRef] [PubMed]
- Scherrer, S.S.; Cesar, P.F.; Swain, M.V. Direct comparison of the bond strength results of the different test methods: A critical literature review. Dent. Mater. 2010, 26, e78–e93. [Google Scholar] [CrossRef]
- Özcan, M.; Bernasconi, M. Adhesion to zirconia used for dental restorations: A systematic review and meta-analysis. J. Adhes. Dent. 2015, 17. [Google Scholar]
- Scaminaci Russo, D.; Cinelli, F.; Sarti, C.; Giachetti, L. Adhesion to zirconia: A systematic review of current conditioning methods and bonding materials. Dent. J. 2019, 7, 74. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Lawn, B.R.; Rekow, E.D.; Thompson, V.P. Effect of sandblasting on the long-term performance of dental ceramics. J. Biomed. Mater. Res. Part. B 2004, 71, 381–386. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.-W.; Hauert, R.; Ernst, K.-H.; Wintermantel, E. Surface analysis of chemically-etched and plasma-treated polyetheretherketone (PEEK) for biomedical applications. Surf. Coat. Technol. 1997, 96, 293–299. [Google Scholar] [CrossRef]
- Liston, E.M. Plasma treatment for improved bonding: A review. J. Adhes. 1989, 30, 199–218. [Google Scholar] [CrossRef]
- Júnior, V.V.B.F.; Dantas, D.C.B.; Bresciani, E.; Huhtala, M.F.R.L. Evaluation of the bond strength and characteristics of zirconia after different surface treatments. J. Prosthet. Dent. 2018, 120, 955–959. [Google Scholar] [CrossRef]
- Murakami, T.; Niemi, K.; Gans, T.; O’Connell, D.; Graham, W.G. Chemical kinetics and reactive species in atmospheric pressure helium–oxygen plasmas with humid-air impurities. Plasma Sources Sci. Technol. 2012, 22, 015003. [Google Scholar] [CrossRef]
- Ritts, A.C.; Li, H.; Yu, Q.; Xu, C.; Yao, X.; Hong, L.; Wang, Y. Dentin surface treatment using a non-thermal argon plasma brush for interfacial bonding improvement in composite restoration. Eur. J. Oral Sci. 2010, 118, 510–516. [Google Scholar] [CrossRef] [PubMed]
- Lopes, B.B.; Ayres, A.P.A.; Lopes, L.B.; Negreiros, W.M.; Giannini, M. The effect of atmospheric plasma treatment of dental zirconia ceramics on the contact angle of water. Appl. Adhes. Sci. 2014, 2, 1–8. [Google Scholar] [CrossRef]
Group | A/SU | A/C | A/M | A/MP | S/SU | AP/SU |
---|---|---|---|---|---|---|
Surface Treatment | Air Abrasion with 50 μm Alumina Oxide (Al2O3) | Silica-coating | Air Abrasion with 50 μm Alumina Oxide (Al2O3) and Cold Atmospheric Plasma | |||
Bonding Material | Scotchbond Universal, 3M Oral Care, Germany | Clearfil Ceremic Primer, Kuraray Europe, Germany | MKZ Primer, Bredent, Germany | Monobond Plus, Ivoclar Vivadent, Liechtenstein | Scotchbond Universal, 3M Oral Care, Germany | Scotchbond Universal, 3M Oral Care, Germany |
Veneering Composite | Sinfony, 3M Oral Care, Gemany |
Short-Term | A/SU | A/C | A/MP | A/M | S/SU | AP/SU |
---|---|---|---|---|---|---|
Minimum | 1.12 | 1.56 | 0.79 | 0.74 | 0.35 | 1.76 |
25% Percentile | 2.37 | 1.64 | 1.55 | 1.25 | 0.63 | 2.32 |
Median | 3.09 | 1.97 | 1.69 | 2.00 | 0.76 | 2.82 |
75% Percentile | 3.56 | 2.52 | 3.05 | 2.42 | 0.91 | 3.10 |
Maximum | 5.89 | 3.43 | 4.41 | 2.68 | 1.31 | 5.04 |
Range | 4.76 | 1.86 | 3.62 | 1.93 | 0.95 | 3.28 |
Number of values | 12 | 12 | 12 | 12 | 12 | 12 |
Long-Term | A/SU | A/C | A/MP | A/M | S/SU | AP/SU |
Minimum | 0.67 | 1.45 | 1.33 | 1.36 | 1.10 | 1.70 |
25% Percentile | 1.06 | 1.60 | 1.45 | 1.39 | 1.25 | 1.76 |
Median | 1.36 | 1.80 | 1.68 | 1.58 | 1.42 | 2.14 |
75% Percentile | 1.71 | 1.97 | 1.88 | 1.77 | 1.56 | 2.44 |
Maximum | 2.22 | 2.17 | 2.04 | 1.85 | 1.66 | 2.71 |
Range | 1.55 | 0.72 | 0.71 | 0.49 | 0.55 | 1.00 |
Number of values | 10 | 10 | 10 | 10 | 10 | 10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bunz, O.; Kalz, P.; Benz, C.I.; Naumova, E.A.; Arnold, W.H.; Piwowarczyk, A. Cold Atmospheric Plasma Improves Shear Bond Strength of Veneering Composite to Zirconia. Dent. J. 2021, 9, 59. https://doi.org/10.3390/dj9060059
Bunz O, Kalz P, Benz CI, Naumova EA, Arnold WH, Piwowarczyk A. Cold Atmospheric Plasma Improves Shear Bond Strength of Veneering Composite to Zirconia. Dentistry Journal. 2021; 9(6):59. https://doi.org/10.3390/dj9060059
Chicago/Turabian StyleBunz, Oskar, Paul Kalz, Carla I. Benz, Ella A. Naumova, Wolfgang H. Arnold, and Andree Piwowarczyk. 2021. "Cold Atmospheric Plasma Improves Shear Bond Strength of Veneering Composite to Zirconia" Dentistry Journal 9, no. 6: 59. https://doi.org/10.3390/dj9060059
APA StyleBunz, O., Kalz, P., Benz, C. I., Naumova, E. A., Arnold, W. H., & Piwowarczyk, A. (2021). Cold Atmospheric Plasma Improves Shear Bond Strength of Veneering Composite to Zirconia. Dentistry Journal, 9(6), 59. https://doi.org/10.3390/dj9060059