Load-Bearing Capacity of Incisors Restored Using Fiber-Reinforced Composite Post-Core Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Core Build-Up and Post Fabrication
2.2. Crown Construction
2.3. Testing the Load-Bearing Capacity
2.4. Surface Hardness Test
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fehrenbach, J.; de Soares, J.L.S.; do Nascimento Foly, J.C.S.; Miotti, L.L.; Münchow, E.A. Mechanical performance of endocrown restorations in anterior teeth: A systematic review and network meta-analysis. Dent. Mater. 2025, 41, 28–41. [Google Scholar] [CrossRef] [PubMed]
- Santos Pantaleón, D.; Morrow, B.R.; Cagna, D.R.; Pameijer, C.H.; Garcia-Godoy, F. Influence of remaining coronal tooth structure on fracture resistance and failure mode of restored endodontically treated maxillary incisors. J. Prosthet. Dent. 2018, 119, 390–396. [Google Scholar] [CrossRef] [PubMed]
- Zarow, M.; Ramírez-Sebastià, A.; Paolone, G.; de Ribot Porta, J.; Mora, J.; Espona, J.; Durán-Sindreu, F.; Roig, M. A new classification system for the restoration of root filled teeth. Int. Endod. J. 2018, 51, 318–334. [Google Scholar] [CrossRef]
- Meyenberg, K. The ideal restoration of endodontically treated teeth—Structural and esthetic considerations: A review of the literature and clinical guidelines for the restorative clinician. Eur. J. Esthet. Dent. 2013, 8, 238–268. [Google Scholar]
- Fragou, T.; Tortopidis, D.; Kontonasaki, E.; Evangelinaki, E.; Ioannidis, K.; Petridis, H.; Koidis, P. The effect of ferrule on the fracture mode of endodontically treated canines restored with fibre posts and metal-ceramic or all-ceramic crowns. J. Dent. 2012, 40, 276–285. [Google Scholar] [CrossRef]
- Qualtrough, A.J.; Mannocci, F. Tooth-colored post systems: A review. Dent. Update. 2003, 28, 86–91. [Google Scholar]
- Garcia, P.P.; Wambier, L.M.; de Geus, J.L.; da Cunha, L.F.; Correr, G.M.; Gonzaga, C.C. Do anterior and posterior teeth treated with post-and-core restorations have similar failure rates? A systematic review and meta-analysis. J. Prosthet. Dent. 2019, 121, 887–894.e4. [Google Scholar] [CrossRef]
- Zicari, F.; De Munck, J.; Scotti, R.; Naert, I.; Van Meerbeek, B. Factors affecting the cement-post interface. Dent. Mater. 2012, 28, 287–297. [Google Scholar] [CrossRef] [PubMed]
- Fousekis, E.; Lolis, A.; Marinakis, E.; Oikonomou, E.; Foros, P.; Koletsi, D.; Eliades, G. Short fiber-reinforced composite resins as post-and-core materials for endodontically treated teeth: A systematic review and meta-analysis of in vitro studies. J. Prosthet. Dent. 2023. [Google Scholar] [CrossRef]
- Spicciarelli, V.; Marruganti, C.; Di Matteo, C.; Martignoni, M.; Ounsi, H.; Doldo, T.; Ferrari, M.; Grandini, S. Influence of single post, oval, and multi-post restorative techniques and amount of residual tooth substance on fracture strength of endodontically treated maxillary premolars. J. Oral Sci. 2020, 63, 70–74. [Google Scholar] [CrossRef]
- Fráter, M.; Forster, A.; Jantyik, Á.; Braunitzer, G.; Nagy, K.; Grandini, S. In vitro fracture resistance of premolar teeth restored with fibre-reinforced composite posts using a single or a multi-post technique. Aust. Endod. J. 2017, 43, 16–22. [Google Scholar] [CrossRef] [PubMed]
- Barbosa Kasuya, A.V.; Favarão, I.N.; Machado, A.C.; Rezende Spini, P.H.; Soares, P.V.; Fonseca, R.B. Development of a fiber-reinforced material for fiber posts: Evaluation of stress distribution, fracture load, and failure mode of restored roots. J. Prosthet. Dent. 2020, 123, 829–838. [Google Scholar] [CrossRef]
- Forster, A.; Sáry, T.; Braunitzer, G.; Fráter, M. In vitro fracture resistance of endodontically treated premolar teeth restored with a direct layered fiber-reinforced composite post and core. J. Adhes. Sci. Technol. 2017, 31, 1454–1466. [Google Scholar] [CrossRef]
- Molnár, J.; Fráter, M.; Sáry, T.; Braunitzer, G.; Vallittu, P.K.; Lassila, L.; Garoushi, S. Fatigue performance of endodontically treated molars restored with different dentin replacement materials. Dent. Mater. 2022, 38, e83–e93. [Google Scholar] [CrossRef]
- Hazar, E.; Hazar, A. Fracture Resistance of Glass-Fiber-Reinforced Direct Restorations on Endodontically Treated Molar Teeth with Furcal Perforation. Polymers 2025, 17, 370. [Google Scholar] [CrossRef]
- Alshetiwi, D.S.D.; Muttlib, N.A.A.; El-Damanhoury, H.M.; Alawi, R.; Rahman, N.A.; Elsahn, N.A.; Karobari, M.I. Evaluation of mechanical properties of anatomically customized fiber posts using E-glass short fiber-reinforced composite to restore weakened endodontically treated premolars. BMC Oral Health 2024, 24, 323. [Google Scholar] [CrossRef] [PubMed]
- Naumann, M.; Schmitter, M.; Frankenberger, R.; Krastl, G. “Ferrule Comes First. Post Is Second!” Fake News and Alternative Facts? A Systematic Review. J. Endod. 2018, 44, 212–219. [Google Scholar] [CrossRef]
- Gloria, A.; Maietta, S.; Martorelli, M.; Lanzotti, A.; Watts, D.C.; Ausiello, P. FE analysis of conceptual hybrid composite endodontic post designs in anterior teeth. Dent. Mater. 2018, 34, 1063–1071. [Google Scholar] [CrossRef]
- de Carvalho, M.A.; Lazari-Carvalho, P.C.; Del Bel Cury, A.A.; Magne, P. Fatigue and failure analysis of restored endodontically treated maxillary incisors without a dowel or ferrule. J. Prosthet. Dent. 2024, 131, 241–250. [Google Scholar] [CrossRef]
- de Carvalho, M.A.; Lazari-Carvalho, P.C.; Del Bel Cury, A.A.; Magne, P. Accelerated fatigue resistance of endodontically treated incisors without ferrule restored with CAD/CAM endocrowns. Int. J. Esthet. Dent. 2021, 16, 534–552. [Google Scholar]
- Magne, P.; Lazari, P.C.; Carvalho, M.A.; Johnson, T.; Del Bel Cury, A.A. Ferrule-Effect Dominates over Use of a Fiber Post When Restoring Endodontically Treated Incisors: An In Vitro Study. Oper. Dent. 2017, 42, 396–406. [Google Scholar] [CrossRef] [PubMed]
- Fadag, A.; Negm, M.; Samran, A.; Samran, A.; Ahmed, G.; Alqerban, A.; Özcan, M. Fracture Resistance of Endodontically Treated Anterior Teeth Restored with Different Post Systems: An In Vitro Study. Eur. Endod. J. 2018, 3, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Albashaireh, Z.S.M.; Sbeih, Y.K. The effect of ferrule and core material on fracture resistance of endodontically treated anterior teeth restored with ceramic crowns after artificial aging. J. Dent. 2024, 147, 105106. [Google Scholar] [CrossRef]
- Naumann, M.; Schmitter, M.; Krastl, G. Postendodontic Restoration: Endodontic Post-and-Core or No Post At All? J. Adhes. Dent. 2018, 20, 19–24. [Google Scholar] [PubMed]
- Mously, H.A.; Naguib, G.H.; Abougazia, A.O.; Almabadi, A.A.; Qutub, O.A.; Hamed, M.T. Anterior Endocrowns as An Alternative to Core Crown restorations: A Systematic Review. Int. Dent. J. 2025, 75, 59–74. [Google Scholar] [CrossRef]
- Alshabib, A.; Jurado, C.A.; Azpiazu-Flores, F.X.; Aldosary, K.; Tsujimoto, A.; Algamaiah, H. Mechanical properties and degree of conversion of resin-based core build-up materials and short fiber-reinforced flowable resin-based composite. Dent. Mater. J. 2024, 43, 453–459. [Google Scholar] [CrossRef]
- Alshabib, A.; Silikas, N.; Algamaiah, H.; Alayad, A.S.; Alawaji, R.; Almogbel, S.; Aldosari, A.; Alhotan, A. Effect of Fibres on Physico-Mechanical Properties of Bulk-Fill Resin Composites. Polymers 2023, 15, 3452. [Google Scholar] [CrossRef]
- Bijelic, J.; Garoushi, S.; Vallittu, P.K.; Lassila, L.V. Short fiber reinforced composite in restoring severely damaged incisors. Acta Odontol. Scand. 2013, 71, 1221–1231. [Google Scholar] [CrossRef]
- Jurema, A.L.B.; Filgueiras, A.T.; Santos, K.A.; Bresciani, E.; Caneppele, T.M.F. Effect of intraradicular fiber post on the fracture resistance of endodontically treated and restored anterior teeth: A systematic review and meta-analysis. J. Prosthet. Dent. 2022, 128, 13–24. [Google Scholar] [CrossRef]
- Zicari, F.; Van Meerbeek, B.; Scotti, R.; Naert, I. Effect of ferrule and post placement on fracture resistance of endodontically treated teeth after fatigue loading. J. Dent. 2013, 41, 207–215. [Google Scholar] [CrossRef]
- Lazari, P.C.; de Carvalho, M.A.; Del Bel Cury, A.A.; Magne, P. Survival of extensively damaged endodontically treated incisors restored with different types of posts-and-core foundation restoration material. J. Prosthet. Dent. 2018, 119, 769–776. [Google Scholar] [CrossRef] [PubMed]
- Wolff, D.; Geiger, S.; Ding, P.; Staehle, H.J.; Frese, C. Analysis of the interdiffusion of resin monomers into pre-polymerized fiber-reinforced composites. Dent. Mater. 2012, 28, 541–547. [Google Scholar] [CrossRef]
- Frese, C.; Decker, C.; Rebholz, J.; Stucke, K.; Staehle, H.J.; Wolff, D. Original and repair bond strength of fiber-reinforced composites in vitro. Dent. Mater. 2014, 30, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Aksornmuang, J.; Foxton, R.M.; Nakajima, M.; Tagami, J. Microtensile bond strength of a dual-cure resin core material to glass and quartz fibre posts. J. Dent. 2004, 32, 443–450. [Google Scholar] [CrossRef]
- El Agamy, R. Effects of glass fibers reinforced and non-reinforced composite resin on fracture behavior of severely destructed primary incisors and restored with post and core system. Saudi Dent. J. 2024, 36, 451–455. [Google Scholar] [CrossRef]
- Nothdurft, F.P.; Schmitt, T.; Rupf, S.; Pospiech, P.R. Influence of fatigue testing and cementation mode on the load-bearing capability of bovine incisors restored with crowns and FRC posts. Dent. Mater. J. 2011, 30, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Dietschi, D.; Ardu, S.; Rossier-Gerber, A.; Krejci, I. Adaptation of adhesive post and cores to dentin after in vitro occlusal loading: Evaluation of post material influence. J. Adhes. Dent. 2006, 8, 409–419. [Google Scholar] [PubMed]
- Garner, J.R.; Wajdowicz, M.N.; DuVall, N.B.; Roberts, H.W. Selected physical properties of new resin-modified glass ionomer luting cements. J. Prosthet. Dent. 2017, 117, 277–282. [Google Scholar] [CrossRef]
- Azar, M.R.; Bagheri, R.; Burrow, M.F. Effect of storage media and time on the fracture toughness of resin-based luting cements. Aust. Dent. J. 2012, 57, 349–354. [Google Scholar] [CrossRef]
- Lohbauer, U.; Belli, R. The mechanical performance of a novel self-adhesive restorative material. J. Adhes. Dent. 2020, 22, 47–58. [Google Scholar]
- Kim, Y.K.; Kim, S.K.; Kim, K.H.; Kwon, T.Y. Degree of conversion of dual-cured resin cement light-cured through three fibre posts within human root canals: An ex vivo study. Int. Endod. J. 2009, 42, 667–674. [Google Scholar] [CrossRef]
- Pacheco, R.R.; Garcia-Flores, A.F.; Lesseux, G.G.; Lancelotti, A.; Rettori, C.; Urbano, R.R.; Giannini, M.; Rueggeberg, F.A. Comparison of Blue and Infrared Light Transmission Through Dental Tissues and Restorative Materials. Oper. Dent. 2024, 49, 300–310. [Google Scholar] [CrossRef] [PubMed]
- Ninkovic, N.; Opacic Galic, V.; Milosevic, M.; Trajkovic, I.; Kuzmanovic Pficer, J.; Bajuk-Bogdanović, D.; Milovanovic, P.; Yashin El-Bacha, D.; Djuric, M.; Miletic, V. Effects of minimally invasive endodontic access cavity in molar teeth on polymerization, porosity and fracture resistance. Sci. Rep. 2024, 14, 21635. [Google Scholar] [CrossRef]
- Lempel, E.; Őri, Z.; Szalma, J.; Lovász, B.V.; Kiss, A.; Tóth, Á.; Kunsági-Máté, S. Effect of exposure time and pre-heating on the conversion degree of conventional, bulk-fill, fiber reinforced and polyacid-modified resin composites. Dent. Mater. 2019, 35, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Fráter, M.; Grosz, J.; Jakab, A.; Braunitzer, G.; Tarjányi, T.; Gulyás, G.; Bali, K.; Villa-Machado, P.A.; Garoushi, S.; Forster, A. Evaluation of microhardness of short fiber-reinforced composites inside the root canal after different light curing methods—An in vitro study. J. Mech. Behav. Biomed. Mater. 2024, 150, 106324. [Google Scholar] [CrossRef]
- Bell-Rönnlöf, A.L.; Jaatinen, J.; Lassila, L.; Närhi, T.; Vallittu, P. Transmission of light through fiber-reinforced composite posts. Dent. Mater. J. 2019, 38, 928–933. [Google Scholar] [CrossRef] [PubMed]
- Cecchin, D.; Farina, A.P.; Guerreiro, C.A.; Carlini-Júnior, B. Fracture resistance of roots prosthetically restored with intra-radicular posts of different lengths. J. Oral Rehabil. 2010, 37, 116–122. [Google Scholar] [CrossRef]
- Hatta, M.; Shinya, A.; Vallittu, P.K.; Shinya, A.; Lassila, L.V. High volume individual fibre post versus low volume fibre post: The fracture load of the restored tooth. J. Dent. 2011, 39, 65–71. [Google Scholar] [CrossRef]
- Scotti, R.; Valandro, L.F.; Galhano, G.A.; Baldissara, P.; Bottino, M.A. Effect of post length on the fatigue resistance of bovine teeth restored with bonded fiber posts: A pilot study. Int. J. Prosthodont. 2006, 19, 504–506. [Google Scholar]
- Giovani, A.R.; Vansan, L.P.; de Sousa Neto, M.D.; Paulino, S.M. In vitro fracture resistance of glass-fiber and cast metal posts with different lengths. J. Prosthet. Dent. 2009, 101, 183–188. [Google Scholar] [CrossRef]
- Anusavice, K.J. Phillips’ Science of Dental Materials, 11th ed.; Elsevier: Amsterdam, The Netherlands, 2003; pp. 93–94. [Google Scholar]
- Schwindling, F.S.; Rues, S.; Schmitter, M. Fracture resistance of glazed, full-contour ZLS incisor crowns. J. Prosthodont. Res. 2017, 61, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Nawafleh, N.; Hatamleh, M.; Elshiyab, S.; Mack, F. Lithium Disilicate Restorations Fatigue Testing Parameters: A Systematic Review. J. Prosthodont. 2016, 25, 116–126. [Google Scholar] [CrossRef]
- Sakoguchi, K.; Minami, H.; Suzuki, S.; Tanaka, T. Evaluation of fracture resistance of indirect composite resin crowns by cyclic impact test: Influence of crown and abutment materials. Dent. Mater. J. 2013, 32, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Soares, C.J.; Pizi, E.C.; Fonseca, R.B.; Martins, L.R. Influence of root embedment material and periodontal ligament simulation on fracture resistance tests. Braz. Oral Res. 2005, 19, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Stappert, C.F.; Abe, P.; Kurths, V.; Gerds, T.; Strub, J.R. Masticatory fatigue, fracture resistance, and marginal discrepancy of ceramic partial crowns with and without coverage of compromised cusps. J. Adhes. Dent. 2008, 10, 41–48. [Google Scholar]
- Forster, A.; Braunitzer, G.; Tóth, M.; Szabó, B.P.; Fráter, M. In Vitro Fracture Resistance of Adhesively Restored Molar Teeth with Different MOD Cavity Dimensions. J. Prosthodont. 2019, 28, e325–e331. [Google Scholar] [CrossRef]
Brand (Code) | Manufacturer | Type | Composition |
---|---|---|---|
G-aenial Universal Injectable (PFC) | GC Corp, Tokyo, Japan | Conventional particulate composite | Dimethacrylate monomers, Barium glass, silica 69 wt% |
everX Flow (everX) | GC Corp, Tokyo, Japan | Flowable fiber-reinforced composite (bulk shade) | Bis-EMA, TEGDMA, UDMA, micrometer-scale glass fiber filler (100–300 µm & Ø 7 μm), Barium glass 70 wt%, 46 vol% |
Gradia Core (Gradia) | GC Corp, Tokyo, Japan | Dual-cured core build-up composite | Methacrylic acid ester: 20–30 wt%, fluoro-alumino-silicate glass: 70–75 wt%, silicon dioxide: 1–5 wt%. |
MI Core Fiber Post (MI) | GC Corp, Tokyo, Japan | Regular fiber post | UDMA, PMMA, glass fibers |
Snowpost (SN) | Abrasive Technology, OH, USA | Regular fiber post | zircon-rich glass fiber embedded in epoxy resin matrix |
Group (n = 10) | Post & Luting/Core Restoration | Restorative Approach |
---|---|---|
Gradia 4m No fiber post | Post (4 mm) and core build-up was accomplished using Gradia without any regular fiber post | A |
Gradia 4m MI post | Post (4 mm) and core build-up was accomplished using MI post & Gradia | B |
Gradia 8m MI post | Post (8 mm) and core build-up was accomplished using MI post & Gradia | B |
Gradia 4m SN post | Post (4 mm) and core build-up was accomplished using SN post & Gradia | B |
Gradia 8m SN post | Post (8 mm) and core build-up was accomplished using SN post & Gradia | B |
everX 4m No fiber post | Post (4 mm) and core build-up was accomplished using everX without any regular fiber post | C |
everX 4m MI post | Post (4 mm) and core build-up was accomplished using MI post & everX | D |
everX 8m MI post | Post (8 mm) and core build-up was accomplished using MI post & everX | D |
everX 4m SN post | Post (4 mm) and core build-up was accomplished using SN post & everX | D |
everX 8m SN post | Post (8 mm) and core build-up was accomplished using SN post & everX | D |
Only Tooth # (Irreparable) | Tooth and Restoration # (Irreparable) | Only Restoration # (Repairable) | |
---|---|---|---|
Gradia 4m No post | 4 | 4 | 2 |
Gradia 4m MI | 6 | 4 | 0 |
Gradia 8m MI | 3 | 5 | 2 |
Gradia 4m SN | 10 | 0 | 0 |
Gradia 8m SN | 7 | 3 | 0 |
everX 4m No post | 5 | 2 | 3 |
everX 4m MI | 10 | 0 | 0 |
everX 8m MI | 9 | 1 | 0 |
everX 4m SN | 7 | 1 | 2 |
everX 8m SN | 10 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uchikura, K.; Garoushi, S.; Nagata, K.; Vallittu, P.K.; Wakabayashi, N.; Lassila, L. Load-Bearing Capacity of Incisors Restored Using Fiber-Reinforced Composite Post-Core Systems. Dent. J. 2025, 13, 125. https://doi.org/10.3390/dj13030125
Uchikura K, Garoushi S, Nagata K, Vallittu PK, Wakabayashi N, Lassila L. Load-Bearing Capacity of Incisors Restored Using Fiber-Reinforced Composite Post-Core Systems. Dentistry Journal. 2025; 13(3):125. https://doi.org/10.3390/dj13030125
Chicago/Turabian StyleUchikura, Keiichiro, Sufyan Garoushi, Kohji Nagata, Pekka K. Vallittu, Noriyuki Wakabayashi, and Lippo Lassila. 2025. "Load-Bearing Capacity of Incisors Restored Using Fiber-Reinforced Composite Post-Core Systems" Dentistry Journal 13, no. 3: 125. https://doi.org/10.3390/dj13030125
APA StyleUchikura, K., Garoushi, S., Nagata, K., Vallittu, P. K., Wakabayashi, N., & Lassila, L. (2025). Load-Bearing Capacity of Incisors Restored Using Fiber-Reinforced Composite Post-Core Systems. Dentistry Journal, 13(3), 125. https://doi.org/10.3390/dj13030125