Effect of Nutritional Antioxidants on Periodontal Disease and Periodontal Therapy
Abstract
1. Introduction
2. Methodology
3. Vitamins
3.1. Vitamin A
3.2. Vitamin C
3.3. Vitamin E
4. Minerals
4.1. Copper
4.2. Zinc
4.3. Selenium
5. Concluding Remarks and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Abbreviations
| PD | Periodontal disease |
| PT | Periodontal treatment |
| PPD | Probing pocket depth |
| CAL | Clinical attachment loss |
| PI | Periodontal index |
| CPI | Community Periodontal Index |
| CPITN | Community Periodontal Index of Treatment Needs |
| PISA | Periodontal inflamed surface area |
| FFQ | Food frequency questionnaire |
| AscH2 | Ascorbic acid |
| AscH | Ascorbate monoanion |
| RCT | Randomized clinical trial |
| TPD | Total periodontitis |
| ROS | Reactive oxygen species |
| MDA | Malondialdehyde |
| NO | Nitric oxide |
| 8-OH-dG | 8-hydroxy-deoxyguanosine |
| DHA | Dehydroascorbic acid |
| OR | Odds ratio |
| CI | Confidence Interval |
| aT | a-tocopherol |
| GWAS | Genome-wide association study |
| Cu | Copper |
| Mn | Manganese |
| Zn | Zinc |
| TC | Total cholesterol |
| h | hours |
| HGFs | human gingival fibroblasts |
| SRP | scaling and root planing |
| Se | Selenium |
| GPx | Glutathione peroxidase |
| TrxR | Thioredoxin reductase |
| IDD | Iodothyronine deiodinases |
| Trx | Thioredoxin |
| MR | Mendelian Randomization |
| BMI | Body Mass Index |
| IVW | Inverse Variance Weighted |
References
- Papapanou, P.N.; Sanz, M.; Buduneli, N.; Dietrich, T.; Feres, M.; Fine, D.H.; Flemmig, T.F.; Garcia, R.; Giannobile, W.V.; Graziani, F.; et al. Periodontitis: Consensus report of workgroup 2 of the 2017 World workshop on the classification of Periodontal and Peri-implant diseases and conditions. J. Periodontol. 2018, 89 (Suppl. 1), s173–s182. [Google Scholar] [CrossRef]
- Callaway, D.A.; Jiang, J.X. Reactive Oxygen Species and Oxidative Stress in Osteoclastogenesis, Skeletal Aging and Bone Diseases. J. Bone Min. Metab. 2015, 33, 359–370. [Google Scholar] [CrossRef]
- Dominiak, M.; Niemczyk, W.; Pitułaj, A.; Świenc, W.; Matys, J. Fatty Degenerative Osteonecrosis of the Jaw: Bridging Molecular Insights and Clinical Practice-A Scoping Review. Int. J. Mol. Sci. 2025, 26, 1853. [Google Scholar] [CrossRef]
- Toczewska, J.; Konopka, T.; Zalewska, A.; Maciejczyk, M. Nitrosative stress biomarkers in the non-stimulated and stimulated saliva, as well as gingival crevicular fluid of patients with periodontitis: Review and clinical study. Antioxidants 2020, 9, 259. [Google Scholar] [CrossRef]
- Mohideen, K.; Chandrasekaran, K.; Veeraraghavan, H.; Faizee, S.H.; Dhungel, S.; Ghosh, S. Meta-analysis of assessment of total oxidative stress and total antioxidant capacity in patients with periodontitis. Dis. Markers 2023, 2023, 9949047. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Cai, W.; Zhao, S.; Shi, L.; Chen, Y.; Li, X.; Sun, X.; Mao, Y.; He, B.; Hou, Y.; et al. Oxidative stress-related biomarkers in saliva and gingival crevicular fluid associated with chronic periodontitis: A systematic review and meta-analysis. J. Clin. Periodontol. 2019, 46, 608–622. [Google Scholar] [CrossRef]
- Sczepanik, F.S.C.; Grossi, M.L.; Casati, M.; Goldberg, M.; Glogauer, M.; Fine, N.; Tenenbaum, H.C. Periodontitis is an inflammatory disease of oxidative stress: We should treat it that way. Periodontol 2020, 84, 45–68. [Google Scholar] [CrossRef]
- Van der Velden, U.; Kuzmanova, D.; Chapple, I.L. Micronutritional approaches to periodontal therapy. J. Clin. Periodontol. 2011, 38 (Suppl. 11), 142–158. [Google Scholar] [CrossRef]
- Salehi, B.; Martorell, M.; Arbiser, J.L.; Sureda, A.; Martins, N.; Maurya, P.K.; Sharifi-Rad, M.; Kumar, P.; Sharifi-Rad, J. Antioxidants: Positive or Negative Actors? Biomolecules 2018, 8, 124. [Google Scholar] [CrossRef]
- Kiani, A.K.; Medori, M.C.; Bonetti, G.; Aquilanti, B.; Velluti, V.; Matera, G.; Iaconelli, A.; Stuppia, L.; Connelly, S.T.; Herbst, K.L.; et al. Modern vision of the Mediterranean diet. J. Prev. Med. Hyg. 2022, 63 (2 Suppl. 3), E36–E43. [Google Scholar]
- EFSA. Available online: https://multimedia.efsa.europa.eu/drvs/index.htm (accessed on 30 August 2025).
- Wolf, G. The discovery of the visual function of vitamin A. J. Nutr. 2001, 131, 1647–1650. [Google Scholar] [CrossRef]
- Palace, V.P.; Khaper, N.; Qin, Q.; Singal, P.K. Antioxidant potentials of vitamin A and carotenoids and their relevance to heart disease. Free Radic. Biol. Med. 1999, 2, 746–761. [Google Scholar] [CrossRef]
- Blaner, W.S. Vitamin A. In Present Knowledge in Nutrition, 11th ed.; Marriott, B.P., Birt, D.F., Stallings, V.A., Yates, A.A., Eds.; Academic Press: London, UK, 2020; pp. 73–92. [Google Scholar]
- Wu, L.; Guo, X.; Wang, W.; Medeiros, D.M.; Clarke, S.L.; Lucas, E.A.; Smith, B.J.; Lin, D. Molecular aspects of β, β-carotene-9’, 10’-oxygenase 2 in carotenoid metabolism and diseases. Exp. Biol. Med. 2016, 241, 1879–1887. [Google Scholar] [CrossRef]
- Russell, A.L. International nutrition surveys: A summary of preliminary dental findings. J. Dent. Res. 1963, 42 Pt 2, 233–244. [Google Scholar] [CrossRef] [PubMed]
- Waerhaug, J. Prevalence of periodontal disease in Ceylon. Association with age, sex, oral hygiene, socio-economic factors, vitamin deficiencies, malnutrition, betel and tobacco consumption and ethnic group. Final report. Acta Odontol. Scand. 1967, 25, 205–231. [Google Scholar] [CrossRef] [PubMed]
- Park, J.A.; Lee, J.H.; Lee, H.-J.; Jin, B.H.; Bae, K.H. Association of some vitamins and minerals with periodontitis in a nationally representative sample of Korean young adults. Biol. Trace Elem. Res. 2017, 178, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Hosoda, A.; Komagamine, Y.; Kanazawa, M.; Hama, Y.; Kojo, A.; Minakuchi, S. The association between dietary habits and periodontal disease in young adult women. J. Nutr. Sci. Vitaminol. 2021, 67, 48–56. [Google Scholar] [CrossRef]
- Luo, P.P.; Xu, H.S.; Chen, Y.W.; Wu, S.P. Periodontal disease severity is associated with micronutrient intake. Aust. Dent. J. 2018, 63, 193–201. [Google Scholar] [CrossRef]
- Li, W.; Shang, Q.; Yang, D.; Peng, J.; Zhao, H.; Xu, H.; Chen, Q. Abnormal micronutrient intake is associated with the risk of periodontitis: A dose-response association study based on NHANES 2009–2014. Nutrients 2022, 14, 2466. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, J.; Cao, R. Association between retinol intake and periodontal health in US adults. BMC Oral Health 2023, 23, 61. [Google Scholar] [CrossRef]
- Liang, F.; Lu, Μ.; Zhou, Y. Associations between single and multiple dietary vitamins and the risk of periodontitis: Results from NHANES 2009–2014. Front. Nutr. 2024, 11, 1347712. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhao, R.; Zhang, Y. Association between adjustable dietary factors and periodontitis: NHANES 2009–2014 and Mendelian randomization. J. Transl. Med. 2025, 23, 353. [Google Scholar] [CrossRef]
- Chapple, I.L.C.; Milward, M.R.; Dietrich, T. The prevalence of inflammatory periodontitis is negatively associated with serum antioxidant concentrations. J. Nutr. 2007, 137, 657–664. [Google Scholar] [CrossRef]
- Linden, G.J.; McClean, K.M.; Woodside, J.V.; Patterson, C.C.; Evans, A.; Young, I.S.; Kee, F. Antioxidants and periodontitis in 60–70-year-old men. J. Clin. Periodontol. 2009, 36, 843–849. [Google Scholar] [CrossRef]
- Freeland, J.H.; Cousins, R.J.; Schwartz, R. Relationship of mineral status and intake to periodontal disease. Am. J. Clin. Nutr. 1976, 29, 745–749. [Google Scholar] [CrossRef]
- Shamah-Levy, T.; Rodríguez-Ramírez, S.; Gaona-Pineda, E.B.; Cuevas-Nasu, L.; Carriquiry, A.L.; Rivera, J.A. Three 24-hour recalls in comparison with one improve the estimates of energy and nutrient intakes in an urban Mexican population. J. Nutr. 2016, 146, 1043–1050. [Google Scholar] [CrossRef]
- Watson, S.; Woodside, J.V.; Winning, L.; Wright, D.M.; Srinivasan, M.; McKenna, G. Associations between self-reported periodontal disease and nutrient intakes and nutrient-based patterns in the UK Biobank. J. Clin. Periodontol. 2022, 49, 428–438. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wang, G.; Zhang, Y. Association between carotenoid intake and periodontitis in diabetic patients. J. Nutr. Sci. 2024, 28, e11. [Google Scholar] [CrossRef]
- Mi, N.; Zhang, M.; Ying, Z.; Lin, X.; Jin, Y. Vitamin intake and periodontal disease: A meta-analysis of observational studies. BMC Oral Health 2024, 24, 117. [Google Scholar] [CrossRef]
- Luca, M.M.; Buzatu, R.; Bumbu, B.A. Evaluating the protective role of vitamin A supplementation in periodontal health: A comprehensive systematic review and meta-Analysis. J. Clin. Med. 2024, 13, 4775. [Google Scholar] [CrossRef]
- Gao, Y.; Huang, D.; Liu, Y.; Qiu, Y.; Lu, S. Diet-derived circulating antioxidants, periodontitis and dental caries: A Mendelian randomization study. J. Periodontal. Res. 2024, 59, 951–958. [Google Scholar] [CrossRef]
- Dodington, D.W.; Fritz, P.C.; Sullivan, P.J.; Ward, W.E. Higher intakes of fruits and vegetables, β-carotene, vitamin C, α-tocopherol, EPA, and DHA are positively associated with periodontal healing after nonsurgical periodontal therapy in nonsmokers but not in smokers. J. Nutr. 2015, 145, 2512–2519. [Google Scholar] [CrossRef]
- Stryker, W.S.; Kaplan, L.A.; Stein, E.A.; Stampfer, M.J.; Sober, A.; Willett, W.C. The relation of diet, cigarette smoking, and alcohol consumption to plasma beta-carotene and alpha-tocopherol levels. Am. J. Epidemiol. 1988, 127, 283–296. [Google Scholar] [CrossRef]
- Patel, S.; Vajdy, M. Induction of cellular and molecular immunomodulatory pathways by vitamin A and flavonoids. Expert. Opin. Biol. Ther. 2015, 15, 1411–1428. [Google Scholar] [CrossRef]
- McCullough, F.S.; Northrop-Clewes, C.A.; Thurnham, D.I. The effect of vitamin A on epithelial integrity. Proc. Nutr. Soc. 1999, 58, 289–293. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Z.; Huang, S.; Tang, Q.; Zhang, D.; Huang, L. Vitamin A family suppresses periodontitis by restoring mitochondrial metabolic reprogramming in macrophages through JAK-STAT pathway. Front. Genet. 2015, 16, 1505933. [Google Scholar] [CrossRef] [PubMed]
- Puistola, U.; Turpeenniemi-Hujanen, T.M.; Myllylä, R.; Kivirikko, K.I. Studies on the lysyl hydroxylase reaction. I. Initial velocity kinetics and related aspects. Biochim. Biophys. Acta. 1980, 611, 40–50. [Google Scholar] [CrossRef]
- Nishikimi, M.; Fukuyama, R.; Minoshima, S.; Shimizu, N.; Yagi, K. Cloning and chromosomal mapping of the human nonfunctional gene for L-gulono-gamma-lactone oxidase, the enzyme for L-ascorbic acid biosynthesis missing in man. J. Biol. Chem. 1994, 269, 13685–13688. [Google Scholar] [CrossRef]
- Vera, J.C.; Rivas, C.I.; Velasquez, F.V.; Zhang, R.H.; Concha, I.I.; Golde, D.W. Resolution of the facilitated transport of dehydroascorbic acid from its intracellular accumulation as ascorbic acid. J. Biol. Chem. 1995, 270, 23706–23712. [Google Scholar] [CrossRef]
- Du, J.; Cullen, J.J.; Buettner, G.R. Ascorbic acid: Chemistry, biology and the treatment of cancer. Biochim. Biophys. Acta 2012, 1826, 443–457. [Google Scholar] [CrossRef] [PubMed]
- Jacob, R.A.; Omaye, S.T.; Skala, J.H.; Leggott, P.J.; Rothman, D.L.; Murray, P.A. Experimental vitamin C depletion and supplementation in young men. Nutrient interactions and dental health effects. Ann. N. Y. Acad. Sci. 1987, 498, 333–346. [Google Scholar] [CrossRef] [PubMed]
- Leggott, P.J.; Robertson, P.B.; Rothman, D.L.; Murray, P.A.; Jacob, R.A. The effect of controlled ascorbic acid depletion and supplementation on periodontal health. J. Periodontol. 1986, 57, 480–485. [Google Scholar] [CrossRef]
- Leggott, P.J.; Robertson, P.B.; Jacob, R.A.; Zambon, J.J.; Walsh, M.; Armitage, G.C. Effects of ascorbic acid depletion and supplementation on periodontal health and subgingival microflora in humans. J. Dent. Res. 1991, 70, 1531–1536. [Google Scholar] [CrossRef]
- Melnick, S.L.; Alvarez, J.O.; Navia, J.M.; Cogen, R.B.; Roseman, J.M. A case-control study of plasma ascorbate and acute necrotizing ulcerative gingivitis. J. Dent. Res. 1988, 67, 855–860. [Google Scholar] [CrossRef]
- Blignaut, J.B.; Grobler, S.R. High fruit consumption and the periodontal status of farm workers. Clin. Prev. Dent. 1992, 14, 25–28. [Google Scholar]
- Dhingra, K.; Vandana, K.L. Indices for measuring periodontitis: A literature review. Int. Dent. J. 2011, 61, 76–84. [Google Scholar] [CrossRef]
- Lee, J.H.; Shin, M.S.; Kim, E.J.; Ahn, Y.B.; Kim, H.D. The association of dietary vitamin C intake with periodontitis among Korean adults: Results from KNHANES IV. PLoS ONE 2017, 12, e0177074. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.I.; Burt, B.A.; Eklund, S.A. Relation between ascorbic acid intake and periodontal disease in the United States. J. Am. Dent. Assoc. 1983, 107, 927–931. [Google Scholar] [CrossRef]
- Nishida, M.; Grossi, S.G.; Dunford, R.G.; Ho, A.W.; Trevisan, M.; Genco, R.J. Dietary vitamin C and the risk for periodontal disease. J. Periodontol. 2000, 71, 1215–1223. [Google Scholar] [CrossRef]
- Panjamurthy, K.; Manoharan, S.; Ramachandran, C.R. Lipid peroxidation and antioxidant status in patients with periodontitis. Cell. Mol. Biol. Lett. 2005, 10, 255–264. [Google Scholar] [PubMed]
- Kuzmanova, D.; Jansen, I.D.; Schoenmaker, T.; Nazmi, K.; Teeuw, W.J.; Bizzarro, S.; Loos, B.G.; van der Velden, U. Vitamin C in plasma and leukocytes in relation to periodontitis. J. Clin. Periodontol. 2012, 39, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Amarasena, N.; Ogawa, H.; Yoshihara, A.; Hanada, N.; Miyazaki, H. Serum vitamin C-periodontal relationship in community-dwelling elderly Japanese. J. Clin. Periodontol. 2005, 32, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Amaliya, A.; Timmerman, M.F.; Abbas, F.; Loos, B.G.; Van der Weijden, G.A.; Van Winkelhoff, A.J.; Winkel, E.G.; Van der Velden, U. Java project on periodontal diseases: The relationship between vitamin C and the severity of periodontitis. J. Clin. Periodontol. 2007, 34, 299–304. [Google Scholar] [CrossRef]
- Iwasaki, M.; Moynihan, P.; Manz, M.C.; Taylor, G.W.; Yoshihara, A.; Muramatsu, K.; Watanabe, R.; Miyazaki, H. Dietary antioxidants and periodontal disease in community-based older Japanese: A 2-year follow-up study. Public Health Nutr. 2013, 16, 330–338. [Google Scholar] [CrossRef]
- Iwasaki, M.; Manz, M.C.; Taylor, G.W.; Yoshihara, A.; Miyazaki, H. Relations of serum ascorbic acid and α-tocopherol to periodontal disease. J. Dent. Res. 2012, 91, 167–172. [Google Scholar] [CrossRef]
- Väänänen, M.K.; Markkanen, H.A.; Tuovinen, V.J.; Kullaa, A.M.; Karinpää, A.M.; Kumpusalo, E.A. Periodontal health related to plasma ascorbic acid. Proc. Finn. Dent. Soc. 1993, 89, 51–59. [Google Scholar]
- Staudte, H.; Sigusch, B.W.; Glockmann, E. Grapefruit consumption improves vitamin C status in periodontitis patients. Br. Dent. J. 2005, 199, 213–207; discussion 210. [Google Scholar] [CrossRef]
- Gokhale, N.H.; Acharya, A.B.; Patil, V.S.; Trivedi, D.J.; Thakur, S.L. A short-term evaluation of the relationship between plasma ascorbic acid levels and periodontal disease in systemically healthy and type 2 diabetes mellitus subjects. J. Diet. Suppl. 2013, 10, 93–104. [Google Scholar] [CrossRef]
- Abou Sulaiman, E.A.; Rana, M.H.; Shehadeh, R.M.H. Assessment of total antioxidant capacity and the use of vitamin C in the treatment of non-smokers with chronic periodontitis. J. Periodontol. 2010, 81, 1547–1554. [Google Scholar] [CrossRef]
- Woolfe, S.N.; Kenney, E.B.; Hume, W.R.; Carranza, F.A., Jr. Relationship of ascorbic acid levels of blood and gingival tissue with response to periodontal therapy. J. Clin. Periodontol. 1984, 11, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Vogel, R.I.; Lamster, I.B.; Wechsler, S.A.; Macedo, B.; Hartley, L.J.; Macedo, J.A. The effects of megadoses of ascorbic acid on PMN chemotaxis and experimental gingivitis. J. Periodontol. 1986, 57, 472–479. [Google Scholar] [CrossRef]
- Schectman, G.; Byrd, J.C.; Hoffmann, R. Ascorbic acid requirements for smokers: Analysis of a population survey. Am. J. Clin. Nutr. 1991, 53, 1466–1470. [Google Scholar] [CrossRef]
- Aziz, A.S.; Kalekar, M.G.; Suryakar, A.N.; Benjamin, T.; Prakashan, M.J.; Ahmed, B.M.; Sayyad, M. Assessment of some biochemical oxidative stress markers in male smokers with chronic periodontitis. J. Clin. Biochem. 2013, 28, 374–380. [Google Scholar] [CrossRef]
- Pussinen, P.J.; Laatikainen, T.; Alfthan, G.; Asikainen, S.; Jousilahti, P. Periodontitis is associated with a low concentration of vitamin C in plasma. Clin. Diagn. Lab. Immunol. 2003, 10, 897–902. [Google Scholar] [CrossRef]
- Staudte, H.; Güntsch, A.; Völpel, A.; Sigusch, B.W. Vitamin C attenuates the cytotoxic effects of Porphyromonas gingivalis on human gingival fibroblasts. Arch. Oral. Biol. 2010, 55, 40–45. [Google Scholar] [CrossRef] [PubMed]
- de Jong, T.M.H.; Jochens, A.; Jockel-Schneider, Y.; Harks, I.; Dommisch, H.; Graetz, C.; Flachsbart, F.; Staufenbiel, I.; Eberhard, J.; Folwaczny, M.; et al. SLC23A1 polymorphism rs6596473 in the vitamin C transporter SVCT1 is associated with aggressive periodontitis. J. Clin. Periodontol. 2014, 41, 531–540. [Google Scholar] [CrossRef]
- Stratakis, C.A.; Taymans, S.E.; Daruwala, R.; Song, J.; Levine, M. Mapping of the human genes (SLC23A2 and SLC23A1) coding for vitamin C transporters 1 and 2 (SVCT1 and SVCT2) to 5q23 and 20p12, respectively. J. Med. Genet. 2000, 37, E20. [Google Scholar] [CrossRef]
- Kunsongkeit, P.; Okuma, N.; Rassameemasmaung, S.; Chaivanit, P. Effect of vitamin C as an adjunct in nonsurgical periodontal therapy in uncontrolled type 2 diabetes mellitus patients. Eur. J. Dent. 2019, 13, 444–449. [Google Scholar] [CrossRef]
- Som, S.; Basu, S.; Mukherjee, D.; Choudhury, P.R.; Mukherjee, S.; Chatterjee, S.N.; Chatterjee, I.B. Ascorbic acid metabolism in diabetes mellitus. Metabolism 1981, 30, 572–577. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Christen, S.; Shigenaga, M.K.; Ames, B.N. gamma-tocopherol, the major form of vitamin E in the US diet, deserves more attention. Am. J. Clin. Nutr. 2001, 74, 714–722. [Google Scholar] [CrossRef] [PubMed]
- Miyazawa, T.; Burdeos, G.C.; Itaya, M.; Nakagawa, K.; Miyazawa, T. Vitamin E: Regulatory redox interactions. IUBMB Life 2019, 71, 430–441. [Google Scholar] [CrossRef]
- Burdeos, G.C.; Nakagawa, K.; Kimura, F.; Miyazawa, T. Tocotrienol attenuates triglyceride accumulation in HepG2 cells and F344 rats. Lipids 2012, 47, 471–481. [Google Scholar] [CrossRef]
- Waniek, S.; Di Giuseppe, R.; Plachta-Danielzik, S.; Ratjen, I.; Jacobs, G.; Koch, M.; Borggrefe, J.; Both, M.; Müller, H.-P.; Kassubek, J.; et al. Association of vitamin E levels with metabolic syndrome, and MRI-derived body fat volumes and liver fat content. Nutrients 2017, 9, 1143. [Google Scholar] [CrossRef]
- Wong, W.Y.; Ward, L.C.; Fong, C.W.; Yap, W.N.; Brown, L. Anti-inflammatory gamma- and delta-tocotrienols improve cardiovascular, liver and metabolic function in diet-induced obese rats. Eur. J. Nutr. 2017, 56, 133–150. [Google Scholar] [CrossRef]
- Brigelius-Flohé, R.; Traber, M.G. Vitamin E: Function and metabolism. FASEB J. 1999, 13, 115–155. [Google Scholar] [CrossRef]
- Jiang, Q. Natural forms of vitamin E: Metabolism, antioxidant and antiinflammatory activities and t role in disease prevention and therapy. Free Radic. Biol. Med. 2014, 72, 76–90. [Google Scholar] [CrossRef] [PubMed]
- Traber, M.G.; Stevens, J.F. Vitamins C and E: Beneficial effects from a mechanistic perspective. Free Radic. Biol. Med. 2011, 51, 1000–1013. [Google Scholar] [CrossRef]
- Institute of Medicine (US). Panel on Dietary Antioxidants and Related Compounds. In Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academies Press: Washington, DC, USA, 2000. [Google Scholar]
- Slade, E.W., Jr.; Bartuska, D.; Rose, L.F.; Cohen, D.W. Vitamin E and periodontal disease. J. Periodontol. 1976, 47, 352–354. [Google Scholar] [CrossRef] [PubMed]
- Zong, G.; Scott, A.E.; Griffiths, H.R.; Zock, P.L.; Dietrich, T.; Newson, R.S. Serum α-tocopherol has a nonlinear inverse association with periodontitis among US adults. J. Nutr. 2015, 145, 893–899. [Google Scholar] [CrossRef] [PubMed]
- Bumbu, B.A.; Luca, M.M.; Buzatu, R. Impact of Tocopherol Supplementation on Clinical Parameters of Periodontal Disease: A Systematic Review and Meta-Analysis. J. Pers. Med. 2024, 14, 1039. [Google Scholar] [CrossRef]
- Singh, N.; Chander Narula, S.; Kumar Sharma, R.; Tewari, S.; Kumar Sehgal, P. Vitamin E supplementation, superoxide dismutase status, and outcome of scaling and root planing in patients with chronic periodontitis: A randomized clinical trial. J. Periodontol. 2014, 85, 242–249. [Google Scholar] [CrossRef]
- Behfarnia, P.; Dadmehr, M.; Hosseini, S.N.; Mirghaderi, S.A. The effect of vitamin E supplementation on treatment of chronic periodontitis. Dent. Res. J. 2021, 18, 62. [Google Scholar] [CrossRef]
- Wolonciej, M.; Milewska, E.; Jakimiec, W.R. Trace elements as an activator of antioxidant enzymes. Postep. Hig. Med. Dosw. 2016, 70, 1483–1498. [Google Scholar] [CrossRef]
- Bonham, M.; O’Connor, J.M.; Hannigan, B.M.; Strain, J.J. The immune system as a physiological indicator of marginal copper status? Br. J. Nutr. 2002, 87, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Uriu-Adams, J.Y.; Keen, C.L. Copper, oxidative stress, and human health. Mol. Aspects Med. 2005, 26, 268–298. [Google Scholar] [CrossRef] [PubMed]
- Gubler, C.J.; Lahey, M.E.; Cartwright, G.E.; Wintrobe, M.M. Studies on copper metabolism. X. Factors influencing the plasma copper level of the albino rat. Am. J. Physiol. 1952, 171, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Hamasaki, T.; Kitamura, M.; Kawashita, Y.; Ando, Y.; Saito, T. Periodontal disease and percentage of calories from fat using national data. J. Periodontal Res. 2017, 52, 114–121. [Google Scholar] [CrossRef]
- Yu, Z.; Yang, Y.; Yu, Z.; Yan, Z.; Gao, R. Causal relationship between 14 micronutrients and chronic periodontitis: A Mendelian randomization study. Aust. Dent. J. 2025. ahead of print. [Google Scholar] [CrossRef]
- Sundaram, G.; Ramakrishnan, T.; Parthasarathy, H.; Moses, J.; Lalitha, T. Evaluation of micronutrient (zinc, magnesium, and copper) levels in serum and glycemic status after nonsurgical periodontal therapy in type 2 diabetic patients with chronic periodontitis. Contemp. Clin. Dent. 2017, 8, 26–32. [Google Scholar] [CrossRef]
- Haas, K.L.; Franz, K.J. Application of metal coordination chemistry to explore and manipulate cell biology. Chem. Rev. 2009, 109, 4921–4960. [Google Scholar] [CrossRef]
- Lee, S.R. Critical Role of Zinc as Either an Antioxidant or a Prooxidant in Cellular Systems. Oxid. Med. Cell. Longev. 2018, 2018, 9156285. [Google Scholar] [CrossRef]
- Mocchegiani, E.; Costarelli, L.; Giacconi, R.; Piacenza, F.; Basso, A.; Malavolta, M. Zinc, metallothioneins and immunosenescence: Effect of zinc supply as nutrigenomic approach. Biogerontology 2011, 12, 455–465. [Google Scholar] [CrossRef] [PubMed]
- Aziz, J.; Rahman, M.T.; Vaithilingam, R.D. Dysregulation of metallothionein and zinc aggravates periodontal diseases. J. Trace Elem. Med. Biol. 2021, 66, 126754. [Google Scholar] [CrossRef]
- Frithiof, L.; Lavstedt, S.; Eklund, G.; Söderberg, U.; Skårberg, K.O. The relationship between marginal bone loss and serum zinc levels. Acta Medica Scand. 1980, 207, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Sari, A.; Doğan, S.; Nibali, L. Association between systemic zinc and oxidative stress levels and periodontal inflamed surface area. Turk. J. Med. Sci. 2024, 54, 915–923. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.; Pan, Z.; Hong, S.; Cao, G.; Feng, B. Association of dietary zinc consumption with periodontitis in diabetes mellitus patients: A cross-sectional study of national health and nutrition examination surveys database (2009–2014). J. Dent. Sci. 2024, 19, 952–960. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Yao, S.; Shan, F.; Zhou, Y. Serum zinc and periodontitis in non-diabetic smoking and non-smoking adults: NHANES 2011–2014. Oral Dis. 2024, 30, 2592–2598. [Google Scholar] [CrossRef]
- Gröber, U. Micro-Nutrients: Metabolic Tuning-Prevention-Therapy; MedPharm Scientific Publishers: Stuttgart, Germany, 2009. [Google Scholar]
- Dommisch, H.; Kuzmanova, D.; Jönsson, D.; Grant, M.; Chapple, I. Effect of micronutrient malnutrition on periodontal disease and periodontal therapy. Periodontology 2000 2018, 78, 129–153. [Google Scholar] [CrossRef]
- Tapiero, H.; Townsend, D.M.; Tew, K.D. The antioxidant role of selenium and seleno-compounds. Biomed. Pharm. 2003, 57, 134–144. [Google Scholar] [CrossRef]
- Detopoulou, P.; Letsiou, S.; Nomikos, T.; Karagiannis, A.; Pergantis, S.A.; Pitsavos, C.; Panagiotakos, D.B.; Antonopoulou, S. Selenium, selenoproteins and 10-year cardiovascular risk: Results from the ATTICA study. Curr. Vasc. Pharmacol. 2023, 21, 346–355. [Google Scholar] [CrossRef]
- Letsiou, S.; Damigou, E.; Nomikos, T.; Pergantis, S.A.; Pitsavos, C.; Panagiotakos, D.; Antonopoulou, S. Deciphering the associations of selenium distribution in serum GPx-3 and selenoprotein P with cardiovascular risk factors in a healthy population with moderate levels of selenium: The ATTICA study. J. Trace Elem. Med. Biol. 2024, 86, 127509. [Google Scholar] [CrossRef]
- Kryukov, G.V.; Castellano, S.; Novoselov, S.V.; Lobanov, A.V.; Zehtab, O.; Guigó, R.; Gladyshev, V.N. Characterization of mammalian selenoproteomes. Science 2003, 300, 1439–1443. [Google Scholar] [CrossRef]
- Birringer, M.; Pilawa, S.; Flohe, L. Trends in selenium biochemistry. Nat. Prod. Rep. 2002, 19, 693–718. [Google Scholar] [CrossRef] [PubMed]
- Klotz, L.O.; Kroncke, K.D.; Buchczyk, D.P.; Sies, H. Role of copper, zinc, selenium, tellurium in the cellular defense against oxidative and nitrosative stress. J. Nutr. 2003, 133, 1448S–1451S. [Google Scholar] [CrossRef]
- Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals, antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006, 160, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Arner, E.S.; Holmgren, A. Physiological functions of thioredoxin and thioredoxin reductase. Eur. J. Biochem. 2000, 267, 6102–6109. [Google Scholar] [CrossRef]
- Das, K.C.; Das, C.K. Thioredoxin, a singlet oxygen quencher and hydroxyl radical scavenger: Redox independent functions. Biochem. Biophys. Res. Commun. 2000, 277, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Tinggi, U.; Reilly, C.; Patterson, C.M. Determination of selenium in foodstuffs using spectrofluorometry and hydride generation atomic absorption spectrometry. J. Food Comp. Anal. 1992, 5, 269–280. [Google Scholar] [CrossRef]
- Tinggi, U. Determination of selenium in meat products by hydride generation atomic absorption spectrophotometry. J. AOAC Int. 1999, 82, 364–367. [Google Scholar] [CrossRef]
- Huang, H.; Yao, J.; Yang, N.; Yang, L.; Tao, L.; Yu, J.; Gao, Y.; Liu, Z. Association between levels of blood trace minerals and periodontitis among United States adults. Front. Nutr. 2022, 9, 999836. [Google Scholar] [CrossRef]
- Thomas, B.; Ramesh, A.; Suresh, S.; Prasad, B.R. A comparative evaluation of antioxidant enzymes and selenium in the serum of periodontitis patients with diabetes mellitus type 2. Contemp. Clin. Dent. 2013, 4, 176–180. [Google Scholar] [CrossRef] [PubMed]
- Letsiou, S.; Nomikos, T.; Panagiotakos, D.B.; Pergantis, S.A.; Fragopoulou, E.; Pitsavos, C.; Stefanadis, C.; Antonopoulou, S. Gender-specific distribution of selenium to serum selenoproteins: Associations with total selenium levels, age, smoking, body mass index, and physical activity. Biofactors 2014, 40, 524–535. [Google Scholar] [CrossRef] [PubMed]
- Mohideen, K.; Krithika, C.; Jeyanthikumari, T.; Vani, N.V.; Dhungel, S.; Ghosh, S. The assessment of glutathione, glutathione peroxidase, glutathione reductase, and oxidized glutathione in patients with periodontitis—A systematic review and meta-analysis. Clin. Exp. Dent. Res. 2024, 10, e907. [Google Scholar] [CrossRef] [PubMed]
| VITAMIN/MINERAL | GENDER | AI | AR | PRI | UL |
|---|---|---|---|---|---|
| Vitamin A | Males | NA | 570 μg RE/day | 750 μg RE/day | 3000 μg RE/day |
| Females | NA | 490 μg RE/day | 650 μg RE/day | 3000 μg RE/day | |
| Vitamin C | Males | NA | 90 mg/day | 110 mg/day | ND |
| Females | NA | 80 mg/day | 95 mg/day | ND | |
| Vitamin E | Males | 13 mg/day | NA | NA | 300 mg/day |
| Females | 11 mg/day | NA | NA | 300 mg/day | |
| Copper | Males | 1.3 mg/day | NA | NA | 5 mg/day |
| Females | 1.3 mg/day | NA | NA | 5 mg/day | |
| Zinc (LPI 300 mg/day) | Males | NA | 6.2 mg/day | 7.5 mg/day | 25 mg/day |
| Females | NA | 6.2 mg/day | 7.5 mg/day | 25 mg/day | |
| Zinc (LPI 600 mg/day) | Males | NA | 7.6 mg/day | 9.3 mg/day | 25 mg/day |
| Females | NA | 7.6 mg/day | 9.3 mg/day | 25 mg/day | |
| Zinc (LPI 900 mg/day) | Males | NA | 8.9 mg/day | 11 mg/day | 25 mg/day |
| Females | NA | 8.9 mg/day | 11 mg/day | 25 mg/day | |
| Zinc (LPI 1200 mg/day) | Males | NA | 10.2 mg/day | 12.7 mg/day | 25 mg/day |
| Females | NA | 10.2 mg/day | 12.7 mg/day | 25 mg/day | |
| Selenium | Males | 70 μg/day | NA | NA | 255 μg/day |
| Females | 70 μg/day | NA | NA | 255 μg/day |
| Study | Study Design | Participants | Periodontal Disease Assessment | Vitamin A Assessment | Outcomes |
|---|---|---|---|---|---|
| Park et al., 2017 [18] | Cross-sectional | 2049 young adults aged 19–39 years (279 periodontitis patients) Country: Korea | CPI greater than or equal to 3 [at least one site had a PPD of >3.5 mm (code > 5.5 mm)] | One 24 h recall | <median vs. >median OR: 1.55 (95% CI: 0.99–2.43) in females |
| Hosoda et al., 2021 [19] | Cross-sectional | 120 Japanese female college students (49 periodontitis patients) Country: Japan | CPI, code 0–4 Periodontitis: CPI code 3–4 No periodontal disease: CPI code 0–2 | Self-administered FFQs | Lower intake of beta-carotene in periodontitis patients compared to heathy participants (1515 ± 855 μg/1000 Kcal vs. 2068 ± 1041 μg/1000 Kcal, p < 0.05). Multivariate logistic regression analysis: no significant association between vitamin A intake and periodontal disease |
| Luo et al., 2018 [20] | Cross-sectional | NHANES (2011–2014) 6415 participants No periodontitis: 3465 Moderate disease: 2274 Severe disease: 676 Country: USA | At least two Interproximal sites with PPD ≥ 5 mm not occurring on the same tooth, or at least two interproximal sites that are not on the same tooth and that have CAL ≥4 mm | 24 h recall | ≤61 vs. ≥786 μg RAE/day OR: 1.78 (95% CI: 1.53–2.39) |
| Li et al., 2022 [21] | Cross-sectional | NHANES (2009–2014) 6415 participants No periodontitis: 4965 Moderate/severe periodontitis: 3994 Country: USA | ≥2 Interproximal sites with CAL ≥4 mm; ≥2 Interproximal sites with PPD ≥5 mm | 24 h recall | Sufficient Intake (Males: 900 μg RAE/day, Females: 700 μg RAE/day) vs. Insufficient intake OR: 0.83 (95% CI: 0.69–1.00) The sufficient intake of vitamin A, being able to reduce the risk of periodontitis, was 527 μg RAE/day |
| Zhou et al., 2023 [22] | Cross-sectional | NHANES (2009–2014) 9081 participants No periodontitis: 5701 Moderate/severe periodontitis: 3380 Country: USA | Moderate periodontitis: ≥2 interproximal sites with PPD ≥5 mm not on the same tooth, or ≥2 interproximal sites with CAL ≥4 mm not on the same tooth; Severe periodontitis: ≥2 interproximal sites with CAL ≥6 mm not on the same tooth and ≥1 interproximal site with PPD ≥5 mm | Two 24 h recalls | 2nd vs. 1st tertile of vitamin A intake OR: 0.80 (95% CI: 0.67–0.96) 3rd vs. 1st tertile of vitamin A intake OR: 0.79 (95% CI: 0.65–0.96) The association was still significant in populations who were less than 60 years old, non-Hispanic black, Poverty Index (PI) ≤ 1.3, 1.3 < PI ≤ 3.5, non-smokers, obese, and not exhibiting diabetes mellitus or hypertension |
| Liang et al., 2024 [23] | Cross-sectional | NHANES (2009–2014) 9820 participants No periodontitis: 6288 Periodontitis: 3532 Country: USA | Mild periodontitis: ≥2 interproximal sites with CAL ≥ 3 mm, and ≥ 2 interproximal sites with PPD ≥ 4 mm (not on the same tooth) or one site with PPD ≥ 5 mm; Moderate periodontitis: 2 interproximal sites with CAL ≥ 4 mm, not on the same tooth, or the presence of at least 2 interproximal sites with PPD ≥5 mm, not on the same tooth; Severe periodontitis: 2 interproximal sites with CAL ≥ 6 mm (not on the same tooth), or ≥1 interproximal sites with PPD ≥ 5 mm (not on the same tooth). Mild, moderate, and severe periodontitis were classified as having periodontitis. | 24 h recall | ≥528 μg RAE/day vs. <528 μg RAE/day OR: 0.88 (95% CI: 0.76–1.02), p = 0.094 |
| Chen et al., 2025 [24] | Cross-sectional | NHANES (2009–2014) 11,704 participants No periodontitis: 6288 Periodontitis: 3532 Country: USA | Mild periodontitis: ≥2 interproximal sites with CAL ≥ 3 mm and ≥2 interproximal sites with PPD ≥ 4 mm, on different teeth, or one site with PPD ≥ 5 mm; Moderate periodontitis: ≥2 interproximal sites with CAL ≥ 4 mm, on different teeth, or ≥2 interproximal sites with PPD ≥ 5 mm, on different teeth; Severe periodontitis: ≥2 interproximal sites with CAL ≥ 6 mm, on different teeth, and ≥1 interproximal site with PPD ≥ 5 mm; No periodontitis: does not meet any of the criteria for periodontitis | Two 24 h recalls | Vitamin A intake was not causally associated with chronic periodontitis |
| Chapple et al., 2007 [25] | Cross-sectional | NHANES III survey (1988–1994) 11,480 participants Mild periodontitis: 1567 Severe periodontitis: 609 Country: USA | At least one site with both CAL ≥4 mm and PPD of ≥4 mm | Serum α- and β-carotene | Highest vs. lowest quintile of serum α-carotene (mild periodontitis) OR: 0.60 (95% CI: 0.46–0.77) Highest vs. lowest quintile of serum α-carotene (severe periodontitis) OR: 0.85 (95% CI: 0.67–1.07) Highest vs. lowest quintile of serum β-carotene (mild periodontitis) OR: 0.80 (95% CI: 0.65–0.98) Highest vs. lowest quintile of serum β-carotene (severe periodontitis) OR: 0.65 (95% CI: 0.46–0.93) |
| Linden et al., 2009 [26] | Cross-sectional | 1285 old men (60–70 years) County: Northern Ireland | Severe periodontitis >15% of all sites measured had a CAL (6 mm), and there was at least one site with deep pocketing (6 mm) | Serum α- and β-carotene, β-cryptoxanthin and zeaxanthin | Inverse association between α- and β-carotene, β-cryptoxanthin and low-threshold periodontitis. Lowest vs. Highest quintile of β-cryptoxanthin: aOR 4.02 for high-threshold periodontitis |
| Study | Study Design | Participants | Periodontal Disease Assessment | Vitamin C Assessment | Outcomes |
|---|---|---|---|---|---|
| Park et al., 2017 [18] | Cross-sectional | 2049 young adults aged 19–39 years (279 periodontitis patients) Country: Korea | CPI greater than or equal to 3 [at least one site had a probing pocket depth of >3.5 mm (code > 5.5 mm)] | One 24 h recall | <median vs. >median OR: 1.66 (95% CI: 1.04–2.64) in females and OR: 1.49 (95% CI: 1.04–2.14) in current non-smokers |
| Luo et al., 2018 [20] | Cross-sectional | NHANES (2011–2014) 6415 participants No periodontitis: 3465 Moderate disease: 2274 Severe disease: 676 Country: USA | At least two Interproximal sites with PPD ≥ 5 mm not occurring on the same tooth, or at least two interproximal sites that are not on the same tooth and that have CAL ≥4 mm | 24 h recall | Vitamin C intake ≤20.65 vs. ≥112.91 mg/day; aOR = 1.401 (95% CI = 1.12–1.74) |
| Li et al., 2022 [21] | Cross-sectional | NHANES (2009–2014) 6415 participants No periodontitis: 4965 Moderate/severe periodontitis: 3994 Country: USA | ≥2 Interproximal sites with CAL ≥4 mm; ≥2 Interproximal sites with a PPD of ≥5 mm | 24 h recall | Sufficient (Males: >90 mg/day, Females: >70 mg/day) vs. Insufficient intake OR: 1.13 (95% CI: 1.03–1.23) Excessive vitamin C intake was linearly and positively correlated with an increased risk of periodontitis |
| Liang et al., 2024 [23] | Cross-sectional | NHANES (2009–2014) 9820 participants No periodontitis: 6288 Periodontitis: 3532 Country: USA | Mild periodontitis: ≥2 interproximal sites with CAL ≥ 3 mm, and ≥2 interproximal sites with PPD ≥ 4 mm (not on the same tooth) or one site with PPD ≥ 5 mm; Moderate periodontitis: 2 interproximal sites with CAL ≥ 4 mm, not on the same tooth, or the presence of at least 2 interproximal sites with PPD ≥5 mm, not on the same tooth; Severe periodontitis: 2 interproximal sites with CAL ≥ 6 mm (not on the same tooth), or ≥1 interproximal sites with PPD ≥ 5 mm (not on the same tooth). Mild, moderate, and severe periodontitis were classified as having periodontitis. | 24 h recall | ≥89.4 mg/day vs. <89.4 mg/day OR: 0.93 (95% CI: 0.82–1.04), p = 0.218 |
| Chen et al., 2025 [24] | Cross-sectional | NHANES (2009–2014) 11,704 participants No periodontitis: 6288 Periodontitis: 3532 Country: USA | Mild periodontitis: ≥2 interproximal sites with CAL ≥ 3 mm and ≥2 interproximal sites with PPD ≥ 4 mm, on different teeth, or one site with PPD ≥ 5 mm; Moderate periodontitis: ≥2 interproximal sites with CAL ≥ 4 mm, on different teeth, or ≥2 interproximal sites with PPD ≥ 5 mm, on different teeth; Severe periodontitis: ≥2 interproximal sites with CAL ≥ 6 mm, on different teeth, and ≥1 interproximal site with PPD ≥ 5 mm; No periodontitis: does not meet any of the criteria for periodontitis | Two 24 h recalls | Vitamin C intake was not causally associated with chronic periodontitis |
| Chapple et al., 2007 [25] | Cross-sectional | NHANES III survey (1988–1994) 11,480 participants Mild periodontitis: 1567 Severe periodontitis: 609 Country: USA | At least one site with both CAL ≥4 mm and PPD of ≥4 mm | Serum vitamin C | Serum vitamin C concentration: highest (>70.41 mmol/L) vs. lowest (<8.52 mmol/L); aOR = 0.53 (95% CI = 0.42–0.68) |
| Lee et al., 2017 [49] | Cross-sectional | KNHANES IV 10,930 adults (≥19 years) Country: Korea | CPI score; Periodontitis: CPI = 3 or 4 | 24 h dietary record | Lowest intake (<47.3 mg/day) vs. highest intake (≥132.2 mg/day) aOR: 1.28 (95% CI = 1.10–1.50) |
| Nishida et al., 2000 [51] | Cross-sectional | NHANES III survey (1988–1994) 12,419 adults (>20 years of age) Country: USA | Clinical attachment level ≥1.5: periodontal disease | 24 h dietary record | Vitamin C intake (<0–29 mg/day) vs. (>180 mg/day); aOR = 1.30 |
| Amarasena et al., 2005 [54] | Cross-sectional | 413 elderly citizens (70 years) of Niigata Country: Japan | CAL (six sites of all teeth present including third molars) | Serum vitamin C levels | Serum vitamin C concentration was inversely related to CAL (r = –0.23, p < 0.00005) at bivariate level. |
| Study | Study Design | Participants | Periodontal Disease Assessment |
|---|---|---|---|
| Luo et al., 2018 [20] | Cross-sectional | NHANES (2011–2014) 6415 participants No periodontitis: 3465 Moderate disease: 2274 Severe disease: 676 Country: USA | At least two Interproximal sites with PPD ≥ 5 mm not occurring on the same tooth, or at least two interproximal sites that are not on the same tooth and that have CAL ≥4 mm |
| Li et al., 2022 [21] | Cross-sectional | NHANES (2009–2014) 6415 participants No periodontitis: 4965 Moderate/severe periodontitis: 3994 Country: USA | ≥2 Interproximal sites with CAL ≥4 mm; ≥2 Interproximal sites with PPD ≥5 mm |
| Chapple et al., 2007 [25] | Cross-sectional | NHANES III survey (1988–1994) 11,480 participants Mild periodontitis: 1567 Severe periodontitis: 609 Country: USA | At least one site with both CAL ≥4 mm and PPD of ≥4 mm |
| Zong et al., 2015 [82] | Cross-sectional | NHANES (1999–2001) 4708 participants Country: USA | Mean CAL, mean PPD, and periodontitis were calculated using data collected at mesiobuccal sites for consistency between survey circles, and interproximal sites are more reflective of periodontitis than midbuccal sites. Total Periodontitis (TPD) was defined as the sum of mild, moderate, and severe periodontitis according to CDC |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vavetsi, K.; Nomikos, T.; Vassilopoulos, S.; Bobetsis, Y.A. Effect of Nutritional Antioxidants on Periodontal Disease and Periodontal Therapy. Dent. J. 2025, 13, 570. https://doi.org/10.3390/dj13120570
Vavetsi K, Nomikos T, Vassilopoulos S, Bobetsis YA. Effect of Nutritional Antioxidants on Periodontal Disease and Periodontal Therapy. Dentistry Journal. 2025; 13(12):570. https://doi.org/10.3390/dj13120570
Chicago/Turabian StyleVavetsi, Konstantina, Tzortzis Nomikos, Spyridon Vassilopoulos, and Yiorgos A. Bobetsis. 2025. "Effect of Nutritional Antioxidants on Periodontal Disease and Periodontal Therapy" Dentistry Journal 13, no. 12: 570. https://doi.org/10.3390/dj13120570
APA StyleVavetsi, K., Nomikos, T., Vassilopoulos, S., & Bobetsis, Y. A. (2025). Effect of Nutritional Antioxidants on Periodontal Disease and Periodontal Therapy. Dentistry Journal, 13(12), 570. https://doi.org/10.3390/dj13120570

