2D and 3D Erosion Landscape Analysis of Endodontic-Treated Teeth Using EDTA and HEDP as Chelating Agents: A High-Resolution Micro-Computed Tomographic Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tooth Selection
2.2. Sample Preparation
2.3. Micro-CT
2.4. 2D Measurements
2.5. 3D Measurements
2.6. Statistics
3. Results
3.1. 2D Measurements
3.1.1. Descriptive
3.1.2. Statistical Analysis
3.2. 3D Measurements
3.2.1. Descriptive
3.2.2. Statistical Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Eick, J.D.; Wilko, R.A.; Anderson, C.H.; Sorensen, S.E. Scanning electron microscopy of cut tooth surfaces and identification of debris by use of the electron microprobe. J. Dent. Res. 1970, 49, 1359–1368. [Google Scholar] [CrossRef] [PubMed]
- McComb, D.; Smith, D.C. A preliminary scanning electron microscopic study of root canals after endodontic procedures. J. Endod. 1975, 1, 238–242. [Google Scholar] [CrossRef]
- Kfir, A.; Goldenberg, C.; Metzger, Z.; Hülsmann, M.; Baxter, S. Cleanliness and erosion of root canal walls after irrigation with a new HEDP-based solution vs. traditional sodium hypochlorite followed by EDTA. A scanning electron microscope study. Clin. Oral Investig. 2020, 24, 3699–3706. [Google Scholar] [CrossRef] [PubMed]
- Ulusoy, Ö.İ.; Mantı, A.Ş.; Çelik, B. Nanohardness reduction and root dentine erosion after final irrigation with ethylenediaminetetraacetic, etidronic and peracetic acids. Int. Endod. J. 2020, 53, 1549–1558. [Google Scholar] [CrossRef] [PubMed]
- Zehnder, M. Root canal irrigants. J. Endod. 2006, 32, 389–398. [Google Scholar] [CrossRef]
- Spratt, D.A.; Pratten, J.; Wilson, M.; Gulabivala, K. An in vitro evaluation of the antimicrobial efficacy of irrigants on biofilms of root canal isolates. Int. Endod. J. 2001, 34, 300–307. [Google Scholar] [CrossRef]
- Naenni, N.; Thoma, K.; Zehnder, M. Soft tissue dissolution capacity of currently used and potential endodontic irrigants. J. Endod. 2004, 30, 785–787. [Google Scholar] [CrossRef] [PubMed]
- Yadav, H.K.; Yadav, R.K.; Chandra, A.; Tikku, A.P. A Scanning Electron Microscopic Evaluation of the Effectiveness of Etidronic Acid, SmearClear and MTAD in Removing the Intracanal Smear Layer. J. Dent. 2017, 18, 118–126. [Google Scholar]
- Lottanti, S.; Gautschi, H.; Sener, B.; Zehnder, M. Effects of ethylenediaminetetraacetic, etidronic and peracetic acid irrigation on human root dentine and the smear layer. Int. Endod. J. 2009, 42, 335–343. [Google Scholar] [CrossRef]
- Violich, D.R.; Chandler, N.P. The smear layer in endodontics—A review. Int. Endod. J. 2010, 43, 2–15. [Google Scholar] [CrossRef]
- Elbahary, S.; Haj-Yahya, S.; Khawalid, M.; Tsesis, I.; Rosen, E.; Habashi, W.; Pokhojaev, A.; Sarig, R. Effects of different irrigation protocols on dentin surfaces as revealed through quantitative 3D surface texture analysis. Sci. Rep. 2020, 10, 22073. [Google Scholar] [CrossRef] [PubMed]
- Rosatto, C.M.P.; Ferraz, D.C.; Oliveira, L.V.; Soares, P.B.F.; Soares, C.J.; Tanomaru Filho, M.; Moura, C.C.G. Effect of irrigation protocols on root canal wall after post preparation: A micro-CT and microhardness study. Braz. Oral Res. 2021, 35, e122. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Ye, Z.; Zhang, A.; Lin, F.; Fu, J.; Fok, A.S.L. Effects of concentration of sodium hypochlorite as an endodontic irrigant on the mechanical and structural properties of root dentine: A laboratory study. Int. Endod. J. 2022, 55, 1091–1102. [Google Scholar] [CrossRef] [PubMed]
- Wright, P.P.; Scott, S.; Kahler, B.; Walsh, L.J. Organic tissue dissolution in clodronate and etidronate mixtures with sodium hypochlorite. J. Endod. 2020, 46, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Zollinger, A.; Mohn, D.; Zeltner, M.; Zehnder, M. Short-term storage stability of NaOCl solutions when combined with Dual Rinse HEDP. Int. Endod. J. 2018, 51, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Yamada, R.S.; Armas, A.; Goldman, M.; Lin, P.S. A scanning electron microscopic comparison of a high volume final flush with several irrigating solutions: Part 3. J. Endod. 1983, 9, 137–142. [Google Scholar] [CrossRef]
- Gómez-Delgado, M.; Camps-Font, O.; Luz, L.; Sanz, D.; Mercade, M. Update on citric acid use in endodontic treatment: A systematic review. Odontology 2023, 111, 1–19. [Google Scholar] [CrossRef]
- Berry, E.A., 3rd; von der Lehr, W.N.; Herrin, H.K. Dentin surface treatments for the removal of the smear layer: An SEM study. J. Am. Dent. Assoc. 1987, 115, 65–67. [Google Scholar] [CrossRef]
- McComb, D.; Smith, D.C.; Beagrie, G.S. The results of in vivo endodontic chemomechanical instrumentation—A scanning electron microscopic study. J. Br. Endod. Soc. 1976, 9, 11–18. [Google Scholar] [CrossRef]
- Bitter, N.C. A 25% tannic acid solution as a root canal irrigant cleanser: A scanning electron microscope study. Oral Surg. Oral Med. Oral Pathol. 1989, 67, 333–337. [Google Scholar] [CrossRef]
- Sabbak, S.A.; Hassanin, M.B. A scanning electron microscopic study of tooth surface changes induced by tannic acid. J. Prosthet. Dent. 1998, 79, 169–174. [Google Scholar] [CrossRef] [PubMed]
- Meryon, S.D.; Tobias, R.S.; Jakeman, K.J. Smear removal agents: A quantitative study in vivo and in vitro. J. Prosthet. Dent. 1987, 57, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Grawehr, M.; Sener, B.; Waltimo, T.; Zehnder, M. Interactions of ethylenediamine tetraacetic acid with sodium hypochlorite in aqueous solutions. Int. Endod. J. 2003, 36, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Zehnder, M.; Schmidlin, P.; Sener, B.; Waltimo, T. Chelation in root canal therapy reconsidered. J. Endod. 2005, 31, 817–820. [Google Scholar] [CrossRef] [PubMed]
- Patil, P.H.; Gulve, M.N.; Kolhe, S.J.; Samuel, R.M.; Aher, G.B. Efficacy of new irrigating solution on smear layer removal in apical third of root canal: A scanning electron microscope study. J. Conserv. Dent. 2018, 21, 190–193. [Google Scholar] [CrossRef]
- Rossi-Fedele, G.; Doğramaci, E.J.; Guastalli, A.R.; Steier, L.; de Figueiredo, J.A. Antagonistic interactions between sodium hypochlorite, chlorhexidine, EDTA, and citric acid. J. Endod. 2012, 38, 426–431. [Google Scholar] [CrossRef] [PubMed]
- Nogo-Živanović, D.; Kanjevac, T.; Bjelović, L.; Ristić, V.; Tanasković, I. The effect of final irrigation with MTAD, QMix, and EDTA on smear layer removal and mineral content of root canal dentin. Microsc. Res. Tech. 2019, 82, 923–930. [Google Scholar] [CrossRef]
- Ulusoy, Ö.İ.; Görgül, G. Effects of different irrigation solutions on root dentine microhardness, smear layer removal and erosion. Aust. Endod. J. 2013, 39, 66–72. [Google Scholar] [CrossRef]
- Biel, P.; Mohn, D.; Attin, T.; Zehnder, M. Interactions between the Tetrasodium Salts of EDTA and 1-Hydroxyethane 1,1-Diphosphonic Acid with Sodium Hypochlorite Irrigants. J. Endod. 2017, 43, 657–661. [Google Scholar] [CrossRef]
- Neelakantan, P.; Varughese, A.A.; Sharma, S.; Subbarao, C.V.; Zehnder, M.; De-Deus, G. Continuous chelation irrigation improves the adhesion of epoxy resin-based root canal sealer to root dentine. Int. Endod. J. 2012, 45, 1097–1102. [Google Scholar] [CrossRef]
- Paqué, F.; Rechenberg, D.K.; Zehnder, M. Reduction of hard-tissue debris accumulation during rotary root canal instrumentation by etidronic acid in a sodium hypochlorite irrigant. J. Endod. 2012, 38, 692–695. [Google Scholar] [CrossRef] [PubMed]
- Morago, A.; Ordinola-Zapata, R.; Ferrer-Luque, C.M.; Baca, P.; Ruiz-Linares, M.; Arias-Moliz, M.T. Influence of Smear Layer on the Antimicrobial Activity of a Sodium Hypochlorite/Etidronic Acid Irrigating Solution in Infected Dentin. J. Endod. 2016, 42, 1647–1650. [Google Scholar] [CrossRef] [PubMed]
- Neelakantan, P.; Cheng, C.Q.; Mohanraj, R.; Sriraman, P.; Subbarao, C.; Sharma, S. Antibiofilm activity of three irrigation protocols activated by ultrasonic, diode laser or Er:YAG laser in vitro. Int. Endod. J. 2015, 48, 602–610. [Google Scholar] [CrossRef] [PubMed]
- Tartari, T.; Bachmann, L.; Zancan, R.F.; Vivan, R.R.; Duarte, M.A.H.; Bramante, C.M. Analysis of the effects of several decalcifying agents alone and in combination with sodium hypochlorite on the chemical composition of dentine. Int. Endod. J. 2018, 51 (Suppl. 1), e42–e54. [Google Scholar] [CrossRef] [PubMed]
- Aranda-Garcia, A.J.; Kuga, M.C.; Chavéz-Andrade, G.M.; Kalatzis-Sousa, N.G.; Hungaro Duarte, M.A.; Faria, G.; Reis Só, M.V.; Faria, N.B., Jr. Effect of final irrigation protocols on microhardness and erosion of root canal dentin. Microsc. Res. Tech. 2013, 76, 1079–1083. [Google Scholar] [CrossRef] [PubMed]
- Pascon, F.M.; Kantovitz, K.R.; Soares, L.E.; Santo, A.M.; Martin, A.A.; Puppin-Rontani, R.M. Morphological and chemical changes in dentin after using endodontic agents: Fourier transform Raman spectroscopy, energy-dispersive x-ray fluorescence spectrometry, and scanning electron microscopy study. J. Biomed. Opt. 2012, 17, 075008. [Google Scholar] [CrossRef] [PubMed]
- Brännström, M.; Johnson, G. Effects of various conditioners and cleaning agents on prepared dentin surfaces: A scanning electron microscopic investigation. J. Prosthet. Dent. 1974, 31, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Li, A.L.B.; Markvart, M.; Abbott, P.V. Effect of Different Concentrations of Sodium Hypochlorite on the Compressive Strength of Endodontically Treated Roots. J. Endod. 2022, 48, 370–374. [Google Scholar] [CrossRef]
- Gonzalez, C.S.; Estevez, R.; Loroño, G.; García, V.D.; Caballero Montes, J.A.; Rossi-Fedele, G.; Cisneros, R. Etidronic acid and ethylenediaminetetraacetic acid associated with sodium hypochlorite have limited effect on the compressive fracture resistance of roots ex vivo. J. Conserv. Dent. 2020, 23, 484–488. [Google Scholar] [CrossRef]
- Zarean, P.; Özcan, M.; Zarean, P.; Haghani, S.O.; Jahromi, M.Z.; Al-Haj Husain, N.; Khabiri, M. Micro-Computed Tomographic Assessment of Microcrack Formation before and after Instrumentation of Curved Root Canals with Neoniti Rotary Files. Materials 2022, 15, 3002. [Google Scholar] [CrossRef]
- Cassimiro, M.; Romeiro, K.; Gominho, L.; de Almeida, A.; Costa, L.; Albuquerque, D. Occurence of dentinal defects after root canal preparation with R-phase, M-Wire and Gold Wire instruments: A micro-CT analysis. BMC Oral Health 2017, 17, 93. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Cai, Y.; Yang, R.; Xu, Z.; Neelakantan, P.; Wei, X. Impact of agitation/activation strategies on the antibiofilm potential of sodium hypochlorite/etidronate mixture in vitro. BMC Oral Health 2022, 22, 201. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 1 October 2023).
- Brunner, E.; Puri, M. Nonparametric Methods in Factorial Designs; Statistical Papers; Springer: Berlin/Heidelberg, Germany, 2001; Volume 42. [Google Scholar]
- Basandi, P.S.; Madammal, R.M.; Adi, R.P.; Donoghue, M.; Nayak, S.; Manickam, S. Predentin thickness analysis in developing and developed permanent teeth. J. Nat. Sci. Biol. Med. 2015, 6, 310–313. [Google Scholar] [CrossRef] [PubMed]
- Ulusoy, Ö.İ.; Genç Şen, Ö.; Zeyrek, S.; Kaya, M.; Paltun, Y.N. Effect of final irrigation protocols on the fracture resistance of roots with varying dentine thickness. Eur. J. Oral Sci. 2021, 129, e12769. [Google Scholar] [CrossRef] [PubMed]
- Russell, A.A.; Chris He, L.H.; Chandler, N.P. Investigation of dentin hardness in roots exhibiting the butterfly effect. J. Endod. 2014, 40, 842–844. [Google Scholar] [CrossRef] [PubMed]
- Zehnder, M.; Schicht, O.; Sener, B.; Schmidlin, P. Reducing surface tension in endodontic chelator solutions has no effect on their ability to remove calcium from instrumented root canals. J. Endod. 2005, 31, 590–592. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, I.; Conde Villar, A.J.; Loroño, G.; Estevez, R.; Plotino, G.; Cisneros, R. Effectiveness of XP-Endo Finisher and Passive Ultrasonic Irrigation in the Removal of the Smear Layer Using two Different Chelating Agents. J. Dent. 2021, 22, 243–251. [Google Scholar] [CrossRef]
- Kamel, W.H.; Kataia, E.M. Comparison of the efficacy of Smear Clear with and without a canal brush in smear layer and debris removal from instrumented root canal using WaveOne versus ProTaper: A scanning electron microscopic study. J. Endod. 2014, 40, 446–450. [Google Scholar] [CrossRef]
- Fraser, J.G. Chelating agents: Their softening effect on root canal dentin. Oral Surg. Oral Med. Oral Pathol. 1974, 37, 803–811. [Google Scholar] [CrossRef]
- Wang, Z.; Maezono, H.; Shen, Y.; Haapasalo, M. Evaluation of root canal dentin erosion after different irrigation methods using energy-dispersive X-ray spectroscopy. J. Endod. 2016, 42, 1834–1839. [Google Scholar] [CrossRef]
- Kaya, S.; Yiğit-Özer, S.; Adigüzel, Ö. Evaluation of radicular dentin erosion and smear layer removal capacity of Self-Adjusting File using different concentrations of sodium hypochlorite as an initial irrigant. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2011, 112, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Uzunoglu, E.; Aktemur, S.; Uyanik, M.O.; Durmaz, V.; Nagas, E. Effect of ethylenediaminetetraacetic acid on root fracture with respect to concentration at different time exposures. J. Endod. 2012, 38, 1110–1113. [Google Scholar] [CrossRef] [PubMed]
- Bhandary, S.; Kakamari, S.; Srinivasan, R.; Chandrappa, M.M.; Nasreen, F.; Junjanna, P. A comparative evaluation of the effect of 8% and 17% ethylenediaminetetraacetic acid exposure for 1 min and 10 min on the fracture resistance of endodontically treated roots: An in vitro study. J. Conserv. Dent. 2017, 20, 21–24. [Google Scholar] [CrossRef] [PubMed]
- Osiri, S.; Banomyong, D.; Sattabanasuk, V.; Yanpiset, K. Root rein- forcement after obturation with calcium silicate-based sealer and modified gutta-percha cone. J. Endod. 2018, 44, 1843–1848. [Google Scholar] [CrossRef]
- Wright, P.P.; Kahler, B.; Walsh, L.J. The Effect of Heating to Intracanal Temperature on the Stability of Sodium Hypochlorite Admixed with Etidronate or EDTA for Continuous Chelation. J. Endod. 2019, 45, 57–61. [Google Scholar] [CrossRef]
- Ballal, N.V.; Ivica, A.; Meneses, P.; Narkedamalli, R.K.; Attin, T.; Zehnder, M. Influence of 1-Hydroxyethylidene-1,1-Diphosphonic Acid on the Soft Tissue-Dissolving and Gelatinolytic Effect of Ultrasonically Activated Sodium Hypochlorite in Simulated Endodontic Environments. Materials 2021, 14, 2531. [Google Scholar] [CrossRef]
Group | Position | Mean | SD | Min | Q1 | Median | Q3 | Max |
---|---|---|---|---|---|---|---|---|
EDTA—Case | Cervical | 45.75 | 10.25 | 31.71 | 35.45 | 49.72 | 51.55 | 62.32 |
Middle | 41.79 | 10.10 | 26.58 | 34.41 | 41.08 | 48.96 | 58.79 | |
Apical | 32.25 | 12.52 | 16.09 | 22.41 | 30.04 | 38.36 | 52.12 | |
EDTA—Control | Cervical | 15.78 | 8.20 | 4.79 | 11.21 | 14.27 | 22.14 | 29.89 |
Middle | 14.43 | 8.30 | 3.07 | 8.47 | 15.26 | 17.29 | 31.31 | |
Apical | 12.19 | 7.16 | 1.58 | 8.14 | 12.72 | 16.85 | 22.53 | |
HEDP—Case | Cervical | 20.25 | 8.53 | 8.21 | 15.53 | 18.79 | 21.83 | 38.46 |
Middle | 16.40 | 11.05 | 4.23 | 8.68 | 11.33 | 21.99 | 38.45 | |
Apical | 15.96 | 11.97 | 3.46 | 6.18 | 11.17 | 25.23 | 38.69 | |
HEDP—Control | Cervical | 11.82 | 5.65 | 5.68 | 8.23 | 10.25 | 12.58 | 23.66 |
Middle | 12.98 | 10.45 | 3.98 | 6.00 | 7.64 | 16.49 | 35.94 | |
Apical | 10.61 | 6.84 | 3.86 | 5.63 | 8.03 | 13.75 | 25.39 |
Repeated Measures ANOVA | Repeated Measurement Factors | p Value |
---|---|---|
One-way interaction | Chelating agent (EDTA/HEDP) | 0.004 |
Group (Case/Control) | <0.0001 | |
Position (Cervical, Middle, Apical) | 0.002 | |
Two-way interactions | Chelating agent (EDTA/HEDP): Group (Case/Control) | <0.0001 |
Position (Cervical, Middle, Apical): Group (Case/Control) | 0.17 | |
Chelating agent (EDTA/HEDP): Position (Cervical, Middle, Apical) | 0.64 | |
Three-way interactions | Chelating agent (EDTA/HEDP): Group (Case/Control): Position (Cervical, Middle, Apical) | 0.20 |
Repeated Measures ANOVA | Repeated Measurement Factors | p Value |
---|---|---|
One-way interaction | Chelating agent (EDTA/HEDP) | <0.0001 |
Group (Case/Control) | 0.01 | |
Position (Cervical, Middle, Apical) | 0.31 | |
Two-way interactions | Chelating agent (EDTA/HEDP): Group (Case/Control) | 0.12 |
Position (Cervical, Middle, Apical): Group (Case/Control) | 0.89 | |
Chelating agent (EDTA/HEDP): Position (Cervical, Middle, Apical) | 0.055 | |
Three-way interactions | Chelating agent (EDTA/HEDP): Group (Case/Control): Position (Cervical, Middle, Apical) | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarean, P.; Göllner, M.; Zarean, P.; Neuhaus, K.W. 2D and 3D Erosion Landscape Analysis of Endodontic-Treated Teeth Using EDTA and HEDP as Chelating Agents: A High-Resolution Micro-Computed Tomographic Study. Dent. J. 2023, 11, 286. https://doi.org/10.3390/dj11120286
Zarean P, Göllner M, Zarean P, Neuhaus KW. 2D and 3D Erosion Landscape Analysis of Endodontic-Treated Teeth Using EDTA and HEDP as Chelating Agents: A High-Resolution Micro-Computed Tomographic Study. Dentistry Journal. 2023; 11(12):286. https://doi.org/10.3390/dj11120286
Chicago/Turabian StyleZarean, Parichehr, Michael Göllner, Paridokht Zarean, and Klaus W. Neuhaus. 2023. "2D and 3D Erosion Landscape Analysis of Endodontic-Treated Teeth Using EDTA and HEDP as Chelating Agents: A High-Resolution Micro-Computed Tomographic Study" Dentistry Journal 11, no. 12: 286. https://doi.org/10.3390/dj11120286
APA StyleZarean, P., Göllner, M., Zarean, P., & Neuhaus, K. W. (2023). 2D and 3D Erosion Landscape Analysis of Endodontic-Treated Teeth Using EDTA and HEDP as Chelating Agents: A High-Resolution Micro-Computed Tomographic Study. Dentistry Journal, 11(12), 286. https://doi.org/10.3390/dj11120286