Controlling the Lifetime of the Triplet MLCT State in Fe(II) Polypyridyl Complexes through Ligand Modification
Abstract
:1. Introduction
2. Enlarging the Conjugation
3. Replacing N by P
4. Replacing Bipyridine by CN
4.1. Vertical and Adiabatic Energies
4.2. Intersystem Crossing Rates
5. Discussion and Conclusions
6. Computational Information
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- McGarvey, J.J.; Lawthers, I. Photochemically-induced perturbation of the 1A ⇌5T equilibrium in FeII complexes by pulsed laser irradiation in the metal-to-ligand charge-transfer absorption band. J. Chem. Soc. Chem. Commun. 1982, 906–907. [Google Scholar] [CrossRef]
- Decurtins, S.; Gütlich, P.; Köhler, C.P.; Spiering, H.; Hauser, A. Light-induced excited spin state trapping in a transition-metal complex: The hexa-1-propyltetrazole-iron(II) tetrafluoroborate spin-crossover system. Chem. Phys. Lett. 1984, 105, 1–4. [Google Scholar] [CrossRef]
- Hauser, A. Light-Induced spin-crossover and the high-spin → low-spin relaxation. In Spin Crossover in Transition Metal Compounds II; Topics in Current Chemistry; Gütlich, P., Goodwin, H.A., Eds.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 234, pp. 155–198. [Google Scholar]
- Gawelda, W.; Cannizzo, A.; Pham, V.T.; van Mourik, F.; Bressler, C.; Chergui, M. Ultrafast nonadiabatic dynamics of [FeII(bpy)3]2+ in solution. J. Am. Chem. Soc. 2007, 129, 8199–8206. [Google Scholar] [CrossRef]
- Bressler, C.; Milne, C.; Pham, V.T.; ElNahhas, A.; van der Veen, R.M.; Gawelda, W.; Johnson, S.; Beaud, P.; Grolimund, D.; Kaiser, M.; et al. Femtosecond XANES Study of the Light-Induced Spin Crossover Dynamics in an Iron(II) Complex. Science 2009, 323, 489–492. [Google Scholar] [CrossRef]
- Gawelda, W.; Pham, V.T.; van der Veen, R.M.; Grolimund, D.; Abela, R.; Chergui, M.; Bressler, C. Structural analysis of ultrafast extended X-ray absorption fine structure with subpicometer spatial resolution: Application to spin crossover complexes. J. Chem. Phys. 2009, 130, 124520. [Google Scholar] [CrossRef] [Green Version]
- Cannizzo, A.; Milne, C.J.; Consani, C.; Gawelda, W.; Bressler, C.; van Mourik, F.; Chergui, M. Light-induced spin crossover in Fe(II)-based complexes: The full photocycle unraveled by ultrafast optical and X-ray spectroscopies. Coord. Chem. Rev. 2010, 254, 2677–2686. [Google Scholar] [CrossRef] [Green Version]
- De Graaf, C.; Sousa, C. Study of the Light-Induced Spin Crossover Process of the [FeII(bpy)3]2+ Complex. Chem. Eur. J. 2010, 16, 4550–4556. [Google Scholar] [CrossRef]
- De Graaf, C.; Sousa, C. On the Role of the Metal-to-Ligand Charge Transfer States in the Light-Induced Spin Crossover in FeII(bpy)3. Int. J. Quantum Chem. 2011, 111, 3385–3393. [Google Scholar] [CrossRef]
- Sousa, C.; de Graaf, C.; Rudavskyi, A.; Broer, R.; Tatchen, J.; Etinski, M.; Marian, C.M. Ultrafast deactivation mechanism of the excited singlet in the light-induced spin crossover of [Fe(bpy)3]2+. Chem. Eur. J. 2013, 19, 17541–17551. [Google Scholar] [CrossRef]
- Domingo, A.; Sousa, C.; de Graaf, C. The effect of thermal motion on the electron localization in metal-to-ligand charge transfer excitations in [Fe(bpy)3]2+. Dalton Trans. 2014, 43, 17838–17846. [Google Scholar] [CrossRef]
- Zhang, W.; Alonso-Mori, R.; Bergmann, U.; Bressler, C.; Chollet, M.; Galler, A.; Gawelda, W.; Hadt, R.G.; Hartsock, R.W.; Kroll, T.; et al. Tracking excited-state charge and spin dynamics in iron coordination complexes. Nature 2014, 509, 345–348. [Google Scholar] [CrossRef]
- Auböck, G.; Chergui, M. Sub-50-fs photoinduced spin crossover in [Fe(bpy)3]2+. Nat. Chem. 2015, 7, 629–633. [Google Scholar] [CrossRef]
- Field, R.; Liu, L.C.; Gawelda, W.; Lu, C.; Miller, R.J.D. Spectral Signatures of Ultrafast Spin Crossover in Single Crystal [FeII(bpy)3](PF6)2. Chem. Eur. J. 2016, 22, 5118–5122. [Google Scholar] [CrossRef]
- Zerdane, S.; Wilbraham, L.; Cammarata, M.; Iasco, O.; Rivière, E.; Boillot, M.L.; Ciofini, I.; Collet, E. Comparison of structural dynamics and coherence of d–d and MLCT light-induced spin state trapping. Chem. Sci. 2017, 8, 4978–4986. [Google Scholar] [CrossRef] [Green Version]
- Moguilevski, A.; Wilke, M.; Grell, G.; Bokarev, S.I.; Aziz, S.G.; Engel, N.; Raheem, A.A.; Kühn, O.; Kiyan, I.Y.; Aziz, E.F. Ultrafast spin crossover in [FeII(bpy)3]2+: Revealing two competing mechanisms by extreme ultraviolet photoemission spectroscopy. ChemPhysChem 2017, 18, 465–469. [Google Scholar] [CrossRef]
- Chergui, M.; Collet, E. Photoinduced Structural Dynamics of Molecular Systems Mapped by Time-Resolved X-ray Methods. Chem. Rev. 2017, 117, 11025–11065. [Google Scholar] [CrossRef] [Green Version]
- Collet, E.; Cammarata, M. Disentangling Ultrafast Electronic and Structural Dynamics with X-ray Lasers. Chem. Eur. J. 2018, 24, 15696–15705. [Google Scholar] [CrossRef]
- Sousa, C.; Domingo, A.; de Graaf, C. Effect of Second-Order Spin–Orbit Coupling on the Interaction between Spin States in Spin-Crossover Systems. Chem. Eur. J. 2018, 24, 5146–5152. [Google Scholar] [CrossRef]
- Sousa, C.; Llunell, M.; Domingo, A.; de Graaf, C. Theoretical evidence for the direct 3MLCT-HS deactivation in the light-induced spin crossover of Fe(II)-polypyridyl complexes. Phys. Chem. Chem. Phys. 2018, 20, 2351–2355. [Google Scholar] [CrossRef]
- Xue, S.; Guo, Y.; Rotaru, A.; Müller-Bunz, H.; Morgan, G.G.; Trzop, E.; Collet, E.; Oláh, J.; Garcia, Y. Spin Crossover Behavior in a Homologous Series of Iron(II) Complexes Based on Functionalized Bipyridyl Ligands. Inorg. Chem. 2018, 57, 9880–9891. [Google Scholar] [CrossRef] [Green Version]
- Zerdane, S.; Collet, E.; Dong, X.; Matar, S.F.; Wang, H.F.; Desplanches, C.; Chastanet, G.; Chollet, M.; Glownia, J.M.; Lemke, H.T.; et al. Electronic and Structural Dynamics During the Switching of the Photomagnetic Complex [Fe(L222N5)(CN)2]. Chem. Eur. J. 2018, 24, 5064–5069. [Google Scholar] [CrossRef] [Green Version]
- Zerdane, S.; Cammarata, M.; Iasco, O.; Boillot, M.L.; Collet, E. Photoselective MLCT to d–d pathways for light-induced excited spin state trapping. J. Chem. Phys. 2019, 151, 171101. [Google Scholar] [CrossRef]
- Kjær, K.S.; van Driel, T.B.; Harlang, T.C.B.; Kunnus, K.; Ledbetter, K.; Hartsock, R.W.; Reinhard, M.E.; Koroidov, S.; Li, L.; Laursen, M.G.; et al. Finding Intersections between Electronic Excited State Potential Energy Surfaces with Simultaneous Ultrafast X-ray Scattering and Spectroscopy. Chem. Sci. 2019, 10, 5749–5760. [Google Scholar] [CrossRef] [Green Version]
- Campagna, S.; Puntotiero, F.; Nastasi, F.; Bergamini, G.; Balzani, V. Photochemistry and Photophysics of Coordination Compounds: Ruthenium. In Photochemistry and Photophysics of Coordination Compounds I; Topics in Current Chemistry; Balzani, V., Campagna, S., Eds.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 280, pp. 117–214. [Google Scholar]
- Balzani, V.; Credi, A.; Venturi, M. Photochemical Conversion of Solar Energy. ChemSusChem 2008, 1, 26–58. [Google Scholar] [CrossRef]
- Diamantis, P.; Gonthier, J.F.; Tavernelli, I.; Rothlisberger, U. Study of the Redox Properties of Singlet and Triplet Tris(2,2’-bipyridine)ruthenium(II) ([Ru(bpy)3]2+) in Aqueous Solution by Full Quantum and Mixed Quantum/Classical Molecular Dynamics Simulations. J. Phys. Chem. B 2013, 118, 3950–3959. [Google Scholar] [CrossRef]
- Marchini, M.; Bergamini, G.; Cozzi, P.G.; Ceroni, P.; Balzani, V. Photoredox catalysis: The need to elucidate the photochemical mechanism. Angew. Chem. Int. Ed. 2017, 56, 12820–12821. [Google Scholar] [CrossRef]
- Kjær, K.S.; Zhang, W.; Alonso-Mori, R.; Bergmann, U.; Chollet, M.; Hadt, R.G.; Hartsock, R.W.; Harlang, T.; Kroll, T.; Kubiček, K.; et al. Ligand manipulation of charge transfer excited state relaxation and spin crossover in [Fe(2,2’-bipyridine)2(CN)2]. Struct. Dyn. 2017, 4, 044030. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Kjær, K.S.; Alonso-Mori, R.; Bergmann, U.; Chollet, M.; Fredin, L.A.; Hadt, R.G.; Hartsock, R.W.; Harlang, T.; Kroll, T.; et al. Manipulating charge transfer excited state relaxation and spin crossover in iron coordination complexes with ligand substitution. Chem. Sci. 2017, 8, 515–523. [Google Scholar] [CrossRef] [Green Version]
- Chábera, P.; Liu, Y.; Prakash, O.; Thyrhaug, E.; El Nahhas, A.; Honarfar, A.; Essén, S.; Fredin, L.A.; Harlang, T.C.B.; Kjær, K.S.; et al. A low-spin Fe(III) complex with 100-ps ligand-to-metal charge transfer photoluminescence. Nature 2017, 543, 695–699. [Google Scholar] [CrossRef]
- Chábera, P.; Kjær, K.S.; Prakash, O.; Honarfar, A.; Liu, Y.; Fredin, L.A.; Harlang, T.C.B.; Lidin, S.; Uhlig, J.; Sundström, V.; et al. FeII Hexa N-Heterocyclic Carbene Complex with a 528 ps Metal-to-Ligand Charge-Transfer Excited-State Lifetime. J. Phys. Chem. Lett. 2018, 9, 459–463. [Google Scholar] [CrossRef]
- Kjær, K.S.; Kunnus, K.; Harlang, T.C.B.; van Driel, T.B.; Ledbetter, K.; Hartsock, R.W.; Reinhard, M.E.; Koroidov, S.; Li, L.; Laursen, M.G.; et al. Solvent control of charge transfer excited state relaxation pathways in [Fe(2,2’-bipyridine)(CN)4]2-. Phys. Chem. Chem. Phys. 2018, 20, 4238–4249. [Google Scholar] [CrossRef] [Green Version]
- Kjær, K.S.; Kaul, N.; Chábera, P.; Rosemann, N.W.; Honarfar, A.; Gordivska, O.; Fredin, L.A.; Bergquist, K.E.; Häggström, L.; Ericsson, T.; et al. Luminescence and reactivity of a charge-transfer excited iron complex with nanosecond lifetime. Science 2019, 363, 249–253. [Google Scholar] [CrossRef]
- Tatsuno, H.; Kjær, K.S.; Kunnus, K.; Harlang, T.C.B.; Timm, C.; Guo, M.; Chábera, P.; Fredin, L.A.; Hartsock, R.W.; Reinhard, M.E.; et al. Hot Branching Dynamics in a Light-Harvesting Iron Carbene Complex Revealed by Ultrafast X-ray Emission Spectroscopy. Angew. Chem. Int. Ed. 2020, 59, 364–372. [Google Scholar] [CrossRef] [Green Version]
- Demas, J.N.; Crosby, G.A. Quantum efficiencies on transition metal complexes. II. Charge-transfer luminescence. J. Am. Chem. Soc. 1971, 93, 2841–2847. [Google Scholar]
- Creutz, C.; Chou, M.; Netzel, T.L.; Okumura, M.; Sutin, N. Lifetimes, Spectra, and Quenching of the Excited States of Polypyridine Complexes of Iron(II), Ruthenium(II), and Osmium(II). J. Am. Chem. Soc. 1980, 102, 1309–1319. [Google Scholar] [CrossRef]
- Consani, C.; Premont-Schwarz, M.; ElNahhas, A.; Bressler, C.; van Mourik, F.; Cannizzo, A.; Chergui, M. Vibrational Coherences and Relaxation in the High-Spin State of Aqueous [FeII(bpy)3]2+. Angew. Chem. Int. Ed. 2009, 48, 7184–7187. [Google Scholar] [CrossRef]
- Zell, T.; Langer, R.; Iron, M.A.; Konstantinovski, L.; Shimon, L.J.W.; Diskin-Posner, Y.; Leitus, G.; Balaraman, E.; Ben-David, Y.; Milstein, D. Synthesis, Structures, and Dearomatization by Deprotonation of Iron Complexes Featuring Bipyridine-based PNN Pincer Ligands. Inorg. Chem. 2013, 52, 9636–9649. [Google Scholar] [CrossRef]
- Benito-Garagorri, D.; Becker, E.; Wiedermann, J.; Lackner, W.; Pollak, M.; Mereiter, K.; Kisala, J.; Kirchner, K. Achiral and Chiral Transition Metal Complexes with Modularly Designed Tridentate PNP Pincer-Type Ligands Based on N-Heterocyclic Diamines. Organometallics 2006, 25, 1900–1913. [Google Scholar] [CrossRef]
- Sodano, P.; Simonneaux, G.; Toupet, L. Tertiary phosphine complexes of iron porphyrins: Synthesis, molecular stereochemistry, and crystal structure of bis(dimethylphenylphosphine)-(meso-5,10,15,20 tetraphenylporphyrinato)iron(II). J. Chem. Soc. Dalton Trans. 1988, 10, 2615–2620. [Google Scholar] [CrossRef]
- Belani, R.M.; James, B.R.; Dolphin, D.; Rettig, S.J. Catalytic decarbonylation of aldehydes using iron(II) porphyrin complexes, and the crystal structure of (5,10,15,20-tetraphenylporphinato)bis(tri-n-butylphosphine)iron(II). Can. J. Chem. 1988, 66, 2072–2078. [Google Scholar] [CrossRef]
- Huang, J.S.; Yu, G.A.; Xie, J.; Wong, K.M.; Zhu, N.; Che, C.M. Primary and Secondary Phosphine Complexes of Iron Porphyrins and Ruthenium Phthalocyanine: Synthesis, Structure, and P–H Bond Functionalization. Inorg. Chem. 2008, 47, 9166–9181. [Google Scholar] [CrossRef]
- Mink, L.M.; Polam, J.R.; Christensen, K.A.; Bruck, M.A.; Walker, F.A. Electronic Effects in Transition Metal Porphyrins. 8. The Effect of Porphyrin Substituents, Axial Ligands, “Steric Crowding”, Solvent, and Temperature on the 57Fe Chemical Shifts of a Series of Model Heme Complexes. J. Am. Chem. Soc. 1995, 117, 9329–9339. [Google Scholar] [CrossRef]
- Holzhacker, C.; Calhorda, M.J.; Gil, A.; Deus Carvalho, M.; Ferreira, L.P.; Stöger, B.; Mereiter, K.; Weil, M.; Müller, D.; Weinberger, P.; et al. Six-coordinate high-spin iron(II) complexes with bidentate PN ligands based on 2-aminopyridine—New Fe(II) spin crossover systems. Dalton Trans. 2014, 43, 11152–11164. [Google Scholar] [CrossRef]
- Glatz, M.; Bichler, B.; Mastalir, M.; Stöger, B.; Weil, M.; Mereiter, K.; Pittenauer, E.; Allmaier, G.; Veiros, L.F.; Kirchner, K. Iron(II) complexes featuring κ3- and κ2-bound PNP pincer ligands — The significance of sterics. Dalton Trans. 2015, 44, 281–294. [Google Scholar] [CrossRef]
- Alcover-Fortuny, G.; Wu, J.; Caballol, R.; de Graaf, C. Quantum Chemical Study of the Interligand Electron Transfer in Ru Polypyridyl Complexes. J. Phys. Chem. A 2018, 122, 1114–1123. [Google Scholar] [CrossRef]
- Etinski, M.; Tatchen, J.; Marian, C.M. Time-dependent approaches for the calculation of intersystem crossing rates. J. Chem. Phys. 2011, 134, 154105. [Google Scholar] [CrossRef]
- Pierloot, K.; Vancoillie, S. Relative energy of the high-(5T2g) and low-(1A1g) spin states of [Fe(H2O)6]2+, [Fe(NH3)6]2+, and [Fe(bpy)3]2+: CASPT2 versus density functional theory. J. Chem. Phys. 2006, 125, 124303. [Google Scholar] [CrossRef]
- Pierloot, K.; Vancoillie, S. Relative energy of the high-(5T2g) and low-(1A1g)spin states of the ferrous complexes [Fe(L)NHS4]: CASPT2 versus density functional theory. J. Chem. Phys. 2008, 128, 034104. [Google Scholar] [CrossRef]
- Saureu, S.; de Graaf, C. TD-DFT study of the light-induced spin crossover of Fe(III) complexes. Phys. Chem. Chem. Phys. 2016, 18, 1233–1244. [Google Scholar] [CrossRef]
- Neese, F. Software update: The ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 2018, 8. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F. Orca 4—An ab Initio, DFT and Semiempirical SCF-MO Package; Max-Planck-Institut fur Kohlenforschung: Mulheim, Germany, 2019. [Google Scholar]
- Kepp, K.P. Consistent descriptions of metal–ligand bonds and spin-crossover in inorganic chemistry. Coord. Chem. Rev. 2013, 257, 196–209. [Google Scholar] [CrossRef]
- Kepp, K.P. Theoretical Study of Spin Crossover in 30 Iron Complexes. Inorg. Chem. 2016, 55, 2717–2727. [Google Scholar] [CrossRef] [Green Version]
- Siig, O.S.; Kepp, K.P. Iron(II) and Iron(III) Spin Crossover: Toward an Optimal Density Functional. J. Phys. Chem. A 2018, 122, 4208–4217. [Google Scholar] [CrossRef] [Green Version]
- Tao, J.; Perdew, J.P.; Staroverov, V.N.; Scuseria, G.E. Climbing the Density Functional Ladder: Nonempirical Meta–Generalized Gradient Approximation Designed for Molecules and Solids. Phys. Rev. Lett. 2003, 91, 146401. [Google Scholar] [CrossRef] [Green Version]
- Bykov, D.; Petrenko, T.; Izsak, R.; Kossmann, S.; Becker, U.; Valeev, E.F.; Neese, F. Efficient implementation of the analytic second derivatives of Hartree–Fock and hybrid DFT energies: A detailed analysis of different approximations. Mol. Phys. 2015, 113, 1961–1977. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Hansen, A.; Becker, U. Efficient, approximate and parallel Hartree–Fock and hybrid DFT calculations. A ‘chain-of-spheres’ algorithm for the Hartree–Fock exchange. Chem. Phys. 2009, 356, 98–109. [Google Scholar] [CrossRef]
- Izsak, R.; Neese, F. An overlap fitted chain of spheres exchange method. J. Chem. Phys. 2011, 135, 144105. [Google Scholar] [CrossRef]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef]
- Galván, I.F.; Vacher, M.; Alavi, A.; Angeli, C.; Aquilante, F.; Autschbach, J.; Bao, J.J.; Bokarev, S.I.; Bogdanov, N.A.; Carlson, R.K.; et al. OpenMolcas: From Source Code to Insight. J. Chem. Theory Comput. 2019, 15, 5925–5964. [Google Scholar] [CrossRef]
- Sousa, C.; Alías, M.; Domingo, A.; de Graaf, C. Deactivation of Excited States in Transition-Metal Complexes: Insight from Computational Chemistry. Chem. Eur. J. 2019, 25, 1152–1164. [Google Scholar] [CrossRef]
- Roos, B.O.; Lindh, R.; Malmqvist, P.Å.; Veryazov, V.; Widmark, P.O. Main Group Atoms and Dimers Studied with a New Relativistic ANO Basis Set. J. Phys. Chem. A 2004, 108, 2851–2858. [Google Scholar] [CrossRef]
- Roos, B.O.; Lindh, R.; Malmqvist, P.Å.; Veryazov, V.; Widmark, P.O. New Relativistic ANO Basis Sets for Transition Metal Atoms. J. Phys. Chem. A 2005, 109, 6575–6579. [Google Scholar] [CrossRef]
Complex | MLCT | MLCT | MC | MC |
---|---|---|---|---|
a | 2.96 | 2.81 | 1.11 | 2.02 |
b | 2.26 | 2.08 | 1.92 | 2.88 |
c | 2.29 | 1.98 | 1.99 | 2.76 |
d | 2.35 | 2.11 | 1.93 | 2.81 |
e | 2.18 | 1.88 | 1.80 | 2.61 |
f | 2.15 | 1.74 | 1.54 | 2.37 |
Core Structure | CSD Acronym | MLCT | MLCT | MC | MC |
---|---|---|---|---|---|
FeN | 2.27 | 2.08 | 1.92 | 2.88 | |
FeNP | MINWOX [39] | 2.31 | 2.05 | 1.89 | 2.66 |
JEGRIX [40] | 2.33 | 2.19 | 2.02 | 2.72 | |
GIFJAG [41] | 1.75 | 1.45 | 1.62 | 2.28 | |
KACGIE [42] | 1.62 | 1.31 | 1.45 | 2.20 | |
QOKKAD [43] | 1.79 | 1.52 | 1.89 | 2.46 | |
QOKKEH [43] | 1.78 | 1.41 | 1.41 | 2.22 | |
SURMAT [44] | 1.78 | 1.49 | 1.88 | 2.58 | |
SURMEX [44] | 1.73 | 1.44 | 1.91 | 2.63 | |
FeNP | YIZMAX [45] | 3.70 | 3.28 | 1.81 | 2.54 |
FeNP | FOPSOU [46] | 3.79 | 3.32 | 1.99 | 2.69 |
FOPSUA [46] | 3.93 | 3.28 | 1.88 | 2.61 | |
FOPTAH [46] | 4.07 | 3.29 | 2.04 | 2.77 | |
FeP | model | 2.95 | 2.36 | 2.71 | 3.17 |
[Fe(bpy)(CN)] | [Fe(bpy)(CN)] | ||||
---|---|---|---|---|---|
MLCT | MLCT | 75.0 | 94.4 | 214.8 | 220.7 |
MC | 45.0 | 44.6 | 15.8 | 16.0 | |
MLCT | LS | 123.5 | 109.0 | 134.2 | 138.8 |
MC | 50.9 | 44.0 | |||
MC | LS | 346.6 | 346.9 | 311.3 | 308.1 |
MC | 204.6 | 205.5 | |||
MC | LS | 0.0 | 2.9 |
E | SO Term | vibr. Term | k | t | t * [Fe(bpy)] | ||
---|---|---|---|---|---|---|---|
[eV] | [cm] | [cms] | [s ] | [ps] | [ps] | ||
MLCT | MLCT | 0.15 | 1.73 × 10 | 2.64 × 10 | 4.56 × 10 | 0.22 | 0.03 |
MC | 0.27 | 8.97 × 10 | 3.24 × 10 | 2.91 × 10 | 3.4 | 0.72 | |
MLCT | MC | 0.40 | 1.84 × 10 | 1.63 × 10 | 3.01 × 10 | >1000 | >10 ps |
LS | 1.62 | 4.46 × 10 | 7.78 × 10 | 3.47 × 10 | 28.8 | >10 ps | |
MC | MC | 0.28 | 1.30 × 10 | 2.99 × 10 | 3.88 × 10 | 2.58 | 0.06 |
LS | 1.50 | 7.80 × 10 | 1.13 × 10 | 8.80 × 10 | 0.11 | 0.84 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Alías, M.; de Graaf, C. Controlling the Lifetime of the Triplet MLCT State in Fe(II) Polypyridyl Complexes through Ligand Modification. Inorganics 2020, 8, 16. https://doi.org/10.3390/inorganics8020016
Wu J, Alías M, de Graaf C. Controlling the Lifetime of the Triplet MLCT State in Fe(II) Polypyridyl Complexes through Ligand Modification. Inorganics. 2020; 8(2):16. https://doi.org/10.3390/inorganics8020016
Chicago/Turabian StyleWu, Jianfang, Marc Alías, and Coen de Graaf. 2020. "Controlling the Lifetime of the Triplet MLCT State in Fe(II) Polypyridyl Complexes through Ligand Modification" Inorganics 8, no. 2: 16. https://doi.org/10.3390/inorganics8020016
APA StyleWu, J., Alías, M., & de Graaf, C. (2020). Controlling the Lifetime of the Triplet MLCT State in Fe(II) Polypyridyl Complexes through Ligand Modification. Inorganics, 8(2), 16. https://doi.org/10.3390/inorganics8020016