Cryogels with Noble Metal Nanoparticles as Catalyst for “Green” Decomposition of Chlorophenols
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Catalyst Cryogel Preparation
2.3. Mechanical Properties of the Scaffold
2.4. Fourier-Transforminfraredspectroscopy (FTIR)
2.5. Transmission Electron Microscopy (TEM)
2.6. Scanning Electron Microscopy (SEM)
2.7. Thermogravimetric Analysis (TGA)
2.8. Catalytic Activity of Containing PdNPs
2.9. HPLC analysis of Chlorophenols
2.10. Gas Chromatography-Mass Spectrometry (GC-MS)
3. Results and Discussion
3.1. Cryogel Characterization
3.2. Catalytic Activity of PdNPs Incorporated into Cryogels
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Syafrudin, M.; Kristanti, R.A.; Yuniarto, A.; Hadibarata, T.; Rhee, J.; Al-Onazi, W.A.; Algarni, T.S.; Almarri, A.H.; Al-Mohaimeed, A.M. Pesticides in drinking water—A review. Int. J. Environ. Res. Public Health 2021, 18, 468. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yang, B.; Zhang, T.; Yu, G.; Deng, S.; Huang, J. Catalytic hydrodechlorination of 4-chlorophenol in an aqueous solution with Pd/Ni catalyst and formic acid. Ind. Eng. Chem. Res. 2010, 49, 4561–4565. [Google Scholar] [CrossRef]
- Igbinosa, E.O.; Odjadjare, E.E.; Chigor, V.N.; Igbinosa, I.H.; Emoghene, A.O.; Ekhaise, F.O.; Igiehon, N.O.; Idemudia, O.G. Toxicological profile of chlorophenols and their derivatives in the environment: The public health perspective. Sci. World J. 2013, 2013, 460215. [Google Scholar] [CrossRef]
- World Health Organization. A Global Overview of National Regulations and Standards for Drinking-Water Quality; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Khan, M.; Khan, M.A.; Khan, Q.; Habibi-Yangjeh, A.; Dang, A.; Maqbool, M. Review on the hazardous applications and photodegradation mechanisms of chlorophenols over different photocatalysts. Environ. Res. 2021, 195, 110742. [Google Scholar]
- Garba, Z.N.; Zhou, W.; Lawan, I.; Xiao, W.; Zhang, M.; Wang, L.; Chen, L.; Yuan, Z. An overview of chlorophenols as contaminants and their removal from wastewater by adsorption: A review. J. Environ. Manag. 2019, 241, 59–75. [Google Scholar] [CrossRef] [PubMed]
- Chi, N.; Xu, W. Synthesis of TiO2/gC 3N4 Hybrid Photocatalyst and its Application for Degradation of Chlorophenol as Organic Water Pollutant. Int. J. Electrochem. Sci 2022, 17, 2. [Google Scholar]
- Chen, X.; Ning, X.-a.; Lai, X.; Wang, Y.; Zhang, Y.; He, Y. Chlorophenols in textile dyeing sludge: Pollution characteristics and environmental risk control. J. Hazard. Mater. 2021, 416, 125721. [Google Scholar] [CrossRef]
- Kumar, D.; Sharma, C. Reduction of chlorophenols and sludge management from paper industry wastewater using electrocoagulation process. Sep. Sci. Technol. 2020, 55, 2844–2854. [Google Scholar] [CrossRef]
- Pozan, G.S.; Boz, I. Hydrodechlorination of 2, 3, 5-trichlorophenol in methanol/water on carbon supported Pd-Rh catalysts. Environ. Eng. Sci. 2008, 25, 1197–1202. [Google Scholar] [CrossRef]
- World Health Organization. Guidelines for Drinking-Water Quality: First Addendum to the Fourth Edition; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Chang, W.; Kim, H.; Lee, G.Y.; Ahn, B.J. Catalytic hydrodechlorination reaction of chlorophenols by Pd nanoparticles supported on graphene. Res. Chem. Intermed. 2016, 42, 71–82. [Google Scholar] [CrossRef]
- Le, X.; Dong, Z.; Li, X.; Zhang, W.; Le, M.; Ma, J. Fibrous nano-silica supported palladium nanoparticles: An efficient catalyst for the reduction of 4-nitrophenol and hydrodechlorination of 4-chlorophenol under mild conditions. Catal. Commun. 2015, 59, 21–25. [Google Scholar] [CrossRef]
- Ruiz-García, C.; Heras, F.; Calvo, L.; Alonso-Morales, N.; Rodríguez, J.; Gilarranz, M. N-doped CMK-3 carbons supporting palladium nanoparticles as catalysts for hydrodechlorination. Ind. Eng. Chem. Res. 2019, 58, 4355–4363. [Google Scholar] [CrossRef]
- Kopinke, F.-D.; Mackenzie, K.; Koehler, R.; Georgi, A. Alternative sources of hydrogen for hydrodechlorination of chlorinated organic compounds in water on Pd catalysts. Appl. Catal. A: Gen. 2004, 271, 119–128. [Google Scholar] [CrossRef]
- Shu, X.; Yang, Q.; Yao, F.; Zhong, Y.; Ren, W.; Chen, F.; Sun, J.; Ma, Y.; Fu, Z.; Wang, D. Electrocatalytic hydrodechlorination of 4-chlorophenol on Pd supported multi-walled carbon nanotubes particle electrodes. Chem. Eng. J. 2019, 358, 903–911. [Google Scholar] [CrossRef]
- Hu, R.; Li, C.; Wang, X.; Sun, Y.; Jia, H.; Su, H.; Zhang, Y. Photocatalytic activities of LaFeO3 and La2FeTiO6 in p-chlorophenol degradation under visible light. Catal. Commun. 2012, 29, 35–39. [Google Scholar] [CrossRef]
- Xia, S.; Zhang, X.; Zhou, X.; Meng, Y.; Xue, J.; Ni, Z. The influence of different Cu species onto multi-copper-contained hybrid materials’ photocatalytic property and mechanism of chlorophenol degradation. Appl. Catal. B: Environ. 2017, 214, 78–88. [Google Scholar] [CrossRef]
- Sekula jr, P.; Bačik, M.; Mosej, J.; Sekula sr, P.; Berillo, D.; Zeng, Y.; Kupka, D.; Václavíková, M.; Ivaničová, L. Elimination of 2-chlorophenol by two types of iron particles. Mater. Today: Proc. 2018, 5, 22889–22893. [Google Scholar] [CrossRef]
- Molina, C.; Calvo, L.; Gilarranz, M.; Casas, J.; Rodriguez, J. Hydrodechlorination of 4-chlorophenol in aqueous phase with Pt–Al pillared clays using formic acid as hydrogen source. Appl. Clay Sci. 2009, 45, 206–212. [Google Scholar] [CrossRef]
- Berillo, D.A.; Caplin, J.L.; Cundy, A.B.; Savina, I.N. A cryogel-based bioreactor for water treatment applications. Water Res. 2019, 153, 324–334. [Google Scholar] [CrossRef]
- Al-Jwaid, A.K.; Berillo, D.; Savina, I.N.; Cundy, A.B.; Caplin, J.L. One-step formation of three-dimensional macroporous bacterial sponges as a novel approach for the preparation of bioreactors for bioremediation and green treatment of water. RSC Adv. 2018, 8, 30813–30824. [Google Scholar] [CrossRef]
- Wang, Z.; Liao, Y.; Liu, J.; Huang, X. On-site separation and enrichment of heavy metal ions in environmental waters with multichannel in-tip microextraction device based on chitosan cryogel. Microchem. J. 2022, 175, 107107. [Google Scholar] [CrossRef]
- Purohit, S.; Chini, M.K.; Chakraborty, T.; Yadav, K.L.; Satapathi, S. Rapid removal of arsenic from water using metal oxide doped recyclable cross-linked chitosan cryogel. SN Appl. Sci. 2020, 2, 768. [Google Scholar] [CrossRef]
- Yin, M.; Li, X.; Liu, Y.; Ren, X. Functional chitosan/glycidyl methacrylate-based cryogels for efficient removal of cationic and anionic dyes and antibacterial applications. Carbohydr. Polym. 2021, 266, 118129. [Google Scholar] [CrossRef]
- Fan, M.; Gong, L.; Huang, Y.; Wang, D.; Gong, Z. Facile preparation of silver nanoparticle decorated chitosan cryogels for point-of-use water disinfection. Sci. Total Environ. 2018, 613, 1317–1323. [Google Scholar] [CrossRef]
- Berillo, D.; Mattiasson, B.; Kirsebom, H. Cryogelation of chitosan using noble-metal ions: In situ formation of nanoparticles. Biomacromolecules 2014, 15, 2246–2255. [Google Scholar] [CrossRef]
- Berillo, D.; Cundy, A. 3D-macroporous chitosan-based scaffolds with in situ formed Pd and Pt nanoparticles for nitrophenol reduction. Carbohydr. Polym. 2018, 192, 166–175. [Google Scholar] [CrossRef]
- Berillo, D. Gold nanoparticles incorporated into cryogel walls for efficient nitrophenol conversion. J. Clean. Prod. 2020, 247, 119089. [Google Scholar] [CrossRef]
- Akpınar, F.; Evli, S.; Güven, G.; Bayraktaroğlu, M.; Kilimci, U.; Uygun, M.; Aktaş Uygun, D. Peroxidase immobilized cryogels for phenolic compounds removal. Appl. Biochem. Biotechnol. 2020, 190, 138–147. [Google Scholar] [CrossRef]
- Calvo, L.; Gilarranz, M.; Casas, J.; Mohedano, A.; Rodríguez, J. Hydrodechlorination of 4-chlorophenol in water with formic acid using a Pd/activated carbon catalyst. J. Hazard. Mater. 2009, 161, 842–847. [Google Scholar] [CrossRef]
- Berillo, D.A.; Dyusebaeva, M.A. Synthesis of hydrazides of heterocyclic amines and their antimicrobial and spasmolytic activity. Saudi Pharm. J. 2022, 30, 1036–1043. [Google Scholar] [CrossRef]
- Vasily, D.S.; Alexei, A.T.; Nina, P.K. Platinum Complexes with Bioactive Nitroxyl Radicals: Synthesis and Antitumor Properties. In Nitroxides; Alexander, I.K., Ed.; IntechOpen: Rijeka, Croatia, 2012; Chapter 14; pp. 385–406. [Google Scholar]
- Yadav, V.; Jeong, S.; Ye, X.; Li, C.W. Surface-Limited Galvanic Replacement Reactions of Pd, Pt, and Au onto Ag Core Nanoparticles through Redox Potential Tuning. Chem. Mater. 2022, 34, 1897–1904. [Google Scholar] [CrossRef]
- He, F.; Liu, J.; Roberts, C.B.; Zhao, D. One-step “green” synthesis of Pd nanoparticles of controlled size and their catalytic activity for trichloroethene hydrodechlorination. Ind. Eng. Chem. Res. 2009, 48, 6550–6557. [Google Scholar] [CrossRef]
- Loach, P.A. Oxidation-reduction potentials, absorbance bands and molar absorbance of compounds used in biochemical studies. In Handbook of Biochemistry and Molecular Biology; CRC Press: Boca Raton, FL, USA, 2010; pp. 557–563. [Google Scholar]
- Wu, J.; Huang, Y.; Ye, W.; Li, Y. CO2 reduction: From the electrochemical to photochemical approach. Adv. Sci. 2017, 4, 1700194. [Google Scholar] [CrossRef]
- Kumar, D.; Kumar, P.; Pandey, J. Binary grafted chitosan film: Synthesis, characterization, antibacterial activity and prospects for food packaging. Int. J. Biol. Macromol. 2018, 115, 341–348. [Google Scholar] [CrossRef]
- Pieróg, M.; Ostrowska-Czubenko, J.; Gierszewska-Drużyńska, M. Thermal degradation of double crosslinked hydrogel chitosan membranes. Prog. Chem. Appl. Chitin Its Deriv. 2012, 17, 71–78. [Google Scholar]
- Li, J.; Chen, W.; Zhao, H.; Zheng, X.; Wu, L.; Pan, H.; Zhu, J.; Chen, Y.; Lu, J. Size-dependent catalytic activity over carbon-supported palladium nanoparticles in dehydrogenation of formic acid. J. Catal. 2017, 352, 371–381. [Google Scholar] [CrossRef]
- Hu, C.; Pulleri, J.K.; Ting, S.-W.; Chan, K.-Y. Activity of Pd/C for hydrogen generation in aqueous formic acid solution. Int. J. Hydrog. Energy 2014, 39, 381–390. [Google Scholar] [CrossRef]
- Martin, C.; Quintanilla, A.; Vega, G.; Casas, J.A. Formic acid-to-hydrogen on Pd/AC catalysts: Kinetic study with catalytic deactivation. Appl. Catal. B: Environ. 2022, 317, 121802. [Google Scholar] [CrossRef]
- Chen, T.; Kumar, G.; Harris, M.T.; Smith, P.J.; Payne, G.F. Enzymatic grafting of hexyloxyphenol onto chitosan to alter surface and rheological properties. Biotechnol. Bioeng. 2000, 70, 564–573. [Google Scholar] [CrossRef]
- Liptak, M.D.; Gross, K.C.; Seybold, P.G.; Feldgus, S.; Shields, G.C. Absolute p K a determinations for substituted phenols. J. Am. Chem. Soc. 2002, 124, 6421–6427. [Google Scholar] [CrossRef]
- Díaz, E.; Casas, J.A.; Mohedano, Á.F.; Calvo, L.; Gilarranz, M.A.; Rodríguez, J.J. Kinetics of the hydrodechlorination of 4-chlorophenol in water using Pd, Pt, and Rh/Al2O3 catalysts. Ind. Eng. Chem. Res. 2008, 47, 3840–3846. [Google Scholar] [CrossRef]
- Xiong, J.; Ma, Y. Catalytic hydrodechlorination of chlorophenols in a continuous flow Pd/CNT-Ni foam micro reactor using formic acid as a hydrogen source. Catalysts 2019, 9, 77. [Google Scholar] [CrossRef]
- Wu, C.; Zhou, L.; Zhou, Y.; Zhou, C.; Xia, S.; Rittmann, B.E. Dechlorination of 2, 4-dichlorophenol in a hydrogen-based membrane palladium-film reactor: Performance, mechanisms, and model development. Water Res. 2021, 188, 116465. [Google Scholar] [CrossRef]
- Zhang, Y.; Yu, C.; Hu, X.; Yu, J.; Mao, Z.; Wu, H.; Shi, M.; Liu, Q.; Xu, Y. Why does Pd-catalyzed electrochemical hydrodechlorination proceed much slower than hydrodechlorination using hydrogen gas? Electrochim. Acta 2021, 390, 138770. [Google Scholar] [CrossRef]
- Kopinke, F.-D.; Angeles-Wedler, D.; Fritsch, D.; Mackenzie, K. Pd-catalyzed hydrodechlorination of chlorinated aromatics in contaminated waters—Effects of surfactants, organic matter and catalyst protection by silicone coating. Appl. Catal. B: Environ. 2010, 96, 323–328. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berillo, D.A.; Savina, I.N. Cryogels with Noble Metal Nanoparticles as Catalyst for “Green” Decomposition of Chlorophenols. Inorganics 2023, 11, 23. https://doi.org/10.3390/inorganics11010023
Berillo DA, Savina IN. Cryogels with Noble Metal Nanoparticles as Catalyst for “Green” Decomposition of Chlorophenols. Inorganics. 2023; 11(1):23. https://doi.org/10.3390/inorganics11010023
Chicago/Turabian StyleBerillo, Dmitriy A., and Irina N. Savina. 2023. "Cryogels with Noble Metal Nanoparticles as Catalyst for “Green” Decomposition of Chlorophenols" Inorganics 11, no. 1: 23. https://doi.org/10.3390/inorganics11010023
APA StyleBerillo, D. A., & Savina, I. N. (2023). Cryogels with Noble Metal Nanoparticles as Catalyst for “Green” Decomposition of Chlorophenols. Inorganics, 11(1), 23. https://doi.org/10.3390/inorganics11010023