Application of Gap Mode Ultrasensitive P-GERTs in SERS-Based Rapid Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Synthesis of GERTs
2.3. Synthesis of the SERS Tags
2.4. Detection of N Protein
2.5. Characterization Equipment
3. Results
3.1. The Properties of P-GERTs
- Uniform and stable signals from the gap structure [23]: The presence of a well-defined gap structure in P-GERTs ensures uniform and stable Raman signals;
- Larger specific surface area due to the irregular surface shape [7]: The irregular shape of P-GERTs provides a larger surface area, allowing for the adsorption of more molecules and enhanced Raman signals;
- Independence of external “hotspots” and internal “hotspots” for different functional modifications: The external “hotspots” and internal “hotspots” in P-GERTs are relatively independent, allowing for the modification of different functional molecules.
3.2. P-GERT Label Optimization
3.3. Detection Sensitivity and Actual Throat Swab System Verification
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gu, Y.Q.; Bi, X.Y.; Ye, J. Gap-enhanced resonance Raman tags for live-cell imaging. J. Mater. Chem. B. 2020, 8, 6944–6955. [Google Scholar] [CrossRef] [PubMed]
- Sha, M.Y.; Xu, H.X.; Natan, M.J.; Cromer, R. Surface enhanced Raman scattering tags for rapid and homogeneous detection of circulating tumor cells in the presence of human whole blood. J. Am. Chem. Soc. 2008, 130, 17214–17215. [Google Scholar] [CrossRef] [PubMed]
- Kircher, M.F.; Zerda, A.D.L.; Jokerst, J.V.; Zavaleta, C.L.; Kempen, P.J.; Mittra, E.; Pitter, K.; Huang, R.M.; Campos, C.; Habte, F.; et al. A brain tumor molecular imaging strategy using a new triple-modality MRI-photoacoustic Raman nanoparticle. Nat. Med. 2012, 18, 829–834. [Google Scholar] [CrossRef] [PubMed]
- Xie, W.; Walkenfort, B.; Schlucker, S. Label-free SERS monitoring of chemical reactions catalyzed by small gold nanoparticles using 3D plasmonic superstructures. J. Am. Chem. Soc. 2013, 135, 1657–1660. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Zhang, J.W.; Sun, L.; Koo, T.W.; Chan, S.; Sundararajan, N.; Yamakawa, M.; Berlin, A.A. Composite organic–inorganic nanoparticles (COINs) with chemically encoded optical signatures. Nano Lett. 2005, 5, 49–54. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, P.; Muhammed, M.A.H.; Alsaiari, S.K.; Moosa, B.; Almalik, A.; Kumar, A.; Ringe, E.; Khashab, N.M. Tunable and linker free nanogaps in coreshell plasmonic nanorods for selective and quantitative detection of circulating tumor cells by SERS. ACS Appl. Mater. Interfaces 2017, 9, 37597–37605. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Q.; Gu, Y.Q.; He, J.; Thackray, B.D.; Ye, J. Ultrabright gap-enhanced Raman tags for high-speed bioimaging. Nat. Commun. 2019, 10, 3905–3916. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.S.; Wu, X.H.; Wu, L.; Zhai, J.M.; Li, S.J.; Kou, Y.C.; Peng, W.; Zheng, Q.N.; Tian, J.H.; Zhang, Y.J.; et al. Systematic Optimization of Universal Real-Time Hypersensitive Fast Detection Method for HBsAg in Serum Based on SERS. Anal. Chem. 2024, 96, 6784–6793. [Google Scholar] [CrossRef]
- Li, C.C.; Huang, Y.M.; Li, X.Y.; Zhang, Y.R.; Chen, Q.L.; Ye, Z.W.; Alqarni, Z.; Bell, S.E.J.; Xu, Y.K. Towards practical and sustainable SERS: A review of recent developments in the construction of multifunctional enhancing substrates. J. Mater. Chem. C 2021, 9, 11517–11552. [Google Scholar] [CrossRef]
- Yang, H.Z.; Li, J.Y.; Rao, Y.; Yang, L.N.; Xue, Y.D.; Zhang, Y.; Yang, Z.J.; Li, J. Ultrasensitive multiplex SERS immunoassay based on porous Au-Ag alloy nanoparticle-amplified Raman signal probe and encoded photonic crystal beads. Mikrochim. Acta 2022, 190, 13–22. [Google Scholar] [CrossRef]
- Luo, X.J.; Zhao, X.J.; Wallace, G.Q.; Brunet, M.H.; Wilkinson, K.J.; Wu, P.; Cai, C.X.; Bazuin, C.G.; Masson, J.F. Multiplexed SERS Detection of Microcystins with Aptamer-Driven Core-Satellite Assemblies. ACS Appl. Mater. Interfaces 2021, 13, 6545–6556. [Google Scholar] [CrossRef] [PubMed]
- Nam, W.; Ren, X.; Tali, S.A.S.; Ghassemi, P.; Kim, I.; Agah, M.; Zhou, W. Refractive-index-insensitive nanolaminated SERS substrates for label-free Raman profiling and classification of living cancer cells. Nano Lett. 2019, 19, 7273–7281. [Google Scholar] [CrossRef] [PubMed]
- Shan, B.B.; Pu, Y.H.; Chen, Y.F.; Liao, M.L.; Li, M. Novel SERS labels: Rational design, functional integration and biomedical applications. Coordin. Chem. Rev. 2018, 371, 11–37. [Google Scholar] [CrossRef]
- Khlebtsov, B.N.; Burov, A.M.; Bratashov, D.N.; Tumskiy, R.S.; Khlebtsov, N.G. Petal-like Gap-Enhanced Raman Tags with Controllable Structures for High-Speed Raman Imaging. Langmuir 2020, 36, 5546–5553. [Google Scholar] [CrossRef] [PubMed]
- Khlebtsov, N.G.; Lin, L.; Khlebtsov, B.N.; Ye, J. Gap-enhanced Raman tags: Fabrication, optical properties, and theranostic applications. Theranostics 2020, 10, 2067–2094. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.Q.; Gao, X.; Xu, C.; Liu, D.B. SERS Tags for Biomedical Detection and Bioimaging. Theranostics 2022, 12, 1870–1903. [Google Scholar] [CrossRef]
- Surjit, M.; Lal, S.K. The SARS-CoV nucleocapsid protein: A protein with multifarious activities. Infect. Genet. Evol. 2008, 8, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Nayak, T.R.; Andreou, C.; Oseledchyk, A.; Marcus, W.D.; Wong, H.C.; Massagué, J.; Kircher, M.F. Tissue factor-specific ultra-bright serrs nanostars for raman detection of pulmonary micrometastases. Nanoscale 2017, 9, 1110–1119. [Google Scholar] [CrossRef]
- Lin, L.; Zapata, M.; Xiong, M.; Liu, Z.H.; Wang, S.S.; Xu, H.; Borisov, A.G.; Gu, H.C.; Nordlander, P.; Aizpurua, J.; et al. Nanooptics of plasmonic nanomatryoshkas: Shrinking the size of a core–shell junction to subnanometer. Nano Lett. 2015, 15, 6419–6428. [Google Scholar] [CrossRef]
- Yin, B.H.; Ho, W.K.H.; Xia, X.Y.; Chan, C.K.W.; Zhang, Q.; Ng, Y.M.; Lam, C.Y.K.; Cheung, J.C.W.; Wang, J.F.; Yang, M.; et al. A Multilayered Mesoporous Gold Nanoarchitecture for Ultraeffective Near-Infrared Light-Controlled Chemo/Photothermal Therapy for Cancer Guided by SERS Imaging. Small 2023, 19, 2206762–2206775. [Google Scholar] [CrossRef]
- Thomas, R.G.; Jeong, Y.Y. NIRF Heptamethine Cyanine Dye Nanocomplexes for Multi Modal Theranosis of Tumors. Chonnam Med. J. 2017, 53, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Hao, F.; Nehl, C.L.; Hafner, J.H.; Nordlander, P. Plasmon Resonances of a Gold Nanostar. Nano Lett. 2007, 7, 729–732. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.Y.; Yao, Y.Y.; Wang, Y.L.; Kannan, P.; Chen, L.F.; Guo, L.H. A universal strategy for the incorporation of internal standards into SERS substrates to improve the reproducibility of Raman signals. Analyst 2021, 146, 7168–7777. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, M.; Xu, S.; Guan, P.-C.; Zhang, Y.-J.; Li, J.-F. Application of Gap Mode Ultrasensitive P-GERTs in SERS-Based Rapid Detection. Photonics 2024, 11, 708. https://doi.org/10.3390/photonics11080708
Zhang M, Xu S, Guan P-C, Zhang Y-J, Li J-F. Application of Gap Mode Ultrasensitive P-GERTs in SERS-Based Rapid Detection. Photonics. 2024; 11(8):708. https://doi.org/10.3390/photonics11080708
Chicago/Turabian StyleZhang, Mingzhong, Shanshan Xu, Peng-Cheng Guan, Yue-Jiao Zhang, and Jian-Feng Li. 2024. "Application of Gap Mode Ultrasensitive P-GERTs in SERS-Based Rapid Detection" Photonics 11, no. 8: 708. https://doi.org/10.3390/photonics11080708
APA StyleZhang, M., Xu, S., Guan, P. -C., Zhang, Y. -J., & Li, J. -F. (2024). Application of Gap Mode Ultrasensitive P-GERTs in SERS-Based Rapid Detection. Photonics, 11(8), 708. https://doi.org/10.3390/photonics11080708