Arbitrary Time Shaping of Broadband Low-Coherence Light Based on Optical Parametric Amplification
Abstract
1. Introduction
2. Principle and Scheme
3. Simulations and Experimental Results
3.1. Simulations Results
3.2. Experimental Arrangement and Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Betti, R.; Hurricane, O.A. Inertial-confinement fusion with lasers. Nat. Phys. 2016, 12, 435–448. [Google Scholar] [CrossRef]
- Labaune, C. Incoherent light on the road to ignition. Nat. Phys. 2007, 3, 680–682. [Google Scholar] [CrossRef]
- Montgomery, D.S. Two decades of progress in understanding and control of laser plasma instabilities in indirect drive inertial fusion. Phys. Plasmas 2016, 23, 055601. [Google Scholar] [CrossRef]
- Kato, Y.; Mima, K.; Miyanaga, N.; Arinaga, S.; Kitagawa, Y.; Nakatsuka, M.; Yamanaka, C. Random Phasing of High-Power Lasers for Uniform Target Acceleration and Plasma-Instability Suppression. Phys. Rev. Lett. 1984, 53, 1057–1060. [Google Scholar] [CrossRef]
- Skupsky, S.; Short, R.W.; Kessler, T.; Craxton, R.S.; Letzring, S.; Soures, J.M. Improved laser-beam uniformity using the angular dispersion of frequency-modulated light. J. Appl. Phys. 1989, 66, 3456–3462. [Google Scholar] [CrossRef]
- Arefiev, A.; Gong, Z.; Robinson, A.P.L. Energy gain by laser-accelerated electrons in a strong magnetic field. Phys. Rev. E 2020, 101, 043201. [Google Scholar] [CrossRef]
- Hussein, A.E.; Arefiev, A.V.; Batson, T.; Chen, H.; Craxton, R.S.; Davies, A.S.; Froula, D.H.; Gong, Z.; Haberberger, D.; Ma, Y.; et al. Towards the Optimisation of Direct Laser Acceleration. J. Phys. 2021, 23, 023031. [Google Scholar] [CrossRef]
- Nakano, H.; Kanabe, T.; Yagi, K.; Tsubakimoto, K.; Nakatsuka, M.; Nakai, S. Amplification and propagation of partially coherent amplified spontaneous emission from Nd-glass. Opt. Commun. 1990, 78, 123–127. [Google Scholar] [CrossRef]
- Nakano, H.; Tsubakimoto, K.; Miyanaga, N.; Nakatsuka, M.; Kanabe, T.; Azechi, H.; Jitsuno, T.; Nakai, S. Spectrally dispersed amplified spontaneous emission for improving irradiation uniformity into high- power Nd-glass laser system. J. Appl. Phys. 1993, 73, 2122–2131. [Google Scholar] [CrossRef]
- Nakano, H.; Miyanaga, N.; Yagi, K.; Tsubakimoto, K.; Kanabe, T.; Nakatsuka, M.; Nakai, S. Partially coherent light generated by using single and multimode optical fibers in a high-power Nd-glass laser system. Appl. Phys. Lett. 1993, 63, 580–582. [Google Scholar] [CrossRef]
- Cui, Y.; Gao, Y.; Rao, D.; Liu, D.; Li, F.; Ji, L.; Shi, H.; Liu, J.; Zhao, X.; Feng, W.; et al. High-energy low-temporal-coherence instantaneous broadband pulse system. Opt. Lett. 2019, 44, 2859–2862. [Google Scholar] [CrossRef]
- Li, F.; Gao, Y.; Ji, L.; He, R.; Liu, D.; Zhao, X.; Xia, L.; Feng, L.; Shi, H.; Rao, D.; et al. Characteristics of the beam smoothing using the combination of induced spatial incoherence and continuous phase plate. Opt. Laser Technol. 2022, 145, 107537. [Google Scholar] [CrossRef]
- Dorrer, C.; Hill, E.M.; Zuegel, J.D. High-energy parametric amplification of spectrally incoherent broadband pulses. Opt. Express 2020, 28, 451–471. [Google Scholar] [CrossRef] [PubMed]
- Fan, W.; Jiang, Y.; Wang, J.; Wang, X.; Huang, D.; Lu, X.; Wei, H.; Li, G.; Pan, X.; Qiao, Z.; et al. Progress of the injection laser system of SG-II. High Power Laser Sci. Eng. 2018, 6, e34. [Google Scholar] [CrossRef]
- Browning, D.F.; Rothenberg, J.E.; Wilcox, R.B. The issue of FM to AM conversion on the National Ignition Facility. In Proceedings of the Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, Pts 1 and 2, Monterey, CA, USA, 7–12 June 1998; Volume 3492, pp. 51–61. [Google Scholar]
- Bouyer, C.; Parreault, R.; Roquin, N.; Natoli, J.-Y.; Lamaignère, L. Impact of temporal modulations on laser-induced damage of fused silica at 351 nm. High Power Laser Sci. Eng. 2023, 11, e5. [Google Scholar] [CrossRef]
- Sui, D.; Li, R.; Sun, M.; Wang, X. All-optical arbitrary temporal shaping technology of broadband low-coherence light based on saturable absorption effect. In Proceedings of the Volume 11181, High-Power Lasers and Applications X, Hangzhou, China, 19 November 2019; Volume 111810, pp. 47–55. [Google Scholar]
- Dorrer, C.; Spilatro, M. Spectral and temporal shaping of spectrally incoherent pulses in the infrared and ultraviolet. Opt. Express 2022, 30, 4942–4953. [Google Scholar] [CrossRef]
- Devaux, F.; Lantz, E. Parametric amplification of a polychromatic image. Optica 1995, 12, 2245–2252. [Google Scholar] [CrossRef]
- Manzoni, C.; Cirmi, G.; Brida, D.; De Silvestri, S.; Cerullo, G. Optical-parametric-generation process driven by femto-second pulses: Timing and carrier-envelope phase properties. Phys. Rev. 2009, 73, 033818. [Google Scholar] [CrossRef]
- Picozzi, A.; Montes, C.; Haelterman, M. Coherence properties of the parametric three-wave interaction driven from an incoherent pump. Phys. Rev. E 2002, 66, 056605. [Google Scholar] [CrossRef]
- Thomson, J.J.; Karush, J.I. Effects of finite-bandwidth driver on parametric-instability. Phys. Fluids 1974, 17, 1608–1613. [Google Scholar] [CrossRef]
- Obenschain, S.P.; Luhmann, J.N.C.; Greiling, P.T. Effects of Finite-Bandwidth Driver Pumps on Parametric-Decay Instability. Phys. Rev. Lett. 1976, 36, 1309–1312. [Google Scholar] [CrossRef]
- Palastro, J.P.; Shaw, J.G.; Follett, R.K.; Colaïtis, A.; Turnbull, D.; Maximov, A.V.; Goncharov, V.N.; Froula, D.H. Resonance absorption of a broadband laser pulse. Phys. Plasmas 2018, 25, 123104. [Google Scholar] [CrossRef]
- Arisholm, G. Quantum noise initiation and macroscopic fluctuations in optical parametric oscillators. Optica 1999, 16, 117–127. [Google Scholar] [CrossRef]
- Milonni, P.W.; Auerbach, J.; Eimerl, D. Frequency conversion modeling with spatially and temporally varying beams. In Proceedings of the 1st Annual International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, Monterey, CA, USA, 8 December 1995. [Google Scholar]
- Zhu, J.; Zhu, J.; Li, X.; Zhu, B.; Ma, W.; Lu, X.; Fan, W.; Liu, Z.; Zhou, S.; Xu, G.; et al. Status and development of high-power laser facilities at the NLHPLP. High Power Laser Sci. Eng. 2018, 6, e55. [Google Scholar] [CrossRef]
- Roeder, S.; Zobus, Y.; Brabetz, C.; Bagnoud, V. How the laser beam size conditions the temporal contrast in pulse stretchers of chirped-pulse amplification lasers. High Power Laser Sci. Eng. 2022, 10, e34. [Google Scholar] [CrossRef]
- Zou, L.; Geng, Y.; Liu, B.; Chen, F.; Zhou, W.; Peng, Z.; Hu, D.; Yuan, Q.; Liu, G.; Liu, L. CNN-based neural network model for amplified laser pulse temporal shape prediction with dynamic requirement in high-power laser facility. Opt. Express 2022, 30, 29885–29899. [Google Scholar] [CrossRef] [PubMed]
- Zuo, J.X.; Lin, X.C. High-Power Laser Systems. Laser Photonics Rev. 2022, 16, 2100741. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Wang, X.; Sun, M.; Liang, X.; Wei, H.; Fan, W. Arbitrary Time Shaping of Broadband Low-Coherence Light Based on Optical Parametric Amplification. Photonics 2023, 10, 673. https://doi.org/10.3390/photonics10060673
Wang Y, Wang X, Sun M, Liang X, Wei H, Fan W. Arbitrary Time Shaping of Broadband Low-Coherence Light Based on Optical Parametric Amplification. Photonics. 2023; 10(6):673. https://doi.org/10.3390/photonics10060673
Chicago/Turabian StyleWang, Yue, Xiaochao Wang, Meizhi Sun, Xiao Liang, Hui Wei, and Wei Fan. 2023. "Arbitrary Time Shaping of Broadband Low-Coherence Light Based on Optical Parametric Amplification" Photonics 10, no. 6: 673. https://doi.org/10.3390/photonics10060673
APA StyleWang, Y., Wang, X., Sun, M., Liang, X., Wei, H., & Fan, W. (2023). Arbitrary Time Shaping of Broadband Low-Coherence Light Based on Optical Parametric Amplification. Photonics, 10(6), 673. https://doi.org/10.3390/photonics10060673