Ultra-Broadband, Compact Arbitrary Ratio Power Splitters Enabled by Adiabatic Sub-Wavelength Grating
Abstract
1. Introduction
2. Device Schematic and Operation Principle
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pitris, S.; Moralis-Pegios, M.; Alexoudi, T.; Ban, Y.; De Heyn, P.; Van Campenhout, J.; Lambrecht, J.; Ramon, H.; Yin, X.; Bauwelinck, J.; et al. O-Band Silicon Photonic Transmitters for Datacom and Computercom Interconnects. J. Light. Technol. 2019, 37, 5140–5148. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Y.; Wan, Y.; Yu, Y.; Zhang, Y.; Hu, X.; Xiao, X.; Xu, H.; Pan, B. Silicon photonics for high-capacity data communications. Photon. Res. 2022, 10, A106–A134. [Google Scholar] [CrossRef]
- Li, H.; Casper, B.; Balamurugan, G.; Sakib, M.; Sun, J.; Driscoll, J.; Kumar, R.; Jayatilleka, H.; Rong, H.; Jaussi, J. A 112 Gb/s PAM4 Silicon Photonics Transmitter With Microring Modulator and CMOS Driver. J. Light. Technol. 2020, 38, 131–138. [Google Scholar] [CrossRef]
- Ferrotti, T.; Chantre, A.; Blampey, B.; Duprez, H.; Milesi, F.; Myko, A.; Sciancalepore, C.; Hassan, K.; Harduin, J.; Baudot, C.; et al. Power-efficient carrier-depletion SOI Mach-Zehnder modulators for 4x25Gbit/s operation in the O-band. In Silicon Photonics X; SPIE: Bellingham, WA, USA, 2015. [Google Scholar]
- Stojanović, V.; Ram, R.J.; Popović, M.; Lin, S.; Moazeni, S.; Wade, M.; Sun, C.; Alloatti, L.; Atabaki, A.; Pavanello, F.; et al. Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes [Invited]. Opt. Express 2018, 26, 13106–13121. [Google Scholar] [CrossRef]
- Giewont, K.; Hu, S.; Peng, B.; Rakowski, M.; Rauch, S.; Rosenberg, J.C.; Sahin, A.; Stobert, I.; Stricker, A.; Nummy, K.; et al. 300-Mm Monolithic Silicon Photonics Foundry Technology. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–11. [Google Scholar] [CrossRef]
- Gupta, R.K.; Chandran, S.; Das, B.K. Wavelength-Independent Directional Couplers for Integrated Silicon Photonics. J. Light. Technol. 2017, 35, 4916–4923. [Google Scholar] [CrossRef]
- Peter, E.; Thomas, A.; Dhawan, A.; Sarangi, S.R. Active microring based tunable optical power splitters. Opt. Commun. 2016, 359, 311–315. [Google Scholar] [CrossRef]
- Chen, S.; Shi, Y.; He, S.; Dai, D. Low-Loss and Broadband 2 × 2 Silicon Thermo-Optic Mach–Zehnder Switch with Bent Directional Couplers. Opt. Lett. 2016, 41, 836–839. [Google Scholar] [CrossRef]
- Jain, S.; Rajput, S.; Kaushik, V.; Kumar, M. High speed optical modulator based on silicon slotted-rib waveguide. Opt. Commun. 2019, 434, 49–53. [Google Scholar] [CrossRef]
- Barrios, C.; de Almeida, V.; Lipson, M. Low-power-consumption short-length and high-modulation-depth silicon electrooptic modulator. J. Light. Technol. 2003, 21, 1089–1098. [Google Scholar] [CrossRef]
- Horst, F.; Green, W.M.; Assefa, S.; Shank, S.M.; Vlasov, Y.A.; Offrein, B.J. Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing. Opt. Express 2013, 21, 11652–11658. [Google Scholar] [CrossRef] [PubMed]
- Feng, C.; Ying, Z.; Zhao, Z.; Gu, J.; Pan, D.Z.; Chen, R.T. Wavelength-division-multiplexing (WDM)-based integrated electronic–photonic switching network (EPSN) for high-speed data processing and transportation. Nanophotonics 2020, 9, 4579–4588. [Google Scholar] [CrossRef]
- Poulton, C.V.; Yaacobi, A.; Cole, D.B.; Byrd, M.J.; Raval, M.; Vermeulen, D.; Watts, M.R. Coherent solid-state LIDAR with silicon photonic optical phased arrays. Opt. Lett. 2017, 42, 4091–4094. [Google Scholar] [CrossRef] [PubMed]
- Poulton, C.V.; Byrd, M.J.; Russo, P.; Timurdogan, E.; Khandaker, M.; Vermeulen, D.; Watts, M.R. Long-Range LiDAR and Free-Space Data Communication With High-Performance Optical Phased Arrays. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–8. [Google Scholar] [CrossRef]
- Totovic, A.; Giamougiannis, G.; Tsakyridis, A.; Lazovsky, D.; Pleros, N. Programmable photonic neural networks combining WDM with coherent linear optics. Sci. Rep. 2022, 12, 5605. [Google Scholar] [CrossRef]
- Moralis-Pegios, M.; Mourgias-Alexandris, G.; Tsakyridis, A.; Giamougiannis, G.; Totovic, A.; Dabos, G.; Passalis, N.; Kirtas, M.; Rutirawut, T.; Gardes, F.Y.; et al. Neuromorphic Silicon Photonics and Hardware-Aware Deep Learning for High-Speed Inference. J. Light. Technol. 2022, 40, 3243–3254. [Google Scholar] [CrossRef]
- Han, L.; Kuo, B.P.-P.; Alic, N.; Radic, S. Ultra-broadband multimode 3dB optical power splitter using an adiabatic coupler and a Y-branch. Opt. Express 2018, 26, 14800–14809. [Google Scholar] [CrossRef]
- Chen, W.; Lin, J.; Li, H.; Wang, P.; Dai, S.; Liu, Y.; Yao, R.; Li, J.; Fu, Q.; Dai, T.; et al. Broadband multimode 3 dB optical power splitter using tapered couplers. Opt. Express 2022, 30, 46236. [Google Scholar] [CrossRef]
- Hu, M.; Huang, J.; Scarmozzino, R.; Levy, M.; Osgood, R. A low-loss and compact waveguide Y-branch using refractive-index tapering. IEEE Photon. Technol. Lett. 1997, 9, 203–205. [Google Scholar] [CrossRef]
- Kim, H.; Shin, H. Tailorable and Broadband On-Chip Optical Power Splitter. Appl. Sci. 2019, 9, 4239. [Google Scholar] [CrossRef]
- Lu, Z.; Yun, H.; Wang, Y.; Chen, Z.; Zhang, F.; Jaeger, N.A.F.; Chrostowski, L. Broadband silicon photonic directional coupler using asymmetric-waveguide based phase control. Opt. Express 2015, 23, 3795–3808. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Chiang, K.S. Ultra-broadband mode multiplexers based on three-dimensional asymmetric waveguide branches. Opt. Lett. 2017, 42, 407–410. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Chao, Q.; Huang, H.; Zhao, Y.; Li, Y.; Tao, L.; She, X.; Liao, H.; Huang, R.; Zhu, Z.; et al. Compact, broadband, and low-loss silicon photonic arbitrary ratio power splitter using adiabatic taper. Appl. Opt. 2021, 60, 413–416. [Google Scholar] [CrossRef] [PubMed]
- Mao, D.; Alam, S.; Zhang, J.; Zhu, M.; Koh, P.-C.; Plant, D.V.; Wang, Y.; El-Fiky, E.; Xu, L.; Kumar, A.; et al. Adiabatic Coupler With Design-Intended Splitting Ratio. J. Light. Technol. 2019, 37, 6147–6155. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.; Kumar, A.; El-Fiky, E.; Mao, D.; Tamazin, H.; Jacques, M.; Xing, Z.; Saber, G.; Plant, D.V. Compact high-performance adiabatic 3-dB coupler enabled by subwavelength grating slot in the silicon-on-insulator platform. Opt. Express 2018, 26, 29873–29885. [Google Scholar] [CrossRef]
- Zhao, S.; Liu, W.; Chen, J.; Ding, Z.; Shi, Y. Broadband Arbitrary Ratio Power Splitters Based on Directional Couplers With Subwavelength Structure. IEEE Photon. Technol. Lett. 2021, 33, 479–482. [Google Scholar] [CrossRef]
- Ramadan, T.; Scarmozzino, R.; Osgood, R. Adiabatic couplers: Design rules and optimization. J. Light. Technol. 1998, 16, 277–283. [Google Scholar] [CrossRef]
- Yun, H.; Chrostowski, L.; Jaeger, N.A.F. Ultra-broadband 2 × 2 adiabatic 3 dB coupler using subwavelength-grating-assisted silicon-on-insulator strip waveguides. Opt. Lett. 2018, 43, 1935–1938. [Google Scholar] [CrossRef]
- Papadovasilakis, M.; Chandran, S.; Gebregiorgis, Y.; Bian, Y.; Rakowski, M.; Krishnamurthy, S.; Aboketaf, A.; Augur, R.; Viegas, J. Fabrication tolerant and wavelength independent arbitrary power splitters on a monolithic silicon photonics platform. Opt. Express 2022, 30, 33780–33791. [Google Scholar] [CrossRef]
Symbol | Value | Symbol | Value |
---|---|---|---|
Wc | 0.12 μm | Lt | 15 μm |
W1 | 0.61 μm | Lc | 20 μm |
W2 | 0.35 μm | Lp | 0.1 μm |
W3 | 0.48 μm | Λ | 0.2 μm |
W4 | 0.48 μm | G | 0.1 μm |
Ls | 10 μm |
Splitting Ratio | W4 (nm) | Lc (μm) | Wc (nm) |
---|---|---|---|
50%:50% | 480 | 11 | 115 |
60%:40% | 473 | 16 | 115 |
70%:30% | 466 | 15 | 105 |
80%:20% | 457 | 14 | 110 |
90%:10% | 444 | 14 | 115 |
Reference | Type | Size (μm) | Operation Band | Bandwidth (nm) | EL (dB) |
---|---|---|---|---|---|
[26] | SWG, Adiabatic DC | 65 | S + C + L | 100 | <0.2 |
[25] | Adiabatic DC | 240 | O | 200 | NA |
[24] | Adiabatic DC | 80 | S + C + L | 100 | 0.05 |
[19] | MMI | 52.5 | S + C + L | 100 | <1.5 |
[30] | Asymmetric DC | 60 | O | 80 | <0.38 |
This work | ASWG, DC | 46 | E + S + C + L + U | 250 | <0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Zhao, Y.; Sheng, Z.; Gan, F. Ultra-Broadband, Compact Arbitrary Ratio Power Splitters Enabled by Adiabatic Sub-Wavelength Grating. Photonics 2023, 10, 578. https://doi.org/10.3390/photonics10050578
Liu X, Zhao Y, Sheng Z, Gan F. Ultra-Broadband, Compact Arbitrary Ratio Power Splitters Enabled by Adiabatic Sub-Wavelength Grating. Photonics. 2023; 10(5):578. https://doi.org/10.3390/photonics10050578
Chicago/Turabian StyleLiu, Xiang, Yingxuan Zhao, Zhen Sheng, and Fuwan Gan. 2023. "Ultra-Broadband, Compact Arbitrary Ratio Power Splitters Enabled by Adiabatic Sub-Wavelength Grating" Photonics 10, no. 5: 578. https://doi.org/10.3390/photonics10050578
APA StyleLiu, X., Zhao, Y., Sheng, Z., & Gan, F. (2023). Ultra-Broadband, Compact Arbitrary Ratio Power Splitters Enabled by Adiabatic Sub-Wavelength Grating. Photonics, 10(5), 578. https://doi.org/10.3390/photonics10050578