Stable Acoustic Pulling in Two-Dimensional Phononic Crystal Waveguides Based on Mode Manipulation
Abstract
1. Introduction
2. The Model
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khandurina, J.; Guttman, A. Bioanalysis in Microfluidic Devices. J. Chromatogr. A 2002, 943, 159–183. [Google Scholar] [CrossRef] [PubMed]
- Ozcelik, A.; Rufo, J.; Guo, F.; Gu, Y.; Li, P.; Lata, J.; Huang, T.J. Acoustic Tweezers for the Life Sciences. Nat. Methods 2018, 15, 1021–1028. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Segev, M. Highlighting Photonics: Looking into the next Decade. eLight 2021, 1, 2. [Google Scholar] [CrossRef]
- Cook, L.J.; Mazilu, D.A.; Mazilu, I.; Simpson, B.M.; Schwen, E.M.; Kim, V.O.; Seredinski, A.M. Cooperative Sequential-Adsorption Model in Two Dimensions with Experimental Applications for Ionic Self-Assembly of Nanoparticles. Phys. Rev. E 2014, 89, 062411. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ashkin, A. Optical Trapping and Manipulation of Neutral Particles Using Lasers. Proc. Natl. Acad. Sci. USA 1997, 94, 4853–4860. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, T.; Masui, K.; Minoshima, W.; Hosokawa, C. Recent Advances in Optical Manipulation of Cells and Molecules for Biological Science. J. Photochem. Photobiol. C Photochem. Rev. 2022, 53, 100554. [Google Scholar] [CrossRef]
- Zhong, M.-C.; Wei, X.-B.; Zhou, J.-H.; Wang, Z.-Q.; Li, Y.-M. Trapping Red Blood Cells in Living Animals Using Optical Tweezers. Nat. Commun. 2013, 4, 1768. [Google Scholar] [CrossRef]
- Jonáš, A.; Zemánek, P. Light at Work: The Use of Optical Forces for Particle Manipulation, Sorting, and Analysis. Electrophoresis 2008, 29, 4813–4851. [Google Scholar] [CrossRef]
- Wen, F.; Zhang, X.; Ye, H.; Wang, W.; Wang, H.; Zhang, Y.; Dai, Z.; Qiu, C.-W. Efficient and Tunable Photoinduced Honeycomb Lattice in an Atomic Ensemble. Laser Photonics Rev. 2018, 12, 1800050. [Google Scholar] [CrossRef]
- Blázquez-Castro, A. Optical Tweezers: Phototoxicity and Thermal Stress in Cells and Biomolecules. Micromachines 2019, 10, 507. [Google Scholar] [CrossRef]
- Yu, P.; Liu, Y.; Zhao, Q.; Wang, Z.; Li, Y.-M.; Gong, L. Reducing Photodamage in Optical Trapping of Individual Cells in Living Zebrafish. Appl. Phys. Express 2020, 13, 032008. [Google Scholar] [CrossRef]
- Foo, J.-J.; Liu, K.-K.; Chan, V. Thermal Effect on a Viscously Deformed Liposome in a Laser Trap. Ann. Biomed. Eng. 2003, 31, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Shan, X.; Wang, F.; Wang, D.; Wen, S.; Chen, C.; Di, X.; Nie, P.; Liao, J.; Liu, Y.; Ding, L.; et al. Optical Tweezers beyond Refractive Index Mismatch Using Highly Doped Upconversion Nanoparticles. Nat. Nanotechnol. 2021, 16, 531–537. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Zhang, Y.; Zhang, S.; Adam, A.J.L.; Min, C.; Urbach, H.P.; Yuan, X. Nonlinear Optical Trapping Effect with Reverse Saturable Absorption. Adv. Photonics 2023, 5, 046006. [Google Scholar] [CrossRef]
- Zhang, P.; Rufo, J.; Chen, C.; Xia, J.; Tian, Z.; Zhang, L.; Hao, N.; Zhong, Z.; Gu, Y.; Chakrabarty, K.; et al. Acoustoelectronic Nanotweezers Enable Dynamic and Large-Scale Control of Nanomaterials. Nat. Commun. 2021, 12, 3844. [Google Scholar] [CrossRef] [PubMed]
- Wiklund, M. Acoustofluidics 12: Biocompatibility and Cell Viability in Microfluidic Acoustic Resonators. Lab. Chip 2012, 12, 2018–2028. [Google Scholar] [CrossRef] [PubMed]
- Hultström, J.; Manneberg, O.; Dopf, K.; Hertz, H.M.; Brismar, H.; Wiklund, M. Proliferation and Viability of Adherent Cells Manipulated by Standing-Wave Ultrasound in a Microfluidic Chip. Ultrasound Med. Biol. 2007, 33, 145–151. [Google Scholar] [CrossRef]
- Mohanty, S.; Khalil, I.S.M.; Misra, S. Contactless Acoustic Micro/Nano Manipulation: A Paradigm for next Generation Applications in Life Sciences. Proc. R. Soc. Math. Phys. Eng. Sci. 2020, 476, 20200621. [Google Scholar] [CrossRef]
- Zhu, H.; Zhang, P.; Zhong, Z.; Xia, J.; Rich, J.; Mai, J.; Su, X.; Tian, Z.; Bachman, H.; Rufo, J.; et al. Acoustohydrodynamic Tweezers via Spatial Arrangement of Streaming Vortices. Sci. Adv. 2021, 7, eabc7885. [Google Scholar] [CrossRef]
- Wu, M.; Ouyang, Y.; Wang, Z.; Zhang, R.; Huang, P.-H.; Chen, C.; Li, H.; Li, P.; Quinn, D.; Dao, M.; et al. Isolation of Exosomes from Whole Blood by Integrating Acoustics and Microfluidics. Proc. Natl. Acad. Sci. USA 2017, 114, 10584–10589. [Google Scholar] [CrossRef]
- Lakshmanan, A.; Jin, Z.; Nety, S.P.; Sawyer, D.P.; Lee-Gosselin, A.; Malounda, D.; Swift, M.B.; Maresca, D.; Shapiro, M.G. Acoustic Biosensors for Ultrasound Imaging of Enzyme Activity. Nat. Chem. Biol. 2020, 16, 988–996. [Google Scholar] [CrossRef] [PubMed]
- Dholakia, K.; Drinkwater, B.W.; Ritsch-Marte, M. Comparing Acoustic and Optical Forces for Biomedical Research. Nat. Rev. Phys. 2020, 2, 480–491. [Google Scholar] [CrossRef]
- Husseini, G.A.; Pitt, W.G.; Martins, A.M. Ultrasonically Triggered Drug Delivery: Breaking the Barrier. Colloids Surf. B Biointerfaces 2014, 123, 364–386. [Google Scholar] [CrossRef]
- Basha, S.A.; Salkho, N.; Dalibalta, S.; Husseini, G.A. Liposomes in Active, Passive and Acoustically-Triggered Drug Delivery. Mini Rev. Med. Chem. 2019, 19, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Moradi Kashkooli, F.; Jakhmola, A.; Hornsby, T.K.; Tavakkoli, J.; Kolios, M.C. Ultrasound-Mediated Nano Drug Delivery for Treating Cancer: Fundamental Physics to Future Directions. J. Control. Release 2023, 355, 552–578. [Google Scholar] [CrossRef]
- Ding, X.; Lin, S.-C.S.; Kiraly, B.; Yue, H.; Li, S.; Chiang, I.-K.; Shi, J.; Benkovic, S.J.; Huang, T.J. On-Chip Manipulation of Single Microparticles, Cells, and Organisms Using Surface Acoustic Waves. Proc. Natl. Acad. Sci. USA 2012, 109, 11105–11109. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yang, Y.; Liu, D.; Wang, Y.; Lu, M.; Zhang, Q.; Huang, J.; Li, Y.; Ma, T.; Yan, F.; et al. In-Vivo Programmable Acoustic Manipulation of Genetically Engineered Bacteria. Nat. Commun. 2023, 14, 3297. [Google Scholar] [CrossRef] [PubMed]
- Kolesnik, K.; Xu, M.; Lee, P.V.S.; Rajagopal, V.; Collins, D.J. Unconventional Acoustic Approaches for Localized and Designed Micromanipulation. Lab. Chip 2021, 21, 2837–2856. [Google Scholar] [CrossRef]
- Baudoin, M.; Thomas, J.-L.; Sahely, R.A.; Gerbedoen, J.-C.; Gong, Z.; Sivery, A.; Matar, O.B.; Smagin, N.; Favreau, P.; Vlandas, A. Spatially Selective Manipulation of Cells with Single-Beam Acoustical Tweezers. Nat. Commun. 2020, 11, 4244. [Google Scholar] [CrossRef]
- Terquem, A. KUNDT ET O. LEHMANN.—Ueber longitudinale Schwingungen and Klangfiguren in cylindrischen Flüssigkeitssaülen (Sur les vibrations longitudinales et les figures acoustiques dans les colonnes de liquides cylindriques); Annales de Poggendorff, t. CLIII, p. 1, 1874. J. Phys. Theor. Appl. 1876, 5, 159–161. [Google Scholar] [CrossRef]
- Meng, L.; Cai, F.; Chen, J.; Niu, L.; Li, Y.; Wu, J.; Zheng, H. Precise and Programmable Manipulation of Microbubbles by Two-Dimensional Standing Surface Acoustic Waves. Appl. Phys. Lett. 2012, 100, 173701. [Google Scholar] [CrossRef]
- Tang, Q.; Liu, P.; Guo, X.; Zhou, S.; Dong, Y. 2D Acoustofluidic Patterns in an Ultrasonic Chamber Modulated by Phononic Crystal Structures. Microfluid. Nanofluidics 2020, 24, 91. [Google Scholar] [CrossRef]
- Démoré, C.E.M.; Dahl, P.M.; Yang, Z.; Glynne-Jones, P.; Melzer, A.; Cochran, S.; MacDonald, M.P.; Spalding, G.C. Acoustic Tractor Beam. Phys. Rev. Lett. 2014, 112, 174302. [Google Scholar] [CrossRef] [PubMed]
- Baresch, D.; Thomas, J.-L.; Marchiano, R. Observation of a Single-Beam Gradient Force Acoustical Trap for Elastic Particles: Acoustical Tweezers. Phys. Rev. Lett. 2016, 116, 024301. [Google Scholar] [CrossRef] [PubMed]
- Mitri, F.G. Acoustical Pulling Force on Rigid Spheroids in Single Bessel Vortex Tractor Beams. Europhys. Lett. 2015, 112, 34002. [Google Scholar] [CrossRef]
- Fan, X.-D.; Zhang, L. Trapping Force of Acoustical Bessel Beams on a Sphere and Stable Tractor Beams. Phys. Rev. Appl. 2019, 11, 014055. [Google Scholar] [CrossRef]
- Xu, S.; Qiu, C.; Liu, Z. Transversally Stable Acoustic Pulling Force Produced by Two Crossed Plane Waves. Europhys. Lett. 2012, 99, 44003. [Google Scholar] [CrossRef]
- Meng, Y.; Li, X.; Liang, Z.; Ng, J.; Li, J. Acoustic Pulling with a Single Incident Plane Wave. Phys. Rev. Appl. 2020, 14, 014089. [Google Scholar] [CrossRef]
- Kushwaha, M.S.; Halevi, P.; Dobrzynski, L.; Djafari-Rouhani, B. Acoustic Band Structure of Periodic Elastic Composites. Phys. Rev. Lett. 1993, 71, 2022–2025. [Google Scholar] [CrossRef]
- Walker, E.L.; Jin, Y.; Reyes, D.; Neogi, A. Sub-Wavelength Lateral Detection of Tissue-Approximating Masses Using an Ultrasonic Metamaterial Lens. Nat. Commun. 2020, 11, 5967. [Google Scholar] [CrossRef]
- Kaya, O.A.; Cicek, A.; Ulug, B. Self-Collimated Slow Sound in Sonic Crystals. J. Phys. Appl. Phys. 2012, 45, 365101. [Google Scholar] [CrossRef]
- Jin, Y.; Walker, E.; Choi, T.-Y.; Neogi, A.; Krokhin, A. Simultaneous Negative Reflection and Refraction and Reverse-Incident Right-Angle Collimation of Sound in a Solid-Fluid Phononic Crystal. J. Acoust. Soc. Am. 2022, 151, 2723–2731. [Google Scholar] [CrossRef] [PubMed]
- Pennec, Y.; Vasseur, J.O.; Djafari-Rouhani, B.; Dobrzyński, L.; Deymier, P.A. Two-Dimensional Phononic Crystals: Examples and Applications. Surf. Sci. Rep. 2010, 65, 229–291. [Google Scholar] [CrossRef]
- Zhu, T.; Novitsky, A.; Cao, Y.; Mahdy, M.R.C.; Wang, L.; Sun, F.; Jiang, Z.; Ding, W. Mode Conversion Enables Optical Pulling Force in Photonic Crystal Waveguides. Appl. Phys. Lett. 2017, 111, 061105. [Google Scholar] [CrossRef]
- Korozlu, N.; Biçer, A.; Sayarcan, D.; Adem Kaya, O.; Cicek, A. Acoustic Sorting of Airborne Particles by a Phononic Crystal Waveguide. Ultrasonics 2022, 124, 106777. [Google Scholar] [CrossRef] [PubMed]
- Lighthill, M.J.; Newman, M.H.A. On Sound Generated Aerodynamically I. General Theory. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 1997, 211, 564–587. [Google Scholar] [CrossRef]
- Brillouin, L. Les tensions de radiation; Leur interprétation en mécanique classique et en relativité. J. Phys. Radium 1925, 6, 337–353. [Google Scholar] [CrossRef][Green Version]
- Brillouin, L.; Brennan, R.O. Tensors in Mechanics and Elasticity. J. Appl. Mech. 1965, 32, 238. [Google Scholar] [CrossRef][Green Version]
- Faridi, M.A.; Ramachandraiah, H.; Iranmanesh, I.; Grishenkov, D.; Wiklund, M.; Russom, A. MicroBubble Activated Acoustic Cell Sorting. Biomed. Microdevices 2017, 19, 23. [Google Scholar] [CrossRef]
- Ciampa, F.; Mankar, A.; Marini, A. Phononic Crystal Waveguide Transducers for Nonlinear Elastic Wave Sensing. Sci. Rep. 2017, 7, 14712. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Cao, Y.; Zhu, T.; Tang, D.; Shi, B.; Li, H.; Gao, W.; Zhang, Y.; Jia, Q.; Li, X.; et al. Stable Acoustic Pulling in Two-Dimensional Phononic Crystal Waveguides Based on Mode Manipulation. Photonics 2023, 10, 1325. https://doi.org/10.3390/photonics10121325
Gao Y, Cao Y, Zhu T, Tang D, Shi B, Li H, Gao W, Zhang Y, Jia Q, Li X, et al. Stable Acoustic Pulling in Two-Dimensional Phononic Crystal Waveguides Based on Mode Manipulation. Photonics. 2023; 10(12):1325. https://doi.org/10.3390/photonics10121325
Chicago/Turabian StyleGao, Yanyu, Yongyin Cao, Tongtong Zhu, Donghua Tang, Bojian Shi, Hang Li, Wenya Gao, Yanxia Zhang, Qi Jia, Xiaoxin Li, and et al. 2023. "Stable Acoustic Pulling in Two-Dimensional Phononic Crystal Waveguides Based on Mode Manipulation" Photonics 10, no. 12: 1325. https://doi.org/10.3390/photonics10121325
APA StyleGao, Y., Cao, Y., Zhu, T., Tang, D., Shi, B., Li, H., Gao, W., Zhang, Y., Jia, Q., Li, X., Feng, R., Sun, F., & Ding, W. (2023). Stable Acoustic Pulling in Two-Dimensional Phononic Crystal Waveguides Based on Mode Manipulation. Photonics, 10(12), 1325. https://doi.org/10.3390/photonics10121325