You are currently viewing a new version of our website. To view the old version click .
  • Mathematical and Computational Applications is published by MDPI from Volume 21 Issue 1 (2016). Previous articles were published by another publisher in Open Access under a CC-BY (or CC-BY-NC-ND) licence, and they are hosted by MDPI on mdpi.com as a courtesy and upon agreement with Association for Scientific Research (ASR).
  • Article
  • Open Access

1 April 2011

Investigation of Coating Layer to Reduce Thermal Stresses in Steel Fiber Reinforced Aluminum Metal Matrix Composite

Department of Mechanical Engineering Gediz University, 35230 Çankaya, İzmir, Turkey

Abstract

In this study, by using coating layers to reduce thermal stresses in the metal matrix composites with a mismatch in coefficients of thermal expansions of fiber and matrix is investigated. The thermoelastic solutions based on a three cylinder model are deformed. It is shown that the effectiveness of the layer can be defined by the product of its cofficients of thermal expansions and thickness and that a compensating layer with a sufficiently high coefficient of thermal expansions can reduce the thermal stresses in the metal matrix. . In order to verify the results were compared with the finite element method. In this solution, 224 nodes and 44 nine-node isoparametric elements are used. The study is based on a three cylinder model isolating one steel fiber with a coating layer and a aluminum matrix layer. Only monotonic cooling is studied and the variation of the material properties with temperatures is not considered. The results have been presented in graphics.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.