The Anthropocene in the Aspiring UNESCO Global Geopark Schelde Delta Area: Geological History, Human Resilience and Future Landscape Management
Abstract
:1. Introduction
2. Background
3. Review: Aspiring UNESCO Global Geopark Schelde Delta Area
3.1. Geological and Geomorphological Landscape Reconstruction and Delta History
3.2. The Lowland Theme of Human Entanglement with Water
4. Review: Future Landscape Management Scenarios
4.1. Scenario: Revitalised Land- and Waterscape
4.1.1. Water (Ways) in the Schelde Delta Area
4.1.2. User Groups
4.1.3. Physical Adaptations (Interventions)
4.1.4. Organisation for Waterway and Waterfront Development
4.2. Scenario: Improved Biodiversity
Discussion and Synthesis
5. Conclusions
- The Anthropocene landscape and waterscape of the aUGGP Schelde Delta will inspire and motivate inhabitants and visitors with geological history, identity, belonging and a sense of pride and place value.
- A deeper insight is achieved into the geological history of both aquatic and terrestrial surface and underground landscapes, including the interplay of rivers with the specific tectonic framework in the landscape.
- AquaPuncture’s Revitalised Land- and Waterscape is an already elsewhere successfully implemented development while Nature Futures has also promising and inspiring values for the Geopark Scheldt Delta.
- Important for the AquaPuncture and Nature Futures Framework development is taking into account the special ‘aqueous’ cultural and natural history of the region and its biodiversity. It strives for stakeholder interaction with incremental steps in integrated, multifunctional, sustainable, development of co-designing landscapes and waterscapes.
- The aUGGP Schelde Delta region is by its aqueous nature fit for water transport and further (sustainable) developments. The surrounding area in all its aspects can be a source of inspiration for nature values in the NFF.
- A new and sustainable vision for Geopark tourism (leisure and economy) is defined and is prone to be followed up by AquaPuncture and Nature Futures as a response from bottom-up stakeholder interaction in society and to be supported and implemented by policy makers.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Westrik, C.; Bernaerts, G.; Kiden, P.; Jonkers, W. (Eds.) aUGGp Schelde Delta UNESCO Global Geopark Candidate’s Application; Aspiring UNESCO Global Geopark Schelde Delta: Middelburg, The Netherlands, 2022; pp. 1–50. [Google Scholar]
- Waters, C.N.; Zalasiewicz, J.; Summerhayes, C.; Barnosky, A.D.; Poirier, C.; Gałuszka, A.; Cearreta, A.; Edgeworth, M.; Ellis, E.; Ellis, M.; et al. The Anthropocene Is Functionally and Stratigraphically Distinct from the Holocene. Science 2016, 351, aad2622. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.; Maslin, M. Defining the Anthropocene. Nature 2015, 519, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Pattberg, P.; Kluiving, S.J. Introduction to the Special Issue: Accelerating and Scaling Transformative Change in Anthropocene: A Multi-Disciplinary Perspective. Int. J. Environ. Sustain. 2022, 18, I–VII. [Google Scholar] [CrossRef]
- Crutzen, P. Geology of mankind. Nature 2002, 415, 23. [Google Scholar] [CrossRef] [PubMed]
- Crutzen, P.J.; Stoermer, E.F. The “Anthropocene”. Glob. Change Lett. 2000, 41, 17. [Google Scholar]
- Waters, C.N.; Williams, M.; Zalasiewicz, J.; Turner, S.D.; Barnosky, A.D.; Head, M.J.; Wing, S.L.; Wagreich, M.; Steffen, W.; Summerhayes, C.P.; et al. Epochs, events and episodes: Marking the geological impact of humans. Earth-Sci. Rev. 2022, 234, 104171. [Google Scholar] [CrossRef]
- Gibbard, P.L.; Bauer, A.M.; Edgeworth, M.; Ruddiman, W.F.; Gill, J.L.; Merritts, D.J.; Finney, S.; Edwards, L.; Walker, M.; Ellis, E.; et al. A practical solution: The Anthropocene is a geological event, not a formal epoch. Epis. J. Int. Geosci. 2021, 45, 349–357. [Google Scholar] [CrossRef]
- Merritts, D.; Edwards, L.E.; Ellis, E.; Walker, M.; Finney, S.; Gibbard, P.; Gill, J.; Maslin, M.; Bauer, A.; Edgeworth, M.; et al. The Anthropocene is complex. Defining it is not. Earth-Sci. Rev. 2023, 238, 104340. [Google Scholar] [CrossRef]
- Rockström, J.; Steffen, W.; Noone, K.; Persson, Å.; Chapin, F.S.; Lambin, E.F.; Lenton, T.M.; Scheffer, M.; Folke, C.; Schellnhuber, H.J.; et al. A safe operating space for humanity. Nature 2009, 461, 472–475. [Google Scholar] [CrossRef]
- Sustainable water solutions. Nat. Sustain. 2020, 3, 73. [CrossRef]
- Greve, P.; Kahil, T.; Mochizuki, J.; Schinko, T.; Satoh, Y.; Burek, P.; Fischer, G.; Tramberend, S.; Burtscher, R.; Langan, S. Global assessment of water challenges under uncertainty in water scarcity projections. Nat. Sustain. 2018, 1, 486–494. [Google Scholar] [CrossRef]
- Pereira, L.M.; Davies, K.K.; den Belder, E.; Ferrier, S.; Karlsson-Vinkhuyzen, S.; Kim, H.; Kuiper, J.J.; Okayasu, S.; Palomo, M.G.; Pereira, H.M.; et al. Developing multiscale and integrative nature-people scenarios using the Nature Futures Framework. People Nat. 2020, 2, 1172–1195. [Google Scholar] [CrossRef]
- Waterman, R.E. Integrated Coastal Policy with Building with Nature; Drukkerij Banda: Heerenveen, The Neterlands, 2010; 71p, ISBN 978-90-80522-3-7. [Google Scholar]
- Lindholm, K.-J.; Fernández, N.; Svenning, J.-C.; Pereira, H.; Kluiving, S. Policy recommendations for sustainable landscape management strategies. TERRA NOVA 2020, 2022, 1–20. [Google Scholar] [CrossRef]
- Snow, K.; Kluiving, S. Reading the Anthropocene through Landscape Archaeology: Historical and Contemporary Landscapes of Accumulation in the Netherlands and Lebanon. Int. J. Environ. Sustain. 2022, 18, 3–25. [Google Scholar] [CrossRef]
- IPBES. Summary for Policymakers of the Thematic Assessment of the Sustainable Use of Wild Species of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; Fromentin, J.-M., Emery, M.R., Donaldson, J., Danner, M.-C., Hallosserie, A., Kieling, D., Balachander, G., Barron, E.S., Chaudhary, R.P., Gasalla, M., Eds.; IPBES Secretariat: Bonn, Germany, 2022. [Google Scholar] [CrossRef]
- Fayet, C.M.J.; Reilly, K.H.; Van Ham, C.; Verburg, P.H. The potential of European abandoned agricultural lands to contribute to the Green Deal objectives: Policy perspectives. Environ. Sci. Policy 2022, 133, 43–44. [Google Scholar] [CrossRef]
- Segar, J.; Pereira, H.M.; Filgueiras, R.; Karamanlidis, A.A.; Saavedra, D.; Fernández, N. Expert-based assessment of rewilding indicates progress at site-level, yet challenges for upscaling. Ecography 2022, 2022, 1–10. [Google Scholar] [CrossRef]
- Diogo, V.; Helfenstein, J.; Mohr, F.; Varghese, V.; Debonne, N.; Levers, C.; Swart, R.; Sonderegger, G.; Nemecek, T.; Schader, C.; et al. Developing context-specific frameworks for integrated sustainability assessment of agricultural intensity change: An application for Europe. Environ. Sci. Policy 2022, 137, 128–142. [Google Scholar] [CrossRef]
- Pereira, H.M. (Ed.) Rewilding European Landscapes; Springer International Publishing: New York, NY, USA, 2015. [Google Scholar]
- Quintero-Uribe, L.C.; Navarro, L.M.; Pereira, H.M.; Fernández, N. Participatory scenarios for restoring European landscapes show a plurality of nature values. Ecography 2022, 2022, e06292. [Google Scholar] [CrossRef]
- Bianchi, G.; Pisiotis, U.; Cabrera Giraldez, M. GreenComp the European Sustainability Competence Framework; Punie, Y., Bacigalupo, M., Eds.; Publications Office of the European Union: Luxembourg, 2022. [Google Scholar]
- Waterman, R.E.; Brouwer, J. Aquapuncture for Sustainable Waterways. Terra Et Aqua Nr 121 2015, 5–18. [Google Scholar]
- Kranendonk, P.; Kluiving, S.; Troelstra, S. Chrono- and archaeostratigraphy and development of the River Amstel: Results of the North/South underground line excavations, Amsterdam, the Netherlands. Neth. J. Geosci. 2015, 94, 333–352. [Google Scholar] [CrossRef]
- Kluiving, S.J.; Troelstra, S.R.; Kasse, C.; Lelivelt, R.A. Het oudste strand van Zeeland: Een hernieuwde kennismaking met de “Meester van der Heijden groeve” (de Kauter), Nieuw-Namen. Grondboor Hamer 2012, 66, 431–437. [Google Scholar]
- Kiden, P. De evolutie van de Beneden-Schelde in België en Zuidwest-Nederland na de laatste ijstijd. Belgeo. Rev. Belg. De Géogr. 2006, 30, 279–294. [Google Scholar] [CrossRef]
- Vandenberghe, N. Tectonic and climatic signals in the Oligocene sediments of the Southern North-Sea Basin (Ernest Van den Broeck medallist lecture 2016). Geol. Belg. 2017, 20, 105–123. [Google Scholar] [CrossRef]
- Kasse, C. De Brabantse Wal, op de grens van hoog en laag, oud en jong. Grondboor Hamer 2009, 63, 173–178. [Google Scholar]
- Kluiving, S.J. Heritage and Landscapes. In The Encyclopedia of Archaeological Sciences; López Varela, S.L., Ed.; Wiley Online Library: Hoboken, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Vandenberghe, N. Sedimentology of the Boom Clay (Rupelian) in Belgium; Paleis der Academiën: Brussel, Belgium, 1978; 137p. [Google Scholar]
- Vanneste, K.; Meghraoui, M.; Camelbeeck, T. Late Quaternary earthquake-related soft-sediment deformation along the Belgian portion of the Feldbiss Fault, Lower Rhine Graben system. Tectonophysics 1999, 309, 57–79. [Google Scholar] [CrossRef]
- Kübler, S.; Friedrich, A.M.; Gold, R.D.; Strecker, M.R. Historical coseismic surface deformation of fluvial gravel deposits, Schafberg fault, Lower Rhine Graben, Germany. Int. J. Earth Sci. 2018, 107, 571–585. [Google Scholar] [CrossRef]
- Grützner, C.; Fischer, P.; Reicherter, K. Holocene surface ruptures of the Rurrand Fault, Germany—Insights from palaeoseismology, remote sensing and shallow geophysics. Geophys. J. Int. 2016, 204, 1662–1677. [Google Scholar] [CrossRef]
- Kasse, C. Early-Pleistocene Tidal and Fluviatile Environments in the Southern Netherlands and Northern Belgium; Free University Press: Amsterdam, The Netherlands, 1988; 190p. [Google Scholar]
- Crombé, P.; Van Der Haegen, G. Het Midden-Paleolithicum in Noordwestelijk België; Archeologische Inventaris Vlaanderen: Ghent, Belgium, 1994; Volume 3. [Google Scholar]
- Crombé, P.; Van Strydonck, M.; Boudin, M.; Van den Brande, T.; Derese, C.; Vandenberghe, D.; Zwertvaegher, A. Absolute Dating (14C and OSL) of the Formation of Coversand Ridges Occupied by Prehistoric Hunter-Gatherers in NW Belgium. Radiocarbon 2012, 54, 715–726. [Google Scholar] [CrossRef]
- Derese, C.; Vandenberghe, D.; Gils, M.; Mees, F.; Paulissen, E. Final Palaeolithic settlements of the Campine region (NE Belgium) in their environmental context: Optical age constraints. Quat. Int. 2012, 251, 7–21. [Google Scholar] [CrossRef]
- Crombé, P. (Ed.) The last hunter-gatherer-fishermen in Sandy Flanders (NW Belgium). In The Verrebroek and Doel Excavation Projects. Volume 1: Palaeo-Environment, Chronology and Features. Archaeological Reports Ghent University 3; Academia Press: Ghent, Belgium, 2005; p. 334. [Google Scholar]
- Vos., P.C.; van Heeringen, R.M. Holocene geology and occupation history of the province of Zeeland. Meded. Ned. Inst. Voor Toegep. Geowetenschappen TNO 1997, 59, 109. [Google Scholar]
- Kuiper, J.J.B.; van Dierendonck, R.M. (Eds.) Sluimerend in Slik; Den Boer: Middelburg, The Netherlands, 2004; 120p, ISBN 9789074576505. [Google Scholar]
- Kluiving, S.J.; Brand, N.; Borger, G.J. De West-Brabantse Delta: Een Verdronken Landschap Vormgeven. Geo- and Bioarchaeological Studies; Instituut voor Geo- en Bioarcheologie: Amsterdam, The Netherlands, 2007; Volume 7. [Google Scholar]
- de Kraker, A.M.J.; Kluiving, S.J. Verdronken landschap voor het voetlicht. Onderzoek naar de locatie en specifieke kenmerken van verdronken nederzettingen en structuren van West-Brabant voor 1600. In Noordbrabants Historisch Jaarboek; Stichting Matrijs: Utrecht, The Netherlands, 2007; pp. 59–70. [Google Scholar]
- Missiaen, T.; Jongepier, I.; Heirman, K.; Soens, T.; Gelorini, V.; Verniers, J.; Crombé, P. Holocene landscape evolution of an estuarine wetland in relation to its human occupation and exploitation: Waasland Scheldt polders, northern Belgium. Neth. J. Geosci. 2017, 96, 35–62. [Google Scholar] [CrossRef]
- Soens, T.; Tys, D.; Thoen, E. Landscape transformation and social change in the North Sea polders, the example of Flanders (1000-1800 AD). Siedlungsforschung. Archäologie-Gesch.-Geogr. 2014, 31, S.133–S.160. [Google Scholar]
- Soens, T.; De Graef, P. Polder mania or marsh fever? Risk and risk management in early modern drainage projects: The case of Kallopolder, Flanders, 1649 to 1662. Agric. Hist. Rev. 2014, 62, 231–255. [Google Scholar]
- Anzion, F.K.M. Hoe Jan Salie op stoom kwam: Nederland en de Industriële Revolutie, Themanummer. Spiegel Historiael: Zeist, the Netherlands, 2003; p. 38. [Google Scholar]
- Steffen, W.; Richardson, K.; Rockström, J.; Cornell, S.E.; Fetzer, I.; Bennett, E.M.; Biggs, R.; Carpenter, S.; Vries, W.; de Wit, C.; et al. Planetary Boundaries: Guiding Human Development on a Changing Planet. Science 2015, 10, 1259855. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 3056. [Google Scholar] [CrossRef]
- Schoolenberg, M.; den Belder, E.; Okayasu, S.; Alkemade, R.; Lundquist, C.; Pereira, H.; Chettri, N.; Cheung, W.; Ferrier, S.; Hauck, J.; et al. Report on the Workshop ‘Next Steps in Developing Nature Futures’, PBL Netherlands Environmental Assessment Agency, the Hague, the Netherlands, nr 3411. Available online: https://www.pbl.nl/sites/default/files/downloads/3314_Report_on_The_Hague_workshop_June_2018_V9.pdf (accessed on 18 March 2023).
- Martinez, A.; Kluiving, S.J.; Muñoz Rojas, J.; Borja Barrera, C.; Fraile Jurado, P. From hunter-gatherer subsistence strategies to the Agricultural Revolution: Disentangling Energy Regimes as a complement to cultural phases in Northern Spain. Holocene 2022, 32, 884–896. [Google Scholar] [CrossRef]
- Gu, B.; Zhang, X.; Lam, S.K.; Yu, Y.; van Grinsven, H.J.; Zhang, S.; Wang, X.; Bodirsky, B.L.; Wang, S.; Duan, J. Cost-effective mitigation of nitrogen pollution from global croplands. Nature 2023, 613, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Fayet, C.M.; Leen, F.J.; Quintero Uribe, L.C.; Rigo, R.; Houet, T.; Lindholm, K.J.; Kluiving, S.J. TERRANOVA White Paper 2. An explorative opinion paper: ‘Why do we need stakeholders’ engagement in knowledge production: TERRANOVA’s vision on landscape transformation. Zenodo 2021, 1–11. [Google Scholar] [CrossRef]
Presence and Characteristics of Waterfront Areas |
---|
Residential areas |
Leisure parks |
Tourist and recreational facilities |
Museums and monuments |
Commercial and industrial zoning |
Infrastructure |
Agricultural areas |
Landscape and nature |
Potential Physical Adaptations and Interventions |
---|
1. Height of bridges above water level |
2. Dredging depth via environment-friendly dredging |
3. Expanding sluice capacity and bridge and sluice servicing |
4. Dike/levee adaptation, river/canal widening and room for the river |
5. Aqueducts and boat conveyors |
6. Water level regulation via sluices, pumping stations and weirs; |
7. Facilities for drainage/irrigation |
8. Pier/jetty/quay wall/moorings and berths with facilities; realisation of facilities: |
9. Loading/unloading platforms |
10. Yachting harbours and inland container terminals |
11. Introduction of environment-friendly banks/shores |
12. Waste water purification |
13. Implementation of water framework directive for physical, chemical and biological quality |
14. Introduction of hotels, restaurants, cafés/pubs, museums and companies along the waterway |
15. Linking inland waterways |
16. Urban development with connecting waterways |
17. Infrastructure, including bicycle lanes and footpaths and parking spaces along the waterway |
18. Enhancing blue-green spatial qualities of urban and rural areas |
19. Restoring and purposeful using cultural heritage values in and along the waterway; |
20. Introduction of environment-friendly powered vessels |
21. Nautical safety |
22. Enhancing spatial quality |
23. Environmental measures |
24. Mitigating measures with regard to climate change: water use for agriculture, aquaculture, drinking water, cooling water and energy. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kluiving, S.; Waterman, R. The Anthropocene in the Aspiring UNESCO Global Geopark Schelde Delta Area: Geological History, Human Resilience and Future Landscape Management. Land 2023, 12, 990. https://doi.org/10.3390/land12050990
Kluiving S, Waterman R. The Anthropocene in the Aspiring UNESCO Global Geopark Schelde Delta Area: Geological History, Human Resilience and Future Landscape Management. Land. 2023; 12(5):990. https://doi.org/10.3390/land12050990
Chicago/Turabian StyleKluiving, Sjoerd, and Ronald Waterman. 2023. "The Anthropocene in the Aspiring UNESCO Global Geopark Schelde Delta Area: Geological History, Human Resilience and Future Landscape Management" Land 12, no. 5: 990. https://doi.org/10.3390/land12050990
APA StyleKluiving, S., & Waterman, R. (2023). The Anthropocene in the Aspiring UNESCO Global Geopark Schelde Delta Area: Geological History, Human Resilience and Future Landscape Management. Land, 12(5), 990. https://doi.org/10.3390/land12050990