Computational Fluid Dynamics Simulation of Gas–Solid Hydrodynamics in a Bubbling Fluidized-Bed Reactor: Effects of Air Distributor, Viscous and Drag Models
Abstract
:1. Introduction
2. Modelling and Experimental Methods
2.1. Governing Equations
2.1.1. Gas–Particle Flow Equations
2.1.2. Gas–Solid Interaction
2.1.3. Drag Models
2.1.4. Turbulent Models
2.2. Models’ Descriptions and Simulation Methods
2.2.1. Initial Conditions, Boundary Conditions, Geometry and Grids
2.2.2. The Effect of Viscous Models on Pressure Drop Profile
2.2.3. Experimental Validation of the Numerical Analyses
2.2.4. The Effect of Air Distributor on Fluid Properties
2.2.5. The Effect of Drag Models on Fluidization Hydrodynamics
2.2.6. Integrated Turbulent Model and Model Validation
2.2.7. Grid Resolution Study
3. Result and Discussion
3.1. The Effect of Viscous Models on Pressure Drop Profiles
3.2. The Effect of Air Distributor on the Fluid Properties
3.3. The Effect of Drag Models on Fluidisation Hydrodynamics
3.4. Development of the Fluidisation Hydrodynamics Turbulent Model
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Khezri, R.; Azlinaa, W.; Tana, H.B. An Experimental Investigation of Syngas Composition from Small-Scale Biomass Gasification. Int. J. Biomass Renew. 2016, 5, 6–13. [Google Scholar]
- Ruiz, J.A.; Juárez, M.C.; Morales, M.P.; Muñoz, P.; Mendívil, M.A. Biomass gasification for electricity generation: Review of current technology barriers. Renew. Sustain. Energy Rev. 2013, 18, 174–183. [Google Scholar] [CrossRef]
- Santos, J.; Ouadi, M.; Jahangiri, H.; Hornung, A. Integrated intermediate catalytic pyrolysis of wheat husk. Food Bioprod. Process. 2019, 114, 23–30. [Google Scholar] [CrossRef]
- Maiti, S.; Sarma, S.J.; Brar, S.K.; Le Bihan, Y.; Drogui, P.; Buelna, G.; Verma, M. Agro-industrial wastes as feedstock for sustainable bio-production of butanol by Clostridium beijerinckii. Food Bioprod. Process. 2016, 98, 217–226. [Google Scholar] [CrossRef]
- Sansaniwal, S.K.; Rosen, M.A.; Tyagi, S.K. Global challenges in the sustainable development of biomass gasification: An overview. Renew. Sustain. Energy Rev. 2017, 80, 23–43. [Google Scholar] [CrossRef]
- Puig-Arnavat, M.; Bruno, J.C.; Coronas, A. Review and analysis of biomass gasification models. Renew. Sustain. Energy Rev. 2010, 14, 2841–2851. [Google Scholar] [CrossRef]
- Couto, N.; Silva, V.; Monteiro, E.; Brito, P.S.D.; Rouboa, A. Experimental and Numerical Analysis of Coffee Husks Biomass Gasification in a Fluidized Bed Reactor. Energy Procedia 2013, 36, 591–595. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, L.M.; Gu, S.; Luo, K.H. Effects of limestone calcination on the gasification processes in a BFB coal gasifier. Chem. Eng. J. 2011, 168, 848–860. [Google Scholar] [CrossRef] [Green Version]
- Sau, D.C.; Biswal, K.C. Computational fluid dynamics and experimental study of the hydrodynamics of a gas–solid tapered fluidized bed. Appl. Math. Model. 2011, 35, 2265–2278. [Google Scholar] [CrossRef]
- Liu, H.; Yoon, S.; Li, M. Three-dimensional computational fluid dynamics (CFD) study of the gas–particle circulation pattern within a fluidized bed granulator: By full factorial design of fluidization velocity and particle size. Dry. Technol. 2017, 35, 1043–1058. [Google Scholar] [CrossRef]
- Hosseini, S.H.; Zivdar, M.; Rahimi, R. CFD simulation of gas–solid flow in a spouted bed with a non-porous draft tube. Chem. Eng. Process. Process Intensif. 2009, 48, 1539–1548. [Google Scholar] [CrossRef]
- Silaen, A.; Wang, T. Effect of turbulence and devolatilization models on coal gasification simulation in an entrained-flow gasifier. Int. J. Heat Mass Transf. 2010, 53, 2074–2091. [Google Scholar] [CrossRef]
- Xie, J.; Zhong, W.; Jin, B.; Shao, Y.; Liu, H. Simulation on gasification of forestry residues in fluidized beds by Eulerian–Lagrangian approach. Bioresour. Technol. 2012, 121, 36–46. [Google Scholar] [CrossRef] [PubMed]
- Abani, N.; Ghoniem, A.F. Large eddy simulations of coal gasification in an entrained flow gasifier. Fuel 2013, 104, 664–680. [Google Scholar] [CrossRef]
- Taghipour, F.; Ellis, N.; Wong, C. Experimental and computational study of gas-solid fluidized bed hydrodynamics. Chem. Eng. Sci. 2005, 60, 6857–6867. [Google Scholar] [CrossRef]
- Papadikis, K.; Gu, S.; Bridgwater, A.V. CFD modelling of the fast pyrolysis of biomass in fluidised bed reactors. Part B: Heat, momentum and mass transport in bubbling fluidised beds. Chem. Eng. Sci. 2009, 64, 1036–1045. [Google Scholar] [CrossRef]
- Armellini, V.A.D.; Di Costanzob, M.; Castroa, H.C.A.; Vergel, J.L.G.; Mori, M.; Martignonic, W.P. Effect of different gas-solid drag models in a high-flux circulating fluidized bed riser. Chem. Eng. 2015, 43, 1627–1632. [Google Scholar]
- Dhrioua, M.; Hassen, W.; Kolsi, L.; Anbumalar, V.; Alsagri, A.S.; Borjini, M.N. Gas distributor and bed material effects in a cold flow model of a novel multi-stage biomass gasifier. Biomass Bioenergy 2019, 126, 14–25. [Google Scholar] [CrossRef]
- Mehrabadi, M. Fluid-Phase Velocity Fluctuations in Gas-Solid Flows; Iowa State University Digital Repository: Ames, IA, USA, 2012. [Google Scholar]
- Liu, H.; Cattolica, R.J.; Seiser, R.; Liao, C. Three-dimensional full-loop simulation of a dual fluidized-bed biomass gasifier. Appl. Energy 2015, 160, 489–501. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Elkamel, A.; Lohi, A.; Biglari, M. Computational Fluid Dynamics Modeling of Biomass Gasification in Circulating Fluidized-Bed Reactor Using the Eulerian–Eulerian Approach. Ind. Eng. Chem. Res. 2013, 52, 18162–18174. [Google Scholar] [CrossRef]
- Cai, J.; Wang, Y.; Zhou, L.; Huang, Q. Thermogravimetric analysis and kinetics of coal/plastic blends during co-pyrolysis in nitrogen atmosphere. Fuel Process. Technol. 2008, 89, 21–27. [Google Scholar] [CrossRef]
- Huang, J.; Lu, Y.; Wang, H. Fluidization of Particles in Supercritical Water: A Comprehensive Study on Bubble Hydrodynamics. Ind. Eng. Chem. Res. 2019, 58, 2036–2051. [Google Scholar] [CrossRef]
- Yancheshme, A.A.; Zarkesh, J.; Rashtchian, D.; Anvari, A. CFD Simulation of Hydrodynamic of a Bubble Column Reactor Operating in Churn-Turbulent Regime and Effect of Gas Inlet Distribution on System Characteristics. Int. J. Chem. React. Eng. 2016, 14, 213–224. [Google Scholar] [CrossRef]
- Yu, G.; Ni, J.; Liang, Q.; Guo, Q.; Zhou, Z. Modeling of Multiphase Flow and Heat Transfer in Radiant Syngas Cooler of an Entrained-Flow Coal Gasification. Ind. Eng. Chem. Res. 2009, 48, 10094–10103. [Google Scholar] [CrossRef]
- Wang, S.; Luo, K.; Hu, C.; Fan, J. CFD-DEM study of the effect of cyclone arrangements on the gas-solid flow dynamics in the full-loop circulating fluidized bed. Chem. Eng. Sci. 2017, 172, 199–215. [Google Scholar] [CrossRef]
- Wu, Y.; Liu, D.; Ma, J.; Chen, X. Effects of gas-solid drag model on Eulerian-Eulerian CFD simulation of coal combustion in a circulating fluidized bed. Powder Technol. 2018, 324, 48–61. [Google Scholar] [CrossRef]
- Wang, J.; Ge, W.; Li, J. Eulerian simulation of heterogeneous gas–solid flows in CFB risers: EMMS-based sub-grid scale model with a revised cluster description. Chem. Eng. Sci. 2008, 63, 1553–1571. [Google Scholar] [CrossRef]
- Ku, X.; Li, T.; Løvås, T. Eulerian–Lagrangian Simulation of Biomass Gasification Behavior in a High-Temperature Entrained-Flow Reactor. Energy Fuels 2014, 28, 5184–5196. [Google Scholar] [CrossRef]
- Wilcox, D. A half century historical review of the k-omega model. In Proceedings of the 29th Aerospace Sciences Meeting, Reno, NV, USA, 7–10 January 1991; p. 615. [Google Scholar]
- Perini, F.; Zha, K.; Busch, S.; Reitz, R. Comparison of Linear, Non-Linear and Generalized RNG-Based K-Epsilon Models for Turbulent Diesel Engine Flows; SAE: Warrendale, PA, USA, 2017. [Google Scholar]
- Lan, X.; Xu, C.; Gao, J.; Al-Dahhan, M. Influence of solid-phase wall boundary condition on CFD simulation of spouted beds. Chem. Eng. Sci. 2012, 69, 419–430. [Google Scholar] [CrossRef]
- Khezri, R.; Azlina, W.; Ab, W.; Ghani, K. Computational Modelling of Gas-Solid Hydrodynamics and Thermal Conduction in Gasification of Biomass in Fluidized-Bed Reactor. Chem. Eng. Trans. 2017, 56, 1879–1884. [Google Scholar]
- Burns, A.D.; Frank, T.; Hamill, I.; Shi, J.-M. The Favre averaged drag model for turbulent dispersion in Eulerian multi-phase flows. In Proceedings of the 5th International Conference on Multiphase Flow (ICMF), Yokohama, Japan, 30 May–4 June 2004; Volume 4, pp. 1–17. [Google Scholar]
- Jiang, F.; Zhao, P.; Qi, G.; Li, N.; Bian, Y.; Li, H.; Jiang, T.; Li, X.; Yu, C. Pressure drop in horizontal multi-tube liquid–solid circulating fluidized bed. Powder Technol. 2018, 333, 60–70. [Google Scholar] [CrossRef]
- Khezri, R.; Wan Ab Karim Ghani, W.A.; Awang Biak, D.R.; Yunus, R.; Silas, K. Experimental Evaluation of Napier Grass Gasification in an Autothermal Bubbling Fluidized Bed Reactor. Energies 2019, 12, 1517. [Google Scholar] [CrossRef]
- Pérez, N.P.; Pedroso, D.T.; Machin, E.B.; Antunes, J.S.; Verdú Ramos, R.A.; Silveira, J.L. Fluid dynamic study of mixtures of sugarcane bagasse and sand particles: Minimum fluidization velocity. Biomass Bioenergy 2017, 107, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Hua, L.; Zhao, H.; Li, J.; Wang, J.; Zhu, Q. Eulerian–Eulerian simulation of irregular particles in dense gas–solid fluidized beds. Powder Technol. 2015, 284, 299–311. [Google Scholar] [CrossRef]
- Gooch, J.W. Hagen-Poiseuille equation. In Encyclopedic Dictionary of Polymers; Springer: Berlin/Heidelberg, Germany, 2011; p. 355. [Google Scholar]
- Ismail, T.M.; Abd El-Salam, M.; Monteiro, E.; Rouboa, A. Eulerian—Eulerian CFD model on fluidized bed gasifier using coffee husks as fuel. Appl. Therm. Eng. 2016, 106, 1391–1402. [Google Scholar] [CrossRef]
- Bakshi, A.; Altantzis, C.; Bates, R.B.; Ghoniem, A.F. Study of the effect of reactor scale on fluidization hydrodynamics using fine-grid CFD simulations based on the two-fluid model. Powder Technol. 2016, 299, 185–198. [Google Scholar] [CrossRef] [Green Version]
- Fu, W.; Li, Y.; Liu, Z.; Wu, H.; Wu, T. Numerical study for the influences of primary nozzle on steam ejector performance. Appl. Therm. Eng. 2016, 106, 1148–1156. [Google Scholar] [CrossRef]
- Bear, J. Dynamics of Fluids in Porous Media; Courier Corporation: Chemsford, MA, USA, 2013; ISBN 0486131807. [Google Scholar]
- Seo, M.W.; Nguyen, T.D.B.; Lim, Y., II; Kim, S.D.; Park, S.; Song, B.H.; Kim, Y.J. Solid circulation and loop-seal characteristics of a dual circulating fluidized bed: Experiments and CFD simulation. Chem. Eng. J. 2011, 168, 803–811. [Google Scholar] [CrossRef]
Gas Phase Conservation Equations | |
Continuity equation | |
Momentum equation | |
Solid Phase Conservation Equations | |
Continuity equation | |
Momentum equation |
Physical Properties | Unit | Quantity |
---|---|---|
Density (Dry basis) | (kg m−3) | 2636 |
Particle diameter | (µm) | 550 |
Molecular weight | (kg kmol−1) | 60 |
Model Statistics | |
---|---|
Model basis | transient |
No. of elements | 58,000 |
Grid structure | Unstructured |
Turbulent multiphase model | Dispersed |
Turbulent dispersion model | Adopted from Burns et al. [34] |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khezri, R.; Wan Ab Karim Ghani, W.A.; Masoudi Soltani, S.; Awang Biak, D.R.; Yunus, R.; Silas, K.; Shahbaz, M.; Rezaei Motlagh, S. Computational Fluid Dynamics Simulation of Gas–Solid Hydrodynamics in a Bubbling Fluidized-Bed Reactor: Effects of Air Distributor, Viscous and Drag Models. Processes 2019, 7, 524. https://doi.org/10.3390/pr7080524
Khezri R, Wan Ab Karim Ghani WA, Masoudi Soltani S, Awang Biak DR, Yunus R, Silas K, Shahbaz M, Rezaei Motlagh S. Computational Fluid Dynamics Simulation of Gas–Solid Hydrodynamics in a Bubbling Fluidized-Bed Reactor: Effects of Air Distributor, Viscous and Drag Models. Processes. 2019; 7(8):524. https://doi.org/10.3390/pr7080524
Chicago/Turabian StyleKhezri, Ramin, Wan Azlina Wan Ab Karim Ghani, Salman Masoudi Soltani, Dayang Radiah Awang Biak, Robiah Yunus, Kiman Silas, Muhammad Shahbaz, and Shiva Rezaei Motlagh. 2019. "Computational Fluid Dynamics Simulation of Gas–Solid Hydrodynamics in a Bubbling Fluidized-Bed Reactor: Effects of Air Distributor, Viscous and Drag Models" Processes 7, no. 8: 524. https://doi.org/10.3390/pr7080524
APA StyleKhezri, R., Wan Ab Karim Ghani, W. A., Masoudi Soltani, S., Awang Biak, D. R., Yunus, R., Silas, K., Shahbaz, M., & Rezaei Motlagh, S. (2019). Computational Fluid Dynamics Simulation of Gas–Solid Hydrodynamics in a Bubbling Fluidized-Bed Reactor: Effects of Air Distributor, Viscous and Drag Models. Processes, 7(8), 524. https://doi.org/10.3390/pr7080524