Study on Spontaneous Capillary Imbibition in Irregular Geometries Using the Lattice Boltzmann Approach
Abstract
1. Introduction
2. Materials and Methods
2.1. Extended Lucas–Washburn Equation
2.2. Modified Shan–Chen Multicomponent Multiphase Model
3. Results and Discussion
3.1. Effect of Axial Capillary Shape
3.2. Effect of Wettability
3.3. Effect of Viscosity Ratio
4. Conclusions
- (1)
- The axial capillary geometry has an essential effect on the imbibition rate and the DCA for two-component fluids with equal viscosity. The DCA exhibits a gradual decrease in width with increasing capillary width and a gradual increase in width with decreasing capillary width. More importantly, the presence of the DCA will cause the LW equation to fail, and when we use the DCA data to correct the LW equation, the imbibition length predicted by the corrected LW equation is consistent with the LBM
- (2)
- Wettability exerts a specific influence on the dynamic contact angle (DCA) during imbibition. As wettability increases (indicated by a smaller static contact angle), capillary forces intensify, resulting in faster meniscus movement and an increased disparity between DCA and SCA. Similarly, for the capillary with different wettability, the imbibition length calculated using the LW equation corrected for the DCA almost agrees with LBM.
- (3)
- The viscosity ratio has a significant effect on the imbibition process. For a fixed viscosity of the non-wetting fluid, the viscosity of the wetting fluid is significantly smaller than that of the non-wetting fluid. The imbibition velocity increases in the middle and late stages of imbibition due to the smaller viscosity of fluid occupying more capillary space, leading to a rise in the DCA. On the contrary, the viscosity of the wetting fluid is significantly larger than the viscosity of the non-wetting fluid. As the imbibition time increases, the viscous resistance of the wetting fluid dominates the imbibition process and leads to smaller imbibition velocity and DCA. The imbibition lengths calculated using the LW equation with corrected dynamic contact angles are almost identical to LBM for wetting fluids with different viscosities.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Morrow, N.R.; Mason, G. Recovery of oil by spontaneous imbibition. Curr. Opin. Colloid Interface Sci. 2001, 6, 321–337. [Google Scholar] [CrossRef]
- Mason, G.; Morrow, N.R. Developments in spontaneous imbibition and possibilities for future work. J. Pet. Sci. Eng. 2013, 110, 268–293. [Google Scholar] [CrossRef]
- Tian, W.; Wu, K.; Gao, Y.; Chen, Z.; Gao, Y.; Li, J. A critical review of enhanced oil recovery by imbibition: Theory and practice. Energy Fuels 2021, 35, 5643–5670. [Google Scholar] [CrossRef]
- Peng, X.; Wang, X.; Zhou, X.; Lin, Z.; Zeng, F.; Huang, X. Lab-on-a-chip systems in imbibition processes: A review and applications/issues for studying tight formations. Fuel 2021, 306, 121603. [Google Scholar] [CrossRef]
- Cai, J.; Chen, Y.; Liu, Y.; Li, S.; Sun, C. Capillary imbibition and flow of wetting liquid in irregular capillaries: A 100-year review. Adv. Colloid Interface Sci. 2022, 304, 102654. [Google Scholar] [CrossRef]
- Lucas, R. Rate of capillary ascension of liquids. Kolloid Z. 1918, 23, 15–22. [Google Scholar] [CrossRef]
- Washburn, E.W. The dynamics of capillary flow. Phys. Rev. 1921, 17, 273–283. [Google Scholar] [CrossRef]
- Siebold, A.; Nardin, M.; Schultz, J.; Walliser, A.; Oppliger, M. Effect of dynamic contact angle on capillary rise phenomena. Colloids Surf. A 2000, 161, 81–87. [Google Scholar] [CrossRef]
- Zhmud, B.V.; Tiberg, F.; Hallstensson, K. Dynamics of capillary rise. J. Colloid Interface Sci. 2000, 228, 263–269. [Google Scholar] [CrossRef] [PubMed]
- Fries, N.; Dreyer, M. The transition from inertial to viscous flow in capillary rise. J. Colloid Interface Sci. 2008, 327, 125–128. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Wu, K.; Chen, Z.; Lai, L.; Gao, Y.; Li, J. Effect of Dynamic Contact Angle on Spontaneous Capillary-Liquid-Liquid Imbibition by Molecular Kinetic Theory. SPE J. 2021, 26, 2324–2339. [Google Scholar] [CrossRef]
- Erickson, D.; Li, D.; Park, C. Numerical simulations of capillary-driven flows in nonuniform cross-sectional capillaries. J. Colloid Interface Sci. 2002, 250, 422–430. [Google Scholar] [CrossRef] [PubMed]
- Young, W.-B. Analysis of capillary flows in non-uniform cross-sectional capillaries. Colloids Surf. A 2004, 234, 123–128. [Google Scholar] [CrossRef]
- Liou, W.W.; Peng, Y.; Parker, P.E. Analytical modeling of capillary flow in tubes of nonuniform cross section. J. Colloid Interface Sci. 2009, 333, 389–399. [Google Scholar] [CrossRef]
- Cai, J.; Jin, T.; Kou, J.; Zou, S.; Xiao, J.; Meng, Q. Lucas–Washburn Equation-Based Modeling of Capillary-Driven Flow in Porous Systems. Langmuir 2021, 37, 1623–1636. [Google Scholar] [CrossRef]
- Hultmark, M.; Aristoff, J.M.; Stone, H.A. The influence of the gas phase on liquid imbibition in capillary tubes. J. Fluid Mech. 2011, 678, 600–606. [Google Scholar] [CrossRef]
- Mumley, T.E.; Radke, C.; Williams, M.C. Kinetics of liquid/liquid capillary rise: I. Experimental observations. J. Colloid Interface Sci. 1986, 109, 398–412. [Google Scholar] [CrossRef]
- Fermigier, M.; Jenffer, P. An experimental investigation of the dynamic contact angle in liquid-liquid systems. J. Colloid Interface Sci. 1991, 146, 226–241. [Google Scholar] [CrossRef]
- Lorenceau, É.; Dequidt, G.; Bird, J.C. Capillary Displacement of Viscous Liquids. Langmuir 2016, 32, 3186–3190. [Google Scholar] [CrossRef]
- André, J.; Okumura, K. Capillary Replacement in a Tube Prefilled with a Viscous Fluid. Langmuir 2020, 36, 10952–10959. [Google Scholar] [CrossRef]
- Reyssat, M.; Courbin, L.; Reyssat, E.; Stone, H.A. Imbibition in geometries with axial variations. J. Fluid Mech. 2008, 615, 335–344. [Google Scholar] [CrossRef]
- Wang, Q.; Graber, E.R.; Wallach, R. Synergistic effects of geometry, inertia, and dynamic contact angle on wetting and dewetting of capillaries of varying cross sections. J. Colloid Interface Sci. 2013, 396, 270–277. [Google Scholar] [CrossRef]
- Gorce, J.B.; Hewitt, I.J.; Vella, D. Capillary Imbibition into Converging Tubes: Beating Washburn’s Law and the Optimal Imbibition of Liquids. Langmuir 2016, 32, 1560–1567. [Google Scholar] [CrossRef]
- Lei, J.; Xu, Z.; Xin, F.; Lu, T.J. Dynamics of capillary flow in an undulated tube. Phys. Fluids 2021, 33, 052109. [Google Scholar] [CrossRef]
- Shobeiri, A.; Ponga, M. A visco-inertial formulation for capillarity in irregular channels and tubes. Phys. Fluids 2021, 33, 117116. [Google Scholar] [CrossRef]
- Budaraju, A.; Phirani, J.; Kondaraju, S.; Bahga, S.S. Capillary Displacement of Viscous Liquids in Geometries with Axial Variations. Langmuir 2016, 32, 10513–10521. [Google Scholar] [CrossRef]
- Salama, A. Investigation of the imbibition/drainage of two immiscible fluids in capillaries with arbitrary axisymmetric cross-sections: A generalized model. J. Fluid. Mech. 2022, 947, A34. [Google Scholar] [CrossRef]
- Aidun, C.K.; Clausen, J.R. Lattice-Boltzmann Method for Complex Flows. Annu. Rev. Fluid. Mech. 2010, 42, 439–472. [Google Scholar] [CrossRef]
- Gunstensen, A.K.; Rothman, D.H.; Zaleski, S.; Zanetti, G. Lattice Boltzmann model of immiscible fluids. Phys. Rev. A 1991, 43, 4320–4327. [Google Scholar] [CrossRef]
- Cheng, Z.; Gao, H.; Ning, Z.; Wang, C.; Li, T. Inertial effect on oil/water countercurrent imbibition in porous media from a pore-scale perspective. SPE J. 2022, 27, 1619–1632. [Google Scholar] [CrossRef]
- Shan, X.; Chen, H. Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 1993, 47, 1815–1819. [Google Scholar] [CrossRef] [PubMed]
- Swift, M.R.; Osborn, W.R.; Yeomans, J.M. Lattice Boltzmann simulation of nonideal fluids. Phys. Rev. Lett. 1995, 75, 830–833. [Google Scholar] [CrossRef]
- Boek, E.S.; Zacharoudiou, I.; Gray, F.; Shah, S.M.; Crawshaw, J.P.; Yang, J. Multiphase-flow and reactive-transport validation studies at the pore scale by use of lattice Boltzmann computer simulations. SPE J. 2017, 22, 940–949. [Google Scholar] [CrossRef]
- He, X.; Chen, S.; Zhang, R. A lattice Boltzmann scheme for incompressible multiphase flow and its application in simulation of Rayleigh–Taylor instability. J. Comput. Phys. 1999, 152, 642–663. [Google Scholar] [CrossRef]
- Attar, E.; Körner, C. Lattice Boltzmann method for dynamic wetting problems. J. Colloid Interface Sci. 2009, 335, 84–93. [Google Scholar] [CrossRef]
- Chen, L.; Kang, Q.; Mu, Y.; He, Y.-L.; Tao, W.-Q. A critical review of the pseudopotential multiphase lattice Boltzmann model: Methods and applications. Int. J. Heat Mass. Transf. 2014, 76, 210–236. [Google Scholar] [CrossRef]
- Chibbaro, S.; Biferale, L.; Diotallevi, F.; Succi, S. Capillary filling for multicomponent fluid using the pseudo-potential Lattice Boltzmann method. Eur. Phys. J. Spec. Top. 2009, 171, 223–228. [Google Scholar] [CrossRef]
- Zhang, S.; Li, J.; Chen, Z.; Wu, K.; Zhu, Q. Investigation on spontaneous liquid–liquid imbibition in capillaries with varying axial geometries using lattice Boltzmann method. Phys. Fluids 2023, 35, 122108. [Google Scholar] [CrossRef]
- Fei, L.; Qin, F.; Zhao, J.; Derome, D.; Carmeliet, J. Lattice Boltzmann modelling of isothermal two-component evaporation in porous media. J. Fluid Mech. 2023, 955, A18. [Google Scholar] [CrossRef]
- Zhang, S.; Li, J.; Zhu, Q.; Wu, K.; Chen, Z.; Wang, Z. Simulation of droplet dynamics in an inclined channel considering contact angle hysteresis using the cascade lattice Boltzmann method. Phys. Fluids 2024, 36, 012130. [Google Scholar] [CrossRef]
- Porter, M.L.; Coon, E.T.; Kang, Q.; Moulton, J.D.; Carey, J.W. Multicomponent interparticle-potential lattice Boltzmann model for fluids with large viscosity ratios. Phys. Rev. E 2012, 86, 036701. [Google Scholar] [CrossRef] [PubMed]
- Coelho, R.C.; Moura, C.B.; Telo da Gama, M.M.; Araújo, N.A.M. Wetting boundary conditions for multicomponent pseudopotential lattice Boltzmann. Int. J. Numer. Methods Fluids 2021, 93, 2570–2580. [Google Scholar] [CrossRef]
- Li, Q.; Yu, Y.; Luo, K.H. Implementation of contact angles in pseudopotential lattice Boltzmann simulations with curved boundaries. Phys. Rev. E 2019, 100, 053313. [Google Scholar] [CrossRef]
- Chassagne, R.; Dörfler, F.; Guyenot, M.; Harting, J. Modeling of capillary-driven flows in axisymmetric geometries. Comput. Fluids 2019, 178, 132–140. [Google Scholar] [CrossRef]
- Liu, H.; Sun, S.; Wu, R.; Wei, B.; Hou, J. Pore-scale modeling of spontaneous imbibition in porous media using the lattice Boltzmann method. Water Resour. Res. 2021, 57, e2020WR029219. [Google Scholar] [CrossRef]









| Parameters | Lattice Values | Physical Values | Scale Factor |
|---|---|---|---|
| Fluid–fluid strength, G12, G21 | 4.0 | - | - |
| Wetting fluid density, ρw | 1.0 | 1000 kg·m−3 | 1000 |
| Non-wetting fluid density, ρnw | 1.0 | 1000 kg·m−3 | 1000 |
| kinematic viscosity, νw, νnw | 0.1667 | 5 × 10−6 m2·s−1 | 3 × 10−5 |
| Lattice length, Δx | 1.0 | 1.65 × 10−6 m | 1.65 × 10−6 |
| Lattice time, t | 1.0 | 9.07 × 10−8 s | 9.07 × 10−8 |
| Interface tension, σ | 0.088 | 48 × 10−3 N/m | 0.545 |
| Fluid–fluid strength, G12, G21 | 4.0 | - | - |
| Parameters | Lattice Values | Physical Values |
|---|---|---|
| Case A | ![]() | h(z) = h0 + Cz (C > 0) |
| Case B | ![]() | h(z) = h0 + Cz (C < 0)) |
| Case C | ![]() | h(z) = h0 + C1z2 + C2z |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, F.; Zhang, S.; Wu, K. Study on Spontaneous Capillary Imbibition in Irregular Geometries Using the Lattice Boltzmann Approach. Processes 2025, 13, 3527. https://doi.org/10.3390/pr13113527
Peng F, Zhang S, Wu K. Study on Spontaneous Capillary Imbibition in Irregular Geometries Using the Lattice Boltzmann Approach. Processes. 2025; 13(11):3527. https://doi.org/10.3390/pr13113527
Chicago/Turabian StylePeng, Fei, Shengting Zhang, and Keliu Wu. 2025. "Study on Spontaneous Capillary Imbibition in Irregular Geometries Using the Lattice Boltzmann Approach" Processes 13, no. 11: 3527. https://doi.org/10.3390/pr13113527
APA StylePeng, F., Zhang, S., & Wu, K. (2025). Study on Spontaneous Capillary Imbibition in Irregular Geometries Using the Lattice Boltzmann Approach. Processes, 13(11), 3527. https://doi.org/10.3390/pr13113527




