Immobilization of Enzymes in Polymeric Materials Based on Polyamide: A Review
Abstract
1. Introduction
2. Immobilization Techniques
3. Polyamide and Polyamide Enzyme Immobilization
4. Potential Applications and Future Outcomes
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- El-Shishtawy, R.M.; Ahmed, N.S.E.; Almulaiky, Y.Q. Immobilization of Catalase on Chitosan/Zno and Chitosan/Zno/Fe2o3 Nanocomposites: A Comparative Study. Catalysts 2021, 11, 820. [Google Scholar] [CrossRef]
- Kuepethkaew, S.; Zhang, Y.; Kishimura, H.; Kumagai, Y.; Simpson, B.K.; Benjakul, S.; Damodaran, S.; Klomklao, S. Enzymological Characteristics of Pepsinogens and Pepsins Purified from Lizardfish (Saurida micropectoralis) Stomach. Food Chem. 2022, 366, 130532. [Google Scholar] [CrossRef] [PubMed]
- Romero-Fernández, M.; Moreno-Perez, S.; Martins de Oliveira, S.; Santamaría, R.I.; Guisan, J.M.; Rocha-Martin, J. Preparation of a Robust Immobilized Biocatalyst of β-1,4-Endoxylanase by Surface Coating with Polymers for Production of Xylooligosaccharides from Different Xylan Sources. New Biotechnol. 2018, 44, 50–58. [Google Scholar] [CrossRef] [PubMed]
- Cipolatti, E.P.; Valério, A.; Henriques, R.O.; Cerqueira Pinto, M.C.; Lorente, G.F.; Manoel, E.A.; Guisán, J.M.; Ninow, J.L.; de Oliveira, D.; Pessela, B.C. Production of New Nanobiocatalysts via Immobilization of Lipase B from C. Antarctica on Polyurethane Nanosupports for Application on Food and Pharmaceutical Industries. Int. J. Biol. Macromol. 2020, 165, 2957–2963. [Google Scholar] [CrossRef] [PubMed]
- Patra, T.; Gupta, M.K. Evaluation of Sodium Alginate for Encapsulation-Vitrification of Testicular Leydig Cells. Int. J. Biol. Macromol. 2020, 153, 128–137. [Google Scholar] [CrossRef]
- Rodrigues, R.C.; Virgen-Ortíz, J.J.; dos Santos, J.C.S.; Berenguer-Murcia, Á.; Alcantara, A.R.; Barbosa, O.; Ortiz, C.; Fernandez-Lafuente, R. Immobilization of Lipases on Hydrophobic Supports: Immobilization Mechanism, Advantages, Problems, and Solutions. Biotechnol. Adv. 2019, 37, 746–770. [Google Scholar] [CrossRef]
- Mehdi, W.A.; Mehde, A.A.; Özacar, M.; Özacar, Z. Characterization and Immobilization of Protease and Lipase on Chitin-Starch Material as a Novel Matrix. Int. J. Biol. Macromol. 2018, 117, 947–958. [Google Scholar] [CrossRef]
- Katsimpouras, C.; Stephanopoulos, G. Enzymes in Biotechnology: Critical Platform Technologies for Bioprocess Development. Curr. Opin. Biotechnol. 2021, 69, 91–102. [Google Scholar] [CrossRef]
- Rehm, F.B.H.; Chen, S.; Rehm, B.H.A. Enzyme Engineering for in Situ Immobilization. Molecules 2016, 21, 1370. [Google Scholar] [CrossRef]
- Zhang, C.; Dong, X.; Guo, Z.; Sun, Y. Remarkably Enhanced Activity and Substrate Affinity of Lipase Covalently Bonded on Zwitterionic Polymer-Grafted Silica Nanoparticles. J. Colloid Interface Sci. 2018, 519, 145–153. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, Y.; Sun, Y. Lipase Immobilized to a Short Alkyl Chain-Containing Zwitterionic Polymer Grafted on Silica Nanoparticles: Moderate Activation and Significant Increase of Thermal Stability. Biochem. Eng. J. 2019, 146, 124–131. [Google Scholar] [CrossRef]
- Facin, B.R.; Valério, A.; de Oliveira, D.; Oliveira, J.V. Developing an Immobilized Low-Cost Biocatalyst for FAME Synthesis. Biocatal. Agric. Biotechnol. 2020, 29, 101752. [Google Scholar] [CrossRef]
- Wu, P.; Li, G.; He, Y.; Luo, D.; Li, L.; Guo, J.; Ding, P.; Yang, F. High-Efficient and Sustainable Biodegradation of Microcystin-LR Using Sphingopyxis sp. YF1 Immobilized Fe3O4@chitosan. Colloids Surfaces B Biointerfaces 2020, 185, 110633. [Google Scholar] [CrossRef]
- Zaitsev, S.Y.; Savina, A.A.; Zaitsev, I.S. Biochemical Aspects of Lipase Immobilization at Polysaccharides for Biotechnology. Adv. Colloid Interface Sci. 2019, 272, 102016. [Google Scholar] [CrossRef]
- Kamel Ariffin, M.F.; Idris, A. Fe2O3/Chitosan Coated Superparamagnetic Nanoparticles Supporting Lipase Enzyme from Candida antarctica for Microwave Assisted Biodiesel Production. Renew. Energy 2022, 185, 1362–1375. [Google Scholar] [CrossRef]
- Han, J.; Wang, L.; Wang, Y.; Dong, J.; Tang, X.; Ni, L.; Wang, L. Preparation and Characterization of Fe3O4-NH2@4-Arm-PEG-NH2, a Novel Magnetic Four-Arm Polymer-Nanoparticle Composite for Cellulase Immobilization. Biochem. Eng. J. 2018, 130, 90–98. [Google Scholar] [CrossRef]
- Cheng, C.Y.; Zhang, Z.F.; Kaewlaoyoong, A.; Huang, J.T.; Cheruiyot, N.K.; Lin, C.; Huang, H.C. Improved Bioremediation of PCDD/Fs Contaminated Soil by Mycelium-Free Liquids Induced by Agro-Industrial Residues. Bioresour. Technol. Rep. 2023, 22, 101435. [Google Scholar] [CrossRef]
- Zhou, L.; Xie, X.; Wu, T.; Chen, M.; Yao, Q.; Zhu, H.; Zou, W. Compound Enzymatic Hydrolysis of Feather Waste to Improve the Nutritional Value. Biomass Convers. Biorefin. 2020, 12, 287–298. [Google Scholar] [CrossRef]
- Ramos, K.R.M.; Valdehuesa, K.N.G.; Nisola, G.M.; Lee, W.K.; Chung, W.J. Identification and Characterization of a Thermostable Endolytic β-Agarase Aga2 from a Newly Isolated Marine Agarolytic Bacteria Cellulophaga omnivescoria W5C. New Biotechnol. 2018, 40, 261–267. [Google Scholar] [CrossRef]
- Amini, Z.; Ilham, Z.; Ong, H.C.; Mazaheri, H.; Chen, W.H. State of the Art and Prospective of Lipase-Catalyzed Transesterification Reaction for Biodiesel Production. Energy Convers. Manag. 2017, 141, 339–353. [Google Scholar] [CrossRef]
- Costa-Silva, T.A.; Carvalho, A.K.F.; Souza, C.R.F.; De Castro, H.F.; Said, S.; Oliveira, W.P. Enzymatic Transesterification of Coconut Oil Using Chitosan-Immobilized Lipase Produced by Fluidized-Bed System. Energy Fuels 2017, 31, 12209–12216. [Google Scholar] [CrossRef]
- Binhayeeding, N.; Klomklao, S.; Prasertsan, P.; Sangkharak, K. Improvement of Biodiesel Production Using Waste Cooking Oil and Applying Single and Mixed Immobilised Lipases on Polyhydroxyalkanoate. Renew. Energy 2020, 162, 1819–1827. [Google Scholar] [CrossRef]
- Badgujar, V.C.; Badgujar, K.C.; Yeole, P.M.; Bhanage, B.M. Investigation of Effect of Ultrasound on Immobilized C. Rugosa Lipase: Synthesis of Biomass Based Furfuryl Derivative and Green Metrics Evaluation Study. Enzym. Microb. Technol. 2021, 144, 109738. [Google Scholar] [CrossRef] [PubMed]
- Sarno, M.; Iuliano, M.; Polichetti, M.; Ciambelli, P. High Activity and Selectivity Immobilized Lipase on Fe3O4 Nanoparticles for Banana Flavour Synthesis. Process Biochem. 2017, 56, 98–108. [Google Scholar] [CrossRef]
- Ficanha, A.M.M.; Oro, C.E.D.; Franceschi, E.; Dallago, R.M.; Mignoni, M.L. Evaluation of Different Ionic Liquids as Additives in the Immobilization of Lipase CAL B by Sol-Gel Technique. Appl. Biochem. Biotechnol. 2021, 193, 2162–2181. [Google Scholar] [CrossRef] [PubMed]
- Quayson, E.; Amoah, J.; Hama, S.; Kondo, A.; Ogino, C. Immobilized Lipases for Biodiesel Production: Current and Future Greening Opportunities. Renew. Sustain. Energy Rev. 2020, 134, 110355. [Google Scholar] [CrossRef]
- Wang, R.; Ni, N.; Zhang, Q.; Duan, X.; He, Q.; Chi, Y. long Adsorption and Separation of Flavonoid Aglycones and Flavonol Aglycones by Using Zr(IV) Immobilized Collagen Fiber Adsorbent as Column Packing Material. Sep. Purif. Technol. 2022, 289, 120684. [Google Scholar] [CrossRef]
- Konovalova, V.; Guzikevich, K.; Burban, A.; Kujawski, W.; Jarzynka, K.; Kujawa, J. Enhanced Starch Hydrolysis Using α-Amylase Immobilized on Cellulose Ultrafiltration Affinity Membrane. Carbohydr. Polym. 2016, 152, 710–717. [Google Scholar] [CrossRef]
- Cortés-Ríos, J.; Valdivia-Olivares, R.Y.; Álvarez-Figueroa, M.J.; Rodriguez-Fernandez, M.; González-Aramundiz, J.V. Optimization of Physicochemical Properties of Novel Multiple Nanoemulsion for Complex Food Matrices through Iterative Mathematical Modelling. J. Food Eng. 2020, 276, 109883. [Google Scholar] [CrossRef]
- Urrutia, P.; Bernal, C.; Wilson, L.; Illanes, A. Use of Chitosan Heterofunctionality for Enzyme Immobilization: β-Galactosidase Immobilization for Galacto-Oligosaccharide Synthesis. Int. J. Biol. Macromol. 2018, 116, 182–193. [Google Scholar] [CrossRef]
- Chiou, S.H.; Wu, W.T. Immobilization of Candida rugosa Lipase on Chitosan with Activation of the Hydroxyl Groups. Biomaterials 2004, 25, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Işık, M. High Stability of Immobilized Acetylcholinesterase on Chitosan Beads. ChemistrySelect 2020, 5, 4623–4627. [Google Scholar] [CrossRef]
- Mendes, A.A.; De Castro, H.F.; De S. Rodrigues, D.; Adriano, W.S.; Tardioli, P.W.; Mammarella, E.J.; De C. Giordano, R.; De L. C. Giordano, R. Multipoint Covalent Immobilization of Lipase on Chitosan Hybrid Hydrogels: Influence of the Polyelectrolyte Complex Type and Chemical Modification on the Catalytic Properties of the Biocatalysts. J. Ind. Microbiol. Biotechnol. 2011, 38, 1055–1066. [Google Scholar] [CrossRef] [PubMed]
- Adriano, W.S.; Mendonça, D.B.; Rodrigues, D.S.; Mammarella, E.J.; Giordano, R.L.C. Improving the Properties of Chitosan as Support for the Covalent Multipoint Immobilization of Chymotrypsin. Biomacromolecules 2008, 9, 2170–2179. [Google Scholar] [CrossRef] [PubMed]
- Filho, D.G.; Silva, A.G.; Guidini, C.Z. Lipases: Sources, Immobilization Methods, and Industrial Applications. Appl. Microbiol. Biotechnol. 2019, 103, 7399–7423. [Google Scholar] [CrossRef]
- Moazeni, F.; Chen, Y.C.; Zhang, G. Enzymatic Transesterification for Biodiesel Production from Used Cooking Oil, a Review. J. Clean. Prod. 2019, 216, 117–128. [Google Scholar] [CrossRef]
- Silva, J.d.C.; de França, P.R.L.; Converti, A.; Porto, T.S. Kinetic and Thermodynamic Characterization of a Novel Aspergillus Aculeatus URM4953 Polygalacturonase. Comparison of Free and Calcium Alginate-Immobilized Enzyme. Process Biochem. 2018, 74, 61–70. [Google Scholar] [CrossRef]
- Quilles, J.C.J.; Brito, R.R.; Borges, J.P.; Aragon, C.C.; Fernandez-Lorente, G.; Bocchini-Martins, D.A.; Gomes, E.; da Silva, R.; Boscolo, M.; Guisan, J.M. Modulation of the Activity and Selectivity of the Immobilized Lipases by Surfactants and Solvents. Biochem. Eng. J. 2015, 93, 274–280. [Google Scholar] [CrossRef]
- Kharazmi, S.; Taheri-Kafrani, A.; Soozanipour, A.; Nasrollahzadeh, M.; Varma, R.S. Xylanase Immobilization onto Trichlorotriazine-Functionalized Polyethylene Glycol Grafted Magnetic Nanoparticles: A Thermostable and Robust Nanobiocatalyst for Fruit Juice Clarification. Int. J. Biol. Macromol. 2020, 163, 402–413. [Google Scholar] [CrossRef]
- Reichardt, C.; Utgenannt, S.; Stahmann, K.P.; Klepel, O.; Barig, S. Highly Stable Adsorptive and Covalent Immobilization of Thermomyces Lanuginosus Lipase on Tailor-Made Porous Carbon Material. Biochem. Eng. J. 2018, 138, 63–73. [Google Scholar] [CrossRef]
- de Melo, R.R.; de Lima, E.A.; Persinoti, G.F.; Vieira, P.S.; de Sousa, A.S.; Zanphorlin, L.M.; de Giuseppe, P.O.; Ruller, R.; Murakami, M.T. Identification of a Cold-Adapted and Metal-Stimulated β-1,4-Glucanase with Potential Use in the Extraction of Bioactive Compounds from Plants. Int. J. Biol. Macromol. 2021, 166, 190–199. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Feng, Y.; Wang, G.; Wang, Z.; Bilal, M.; Lv, H.; Jia, S.; Cui, J. Production and Use of Immobilized Lipases in/on Nanomaterials: A Review from the Waste to Biodiesel Production. Int. J. Biol. Macromol. 2020, 152, 207–222. [Google Scholar] [CrossRef] [PubMed]
- Ureta, M.M.; Martins, G.N.; Figueira, O.; Pires, P.F.; Castilho, P.C.; Gomez-Zavaglia, A. Recent Advances in β-Galactosidase and Fructosyltransferase Immobilization Technology. Crit. Rev. Food Sci. Nutr. 2020, 61, 2659–2690. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Goomber, S.; Kaur, J. Engineering Lipases for Temperature Adaptation: Structure Function Correlation. Biochim. Biophys. Acta Proteins Proteom. 2019, 1867, 140261. [Google Scholar] [CrossRef]
- Karishma, S.; Saravanan, A.; Deivayanai, V.C.; Ajithkumar, U.; Yaashikaa, P.R.; Vickram, A.S. Emerging Strategies for Enhancing Microbial Degradation of Petroleum Hydrocarbons: Prospects and Challenges. Bioresour. Technol. Rep. 2024, 26, 101866. [Google Scholar] [CrossRef]
- Cipolatti, E.P.; Valério, A.; Henriques, R.O.; Moritz, D.E.; Ninow, J.L.; Freire, D.M.G.; Manoel, E.A.; Fernandez-Lafuente, R.; De Oliveira, D. Nanomaterials for Biocatalyst Immobilization-State of the Art and Future Trends. RSC Adv. 2016, 6, 104675–104692. [Google Scholar] [CrossRef]
- Liu, S.; Bilal, M.; Rizwan, K.; Gul, I.; Rasheed, T.; Iqbal, H.M.N. Smart Chemistry of Enzyme Immobilization Using Various Support Matrices—A Review. Int. J. Biol. Macromol. 2021, 190, 396–408. [Google Scholar] [CrossRef]
- Guo, R.; Zheng, X.; Wang, Y.; Yang, Y.; Ma, Y.; Zou, D.; Liu, Y. Optimization of Cellulase Immobilization with Sodium Alginate-Polyethylene for Enhancement of Enzymatic Hydrolysis of Microcrystalline Cellulose Using Response Surface Methodology. Appl. Biochem. Biotechnol. 2021, 193, 2043–2060. [Google Scholar] [CrossRef]
- Ficanha, A.M.M.; Antunes, A.; Oro, C.E.D.; Franceschi, E.; Dallago, R.M.; Mignoni, M.L. Immobilization of Lipase CALB in Organically Modified Silica. Biointerface Res. Appl. Chem. 2021, 11, 7814–7825. [Google Scholar] [CrossRef]
- Ficanha, A.M.M.; Antunes, A.; Oro, C.E.D.; Valduga, A.T.; Matuella Moreira, C.; Dallago, R.M.; Mignoni, M. Study of Drying Conditions of the Aerogel Obtained by the Sol-Gel Technique for Immobilization in Situ of Lipase Candida antarctica B. Ind. Biotechnol. 2019, 15, 350–356. [Google Scholar] [CrossRef]
- Bustamante-Vargas, C.E.; De Oliveira, D.; Nyari, N.L.D.; Valduga, E.; Soares, M.B.A.; Backes, G.T.; Dallago, R.M. In Situ Immobilization of Commercial Pectinase in Rigid Polyurethane Foam and Application in the Hydrolysis of Pectic Oligosaccharides. J. Mol. Catal. B Enzym. 2015, 122, 35–43. [Google Scholar] [CrossRef]
- Gaio, I.; Oro, C.E.D.; Graboski, A.M.; Bustamante-Vargas, C.E.; Tres, M.V.; Junges, A.; Dallago, R.M.; Valduga, E.; Furigo, A., Jr. Liquefied Petroleum Gas as Solvent Medium for the Treatment of Immobilized Pectinases. Biocatal. Agric. Biotechnol. 2017, 11, 108–115. [Google Scholar] [CrossRef]
- Babaki, M.; Yousefi, M.; Habibi, Z.; Brask, J.; Mohammadi, M. Preparation of Highly Reusable Biocatalysts by Immobilization of Lipases on Epoxy-Functionalized Silica for Production of Biodiesel from Canola Oil. Biochem. Eng. J. 2015, 101, 23–31. [Google Scholar] [CrossRef]
- Nyari, N.L.D.; Fernandes, I.A.; Bustamante-Vargas, C.E.; Steffens, C.; De Oliveira, D.; Zeni, J.; Rigo, E.; Dallago, R.M. In Situ Immobilization of Candida antarctica B Lipase in Polyurethane Foam Support. J. Mol. Catal. B Enzym. 2016, 124, 52–61. [Google Scholar] [CrossRef]
- Antunes, A.; Oro, C.E.D.; Denti, A.F.; da Silva, L.M.; Ficanha, A.M.M.; Mulinari, J.; Venquiaruto, L.D.; Zeni, J.; Mignoni, M.L.; Dallago, R.M. In Situ CALB Immobilization in Xerogel and Sonogel Employing TMOS as Silica Precursor and Polyethylene Glycol as Additive. Processes 2024, 12, 2411. [Google Scholar] [CrossRef]
- Sicard, C. In Situ Enzyme Immobilization by Covalent Organic Frameworks. Angew. Chem. Int. Ed. 2023, 62, e202213405. [Google Scholar] [CrossRef]
- Pahujani, S.; Kanwar, S.S.; Chauhan, G.; Gupta, R. Glutaraldehyde Activation of Polymer Nylon-6 for Lipase Immobilization: Enzyme Characteristics and Stability. Bioresour. Technol. 2008, 99, 2566–2570. [Google Scholar] [CrossRef]
- Alatawi, F.S.; Elsayed, N.H.; Monier, M. Immobilization of Horseradish Peroxidase on Modified Nylon-6 Fibers. ChemistrySelect 2020, 5, 6841–6850. [Google Scholar] [CrossRef]
- Ben-Othman, S.; Rinken, T. Immobilization of Pectinolytic Enzymes on Nylon 6/6 Carriers. Appl. Sci. 2021, 11, 4591. [Google Scholar] [CrossRef]
- Rather, A.H.; Khan, R.S.; Wani, T.U.; Beigh, M.A.; Sheikh, F.A. Overview on Immobilization of Enzymes on Synthetic Polymeric Nanofibers Fabricated by Electrospinning. Biotechnol. Bioeng. 2022, 119, 9–33. [Google Scholar] [CrossRef]
- Song, J.E.; Kim, H.R.; Lee, S.H. Effect of Enzymatic Hydrolysis on Developing Support of Polyamide Woven Fabric for Enzyme Immobilization. Text. Res. J. 2019, 89, 1345–1360. [Google Scholar] [CrossRef]
- Zaidi, A.; Gainer, J.L.; Carta, G.; Mrani, A.; Kadiri, T.; Belarbi, Y.; Mir, A. Esterification of Fatty Acids Using Nylon-Immobilized Lipase in n-Hexane: Kinetic Parameters and Chain-Length Effects. J. Biotechnol. 2002, 93, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Bruno, L.M.; Saavedra Pinto, G.A.; Ferreira De Castro, H.; Jose’luiz De Lima-Filho, J.; Henrique De Magalhães, E.; Melo, M. Variables That Affect Immobilization of Mucor Miehei Lipase on Nylon Membrane. World J. Microbiol. Biotechnol. 2004, 20, 371–375. [Google Scholar] [CrossRef]
- Shukla, S.; Saxena, S.; Thakur, J.; Gupta, R. Immobilization of Polygalacturonase from Aspergilus Niger onto Glutaraldehyde Activated Nylon-6 and Its Application in Apple Juice Clarification. Acta Aliment. 2010, 39, 277–292. [Google Scholar] [CrossRef]
- Zeng, H.Y.; Liu, X.Y.; He, P.; Peng, D.H.; Fan, B.; Xia, K. Lipase Adsorption on Woven Nylon-6 Membrane: Optimization, Kinetic and Thermodynamic Analyses. Biocatal. Biotransform. 2014, 32, 188–197. [Google Scholar] [CrossRef]
- Halin, N.I.A.; Al-Khatib, M.F.R.; Salleh, H.M.; Nasef, M.M. Immobilization of Candida rugosa Lipase on Aminated Polyvinyl Benzyl Chloride-Grafted Nylon-6 Microfibers. Bull. Chem. React. Eng. Catal. 2019, 14, 369–379. [Google Scholar] [CrossRef]
- Laird, M.; Yokoyama, J.; Carcel, C.; Unno, M.; Bartlett, J.R.; Wong Chi Man, M. Sol–Gel Processing of Polyhedral Oligomeric Silsesquioxanes: Nanohybrid Materials Incorporating T8 and T10 Cages. J. Sol-Gel Sci. Technol. 2020, 95, 760–770. [Google Scholar] [CrossRef]
- Coelho, A.L.S.; Orlandelli, R.C. Immobilized Microbial Lipases in the Food Industry: A Systematic Literature Review. Crit. Rev. Food Sci. Nutr. 2020, 61, 1689–1703. [Google Scholar] [CrossRef]
- Ambrogio, M.W.; Thomas, C.R.; Zhao, Y.L.; Zink, J.I.; Stoddart, J.F. Mechanized Silica Nanoparticles: A New Frontier in Theranostic Nanomedicine. Acc. Chem. Res. 2011, 44, 903–913. [Google Scholar] [CrossRef]
- Amaya-Delgado, L.; Hidalgo-Lara, M.E.; Montes-Horcasitas, M.C. Hydrolysis of Sucrose by Invertase Immobilized on Nylon-6 Microbeads. Food Chem. 2006, 99, 299–304. [Google Scholar] [CrossRef]
- Oliveira, S.C.; Dencheva, N.V.; Denchev, Z.Z. Immobilization of Enological Pectinase on Magnetic Sensitive Polyamide Microparticles for Wine Clarification. Foods 2024, 13, 420. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.; Silva, C.J.; Zille, A.; Guebitz, G.M.; Cavaco-Paulo, A. Laccase Immobilization on Enzymatically Functionalized Polyamide 6,6 Fibres. Enzyme Microb. Technol. 2007, 41, 867–875. [Google Scholar] [CrossRef]
- Jankowska, K.; Grzywaczyk, A.; Piasecki, A.; Kijeńska-Gawrońska, E.; Nguyen, L.N.; Zdarta, J.; Nghiem, L.D.; Pinelo, M.; Jesionowski, T. Electrospun Biosystems Made of Nylon 6 and Laccase and Its Application in Dyes Removal. Environ. Technol. Innov. 2021, 21, 101332. [Google Scholar] [CrossRef]
- Maryšková, M.; Schaabová, M.; Tománková, H.; Novotnỳ, V.; Rysová, M. Wastewater Treatment by Novel Polyamide/Polyethylenimine Nanofibers with Immobilized Laccase. Water 2020, 12, 588. [Google Scholar] [CrossRef]
- Dencheva, N.; Braz, J.; Scheibel, D.; Malfois, M.; Denchev, Z.; Gitsov, I. Polymer-Assisted Biocatalysis: Polyamide 4 Microparticles as Promising Carriers of Enzymatic Function. Catalysts 2020, 10, 767. [Google Scholar] [CrossRef]
- Maghraby, Y.R.; El-Shabasy, R.M.; Ibrahim, A.H.; Azzazy, H.M.E.S. Enzyme Immobilization Technologies and Industrial Applications. ACS Omega 2023, 8, 5184–5196. [Google Scholar] [CrossRef]
Enzyme | Immobilization Conditions | Highlighted Results | References |
---|---|---|---|
Candida rugosa lipase | Partial hydrolysis of nylon-6 with 6 N hydrochloric acid (HCl), followed by treatment with a 2.5% GA solution at pH 7 and subsequent contact with an enzyme solution buffered at pH 7 | Synthesis of esters of saturated and unsaturated fatty acids, with conversion > 90% using 3.8% by weight of immobilized enzyme, for a reaction time of 10 h at 25 °C | [62] |
Mucor javanicus lipase | Nylon pieces coated with polyvinyl alcohol (PVA) followed by cross-linking with GA | Operational stability of five consecutive reuses, retaining 8.7% of free enzyme activity | [63] |
Bacillus coagulans BTS-3 lipase | Nylon-6 particles, partially hydrolyzed with 6 N HCl and treated with GA and subsequent contact with an enzyme solution | Maximum biocatalyst activity at 55 °C and pH 7.5. It retained 85% of its original activity after eight cycles. | [57] |
Aspergillus niger pectinase PG | Nylon-6 activated with GA | 40% immobilization yield and four cycles maintaining 50% of its initial activity | [64] |
Candida rugosa lipase | Nylon-6 membrane activated using 0.5% GA | Hydrolysis of olive oil (45 °C for 5 h) with 10 reuse cycles with residual activity of approximately 80% | [65] |
Candida rugosa lipase | Nylon-6 microfibers grafted with polyvinyl benzyl chloride | Three-cycle operational stability with residual activity above 73% | [66] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oro, C.E.D.; Saorin Puton, B.M.; Venquiaruto, L.D.; Dallago, R.M.; Tres, M.V. Immobilization of Enzymes in Polymeric Materials Based on Polyamide: A Review. Processes 2025, 13, 200. https://doi.org/10.3390/pr13010200
Oro CED, Saorin Puton BM, Venquiaruto LD, Dallago RM, Tres MV. Immobilization of Enzymes in Polymeric Materials Based on Polyamide: A Review. Processes. 2025; 13(1):200. https://doi.org/10.3390/pr13010200
Chicago/Turabian StyleOro, Carolina E. Demaman, Bruna M. Saorin Puton, Luciana D. Venquiaruto, Rogério Marcos Dallago, and Marcus V. Tres. 2025. "Immobilization of Enzymes in Polymeric Materials Based on Polyamide: A Review" Processes 13, no. 1: 200. https://doi.org/10.3390/pr13010200
APA StyleOro, C. E. D., Saorin Puton, B. M., Venquiaruto, L. D., Dallago, R. M., & Tres, M. V. (2025). Immobilization of Enzymes in Polymeric Materials Based on Polyamide: A Review. Processes, 13(1), 200. https://doi.org/10.3390/pr13010200