The Impact of Adsorption Property Modification by Crosslinkers on Graphene Oxide Membrane Separation Performance
Abstract
1. Introduction
2. Adsorption of Heavy Metal Ions on Graphene Oxide
3. Adsorption of Heavy Metal Ions on Modified Graphene Oxide
Heavy Metal Ion | Crosslinker (Classification) | Chemical Formula Crosslinker * | Covalent Linker (Classification) | Chemical Formula Covalent Linker * | qmax (mg g−1) | Operating Condition | Reference |
---|---|---|---|---|---|---|---|
As(V) | Fe-NPs (M) | Fe3O4 | - | - | 73.42 | pH 7.0, T 298 K | [72] |
Au(ΙΙΙ) | CS (N, O) | C6H11NO4 | - | - | 1076.65 | pH 4.0, Τ 323 Κ | [36] |
PAM (N, O) | C3H5NO | - | - | 253.81 | pH 5.0, T 298 K | [73] | |
PEI (N) | C2H5N | PDA (N) | C7H9NO2 | 106.00 | pH 5.2–6.8 | [74] | |
Fe-NPs (M) | Fe3O4 | EDA (N) | C2H8N2 | 27.83 | pH 6.0–7.0, T 293 K | [75] | |
PDA (N) | C7H9NO2 | - | - | 210.00 | T 298 K | [76] | |
PDA (N) | C7H9NO2 | - | - | pH 6.0 | [77] | ||
Co(II) | PPhDA (N) | C6H8N2 | - | - | 116.35 | pH 6.0, Τ 298 Κ | [78] |
Cr(VI) | MgAl-LDH (M) | - | - | - | 172.55 | pH 2.0, 293 K | [79] |
Fe-NPs (M) | Fe3O4 | CS (N, O) | C6H11NO4 | 162.00 | pH 4.25, T 293 K | [80] | |
TETA (N) | C6H18N4 | - | - | 219.50 | pH 2.0, Τ 303 Κ | [81] | |
PAAm (N) | C3H7N | - | - | 485.00 | pH 4.0, T 298 K | [82] | |
Fe-NPs (M) | Fe3O4 | EDA (N) | C2H8N2 | 17.29 | pH 1.0–3.0, T 293 K | [75] | |
CDx (O) | C42H70O35 | CS (N) | C6H11NO4 | 67.66 | T 298 K | [83] | |
Fe-NPs (M) | Fe3O4 | CS (N) | C6H11NO4 | 107.99 | pH 2.0, T 303 K | [84] | |
Fe-NPs (M) | Fe3O4 | DACHTA (N) | C14H22N2O8 | 83.66 | pH 3.0, T 303 K | [85] | |
Cu(II) | Fe-NPs (M) | Fe3O4 | SAc (O) | C6H6NO3S | 62.73 | pH 5.0, T 298 K | [86] |
EDTA (N, O) | C10H14N2O8 | - | - | 301.20 | T 318 Κ | [87] | |
Ca2+ (M) | - | SA (O) | C6H9NaO7 | 60.20 | [88] | ||
TETA (N) | C6H18N4 | - | - | 209.10 | pH 6.0, T 293 K | [89] | |
SA (O) | C6H9NaO7 | - | - | 98.00 | pH 5.0, Τ 303 Κ | [90] | |
PAM (N, O) | C3H5NO | - | - | 68.68 | pH 4.5, T 298 K | [73] | |
PEI (N) | C2H5N | PDA (N) | C7H9NO2 | 87.00 | pH 5.2–6.8 | [74] | |
PAAm (N) | C3H7N | - | - | 349.04 | pH 6.0, T 293 K | [91] | |
L-Trp (N, O) | C10H12N2O2 | - | - | 588.00 | pH 5.0, T 293 K | [92] | |
ATP (N, O) | C6H7NS | - | - | 99.17 | pH 6.0, T 298 K | [93] | |
APTES (N, M) | C9H23NSiO3 | - | - | 103.28 | pH 6.0, T 298 K | [93] | |
EDTA (N, O) | C10H14N2O8 | - | - | 108.70 | pH 5.0 | [94] | |
Hg(II) | EDTA (N, O) | C10H14N2O8 | - | - | 268.40 | T 318 Κ | [87] |
PPy (N) | C8H6N2 | - | - | 980.00 | pH 3.0, Τ 293 Κ | [95] | |
PEI (N) | C2H5N | PDA (N) | C7H9NO2 | 110.00 | pH 3.5–4.0 | [74] | |
Co-NPs (M) | Co3O4 | CS (N, O) | C6H11NO4 | 361.00 | pH 7.0, T 323 K | [96] | |
Fe-NPs (M) | Fe3O4 | EDA (N) | C2H8N2 | 23.03 | pH 6.0–7.0, T 293 K | [94] | |
Mn(II) | PAM (N, O) | C3H5NO | - | - | 18.29 | pH 4.0, T 298 K | [73] |
Ni(II) | Gly (N, O) | C2H5NO2 | - | - | 36.63 | pH 6.0, Τ 293 Κ | [50] |
Fe-NPs (M) | Fe3O4 | EDA (N) | C2H8N2 | 22.07 | pH 6.0–7.0, T 293 K | [94] | |
Pb(II) | EDTA (N, O) | C10H14N2O8 | - | - | 508.40 | T 318 Κ | [87] |
EDTA (N, O) | C10H14N2O8 | - | - | 479.00 | pH 6.8, Τ 298 Κ | [97] | |
CS (N, O) | C6H11NO4 | - | - | 120.00 | pH 6.0, T 298 K | [98] | |
PAM (N, O) | C3H5NO | - | - | 1000.00 | pH 6.0, T 298 Κ | [99] | |
CS (N, O) | C6H11NO4 | - | - | 99.00 | Τ Room | [100] | |
PVK (N) | C14H11N | - | - | 887.98 | pH 7.0, T 298 K | [101] | |
APTES (N, O, M) | C9H23NSiO3 | - | - | 312.50 | pH 4–5, T 303 K | [102] | |
PAM (N, O) | C3H5NO | - | - | 819.67 | pH 6.0, T 293 K | [103] | |
SA (O) | C6H9NaO7 | - | - | 267.40 | pH 5.5, T 303 K | [90] | |
CS (N, O) | C6H11NO4 | - | - | 216.92 | pH 3.0, T 323 K | [36] | |
PAAM (N, O) | C3H5NO | - | - | 568.18 | pH 4.5, T 298 K | [73] | |
LS (O) | C20H24Na2O10S2 | PANI (N) | C6H5N | 216.40 | pH 5.0, T 303 K | [104] | |
PEI (N) | C2H5N | PDA (N) | C7H9NO2 | 197.00 | pH 4.0–5.4 | [74] | |
OPhDA (N) | C6H8N2 | PDA (N) | C7H9NO2 | 228.0 | [105] | ||
PAM (N, O) | C3H5NO | - | - | 819.67 | pH 6.0, T 293 K | [103] | |
L-Trp (N, O) | C10H12N2O2 | - | - | 222.00 | pH 4.0, T 293 K | [92] | |
Fe-NPs (M) | Fe3O4 | L-Cys | C3H7NO2S | 459.33 | pH 6.0 | [106] | |
HPEI (N) | C2H5N | - | - | 438.6 | pH 5.5, T 298 K | [107] | |
Fe-NPs (M) | Fe3O4 | EDA (N) | C2H8N2 | 27.95 | pH 6.0–7.0, T 293 K | [94] | |
PDA (N) | C7H9NO2 | - | - | 365.00 | T 298 K | [76] | |
HPA (N) | C5H15N3 | - | - | 740.7 | pH 5.9, T 298 K | [108] | |
PDA (N) | C7H9NO2 | - | - | pH 6.0 | [77] | ||
EDTA (N, O) | C10H14N2O8 | - | - | 454.60 | pH 3.0 | [94] | |
Sr(II) | PAM (N, O) | C3H5NO | - | - | 184.88 | pH 8.5, T 303 K | [109] |
U(VI) | Sep (M) | - | - | - | 161.29 | pH 5.0, T 298 K | [110] |
Fe-NPs (M) | Fe3O4 | DETA (N) | C4H13N3 | 141.12 | pH 6.0, T 298 K | [111] |
4. Separation of Heavy Metal Ion Performance by Modified Graphene Oxide Functionalised Membranes
5. Phenomenological Aspects of the Membrane Separation Process
6. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Nomenclature
Abbreviation | Name |
APTES | 3-aminopropyltriethoxysilane |
ATP | 4-aminothiophenol |
CDx | Cyclodextrin |
Co-NPs | Co nanoparticles |
CR | Congo Red |
CS | Chitosan |
CuFe2O4 | Copper ferrite |
DACHTA | 1,2-diaminocyclohexanetetraacetic acid |
DETA | Diethylenetriamine |
EDA | Ethylenediamine |
EDTA | Ethylene diamine tetraacetic acid |
Fe-NPs | Fe nanoparticles |
Gly | Glycine |
HPA | Hyperbranched polyamine |
HPEI | Hyperbranched polyethyleneimine |
IPDI | Isophorone diisocyanate |
Lc-Al2O3 | Lignocellulosic-Al2O3 hybrid biosorbent |
L-Cys | L-cysteine |
LL-NaOH | Leucaena leucephala treated with NaOH |
LS | Lignosulfonated |
L-Trp | L-tryptophan |
LVB | Lagenaria vulgaris biosorbent |
MeF | Metformin |
MgAl-LDH | MgAl-layered double hydroxides |
OPhDA | Ortophenylenediamine |
PAAm | Polyallylamine |
PAM | Polyacrylamide |
PANI | Polyaniline |
PDA | Polydopamine |
PEI | Polyethyleneimine |
PERI | Polyetherimide |
PMMA | Hydrolyzed polymethylmethacrylate |
POSS | Octa glycidyloxypropyl-silsesquioxane |
PPhDA | Paraphenylenediamine |
PPy | Polypyrrole |
PVK | Poly(N-vinylcarbazole) |
QT | Quercertin |
SA | Sodium alginate |
SAc | Sulfanilic acid |
Sep | Sepiolite |
TETA | Triethylenetetramine |
TNRs | Titanate nanorings |
UR | Urea |
Ze-nWRT | Zeolite functionalised with nanostructured water treatment residual |
ZIF-8-EDA | Zeolite imidazolate framework-8 functionalised with ethylenediamine |
References
- Nujić, M.; Habuda-Stanić, M. Toxic metal ions in drinking water and effective removal using graphene oxide nanocomposite. In A New Generation Material Graphene: Applications in Water Technology; Springer International Publishing: Berlin/Heidelberg, Germany, 2018; pp. 373–395. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, mechanism and health effects of some heavy metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, R.; Ban, S.; Devkota, S.; Sharma, S.; Joshi, R.; Tiwari, A.P.; Kim, H.Y.; Joshi, M.K. Technological trends in heavy metals removal from industrial wastewater: A review. J. Environ. Chem. Eng. 2021, 9, 105688. [Google Scholar] [CrossRef]
- Qiu, Y.; Depuydt, S.; Ren, L.F.; Zhong, C.; Wu, C.; Shao, J.; Xia, L.; Zhao, Y.; Van der Bruggen, B. Progress of Ultrafiltration-Based Technology in Ion Removal and Recovery: Enhanced Membranes and Integrated Processes. ACS ES&T Water 2022, 3, 1702–1719. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef]
- Burakov, A.E.; Galunin, E.V.; Burakova, I.V.; Kucherova, A.E.; Agarwal, S.; Tkachev, A.G.; Gupta, V.K. Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicol. Environ. Saf. 2018, 148, 702–712. [Google Scholar] [CrossRef]
- Nompumelelo, K.S.M.; Edward, N.N.; Muthumuni, M.; Moloko, M.; Makwena, M.J. Fabrication, Modification, and Mechanism of Nanofiltration Membranes for the Removal of Heavy Metal Ions from Wastewater. ChemistrySelect 2023, 8, e202300741. [Google Scholar] [CrossRef]
- Mohsen-Nia, M.; Montazeri, P.; Modarress, H. Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes. Desalination 2007, 217, 276–281. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, Y.; Qu, X.; Li, Z.; Ni, J. Mechanism of combination membrane and electro-winning process on treatment and remediation of Cu2+ polluted water body. J. Environ. Sci. 2009, 21, 764–769. [Google Scholar] [CrossRef]
- Chan, B.K.C.; Dudeney, A.W.L. Reverse osmosis removal of arsenic residues from bioleaching of refractory gold concentrates. Miner. Eng. 2008, 21, 272–278. [Google Scholar] [CrossRef]
- Ipek, U. Removal of Ni(II) and Zn(II) from an aqueous solutionby reverse osmosis. Desalination 2005, 174, 161–169. [Google Scholar] [CrossRef]
- Zhao, M.; Xu, Y.; Zhang, C.; Rong, H.; Zeng, G. New trends in removing heavy metals from wastewater. Appl. Microbiol. Biotechnol. 2016, 100, 6509–6518. [Google Scholar] [CrossRef] [PubMed]
- El Batouti, M.; Al-Harby, N.F.; Elewa, M.M. A Review on Promising Membrane Technology Approaches for Heavy Metal Removal from Water and Wastewater to Solve Water Crisis. Water 2021, 13, 3241. [Google Scholar] [CrossRef]
- Ezugbe, E.O.; Rathilal, S. Membrane technologies in wastewater treatment: A review. Membranes 2020, 10, 89. [Google Scholar] [CrossRef]
- Zhang, Y.; Tan, Y.; Sun, R.; Zhang, W. Preparation of Ceramic Membranes and Their Application in Wastewater and Water Treatment. Water 2023, 15, 3344. [Google Scholar] [CrossRef]
- Goh, P.S.; Ismail, A.F. A review on inorganic membranes for desalination and wastewater treatment. Desalination 2018, 434, 60–80. [Google Scholar] [CrossRef]
- Fard, A.K.; McKay, G.; Buekenhoudt, A.; Al Sulaiti, H.; Motmans, F.; Khraisheh, M.; Atieh, M. Inorganic membranes: Preparation and application for water treatment and desalination. Materials 2018, 11, 74. [Google Scholar] [CrossRef]
- Kotobuki, M.; Gu, Q.; Zhang, L.; Wang, J. Ceramic-Polymer Composite Membranes for Water and Wastewater Treatment: Bridging the Big Gap between Ceramics and Polymers. Molecules 2021, 26, 3331. [Google Scholar] [CrossRef]
- Samaei, S.M.; Gato-Trinidad, S.; Altaee, A. The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters—A review. Sep. Purif. Technol. 2018, 200, 198–220. [Google Scholar] [CrossRef]
- Ma, Y.; Zheng, Y.; Zhu, Y. Towards industrialization of graphene oxide. Sci. China Mater. 2020, 63, 1861–1869. [Google Scholar] [CrossRef]
- Pedico, A.; Baudino, L.; Aixalà-Perelló, A.; Lamberti, A. Green Methods for the Fabrication of Graphene Oxide Membranes: From Graphite to Membranes. Membranes 2023, 13, 429. [Google Scholar] [CrossRef]
- Tian, L.; Zhou, P.; Graham, N.; Li, G.; Yu, W. Long-term operation and biofouling of graphene oxide membrane in practical water treatment: Insights from performance and biofilm characteristics. J. Memb. Sci. 2023, 680, 121761. [Google Scholar] [CrossRef]
- Wang, Z.; He, F.; Guo, J.; Peng, S.; Cheng, X.Q.; Zhang, Y.; Drioli, E.; Figoli, A.; Li, Y.; Shao, L. The stability of a graphene oxide (GO) nanofiltration (NF) membrane in an aqueous environment: Progress and challenges. Mater. Adv. 2020, 1, 554–568. [Google Scholar] [CrossRef]
- Abdullah, N.; Yusof, N.; Lau, W.J.; Jaafar, J.; Ismail, A.F. Recent trends of heavy metal removal from water/wastewater by membrane technologies. J. Ind. Eng. Chem. 2019, 76, 17–38. [Google Scholar] [CrossRef]
- Xiang, H.; Min, X.; Tang, C.J.; Sillanpää, M.; Zhao, F. Recent advances in membrane filtration for heavy metal removal from wastewater: A mini review. J. Water Process Eng. 2022, 49, 103023. [Google Scholar] [CrossRef]
- Abadi, P.G.S.; Irani, M.; Rad, L.R. Mechanisms of the removal of the metal ions, dyes, and drugs from wastewaters by the electrospun nanofiber membranes. J. Taiwan. Inst. Chem. Eng. 2023, 143, 104625. [Google Scholar] [CrossRef]
- Liu, X.; Ma, R.; Wang, X.; Ma, Y.; Yang, Y.; Zhuang, L.; Zhang, S.; Jehan, R.; Chen, J.; Wang, X. Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: A review. Environ. Pollut. 2019, 252, 62–73. [Google Scholar] [CrossRef]
- Li, W.; Mu, B.; Yang, Y. Feasibility of industrial-scale treatment of dye wastewater via bio-adsorption technology. Bioresour. Technol. 2019, 277, 157–170. [Google Scholar] [CrossRef]
- Šljivić, M.; Smičiklas, I.; Pejanović, S.; Plećaš, I. Comparative study of Cu2+ adsorption on a zeolite, a clay and a diatomite from Serbia. Appl. Clay Sci. 2009, 43, 33–40. [Google Scholar] [CrossRef]
- Sitko, R.; Turek, E.; Zawisza, B.; Malicka, E.; Talik, E.; Heimann, J.; Gagor, A.; Feist, B.; Wrzalik, R. Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans. 2013, 42, 5682–5689. [Google Scholar] [CrossRef]
- Khosravi, A.; Habibpour, R.; Ranjbar, M. Enhanced adsorption and removal of Cd(II) from aqueous solution by amino-functionalized ZIF-8. Sci. Rep. 2024, 14, 10736. [Google Scholar] [CrossRef]
- Manousi, N.; Rosenberg, E.; Deliyanni, E.A.; Zachariadis, G.A. Sample preparation using graphene-oxide-derived nanomaterials for the extraction of metals. Molecules 2020, 25, 2411. [Google Scholar] [CrossRef] [PubMed]
- Peng, W.; Li, H.; Liu, Y.; Song, S. A review on heavy metal ions adsorption from water by graphene oxide and its composites. J. Mol. Liq. 2017, 230, 496–504. [Google Scholar] [CrossRef]
- Sengupta, S.; Pari, A.; Biswas, L.; Shit, P.; Bhattacharyya, K.; Chattopadhyay, A.P. Adsorption of arsenic on graphene oxide, reduced graphene oxide, and their Fe3O4 doped nanocomposites. Biointerface Res. Appl. Chem. 2022, 12, 6196–6210. [Google Scholar] [CrossRef]
- Tolkou, A.K.; Rada, E.C.; Torretta, V.; Xanthopoulou, M.; Kyzas, G.Z.; Katsoyiannis, I.A. Removal of Arsenic(III) from Water with a Combination of Graphene Oxide (GO) and Granular Ferric Hydroxide (GFH) at the Optimum Molecular Ratio. J. Carbon. Res. 2023, 9, 10. [Google Scholar] [CrossRef]
- Liu, L.; Li, C.; Bao, C.; Jia, Q.; Xiao, P.; Liu, X.; Zhang, Q. Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II). Talanta 2012, 93, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Tan, P.; Sun, J.; Hu, Y.; Fang, Z.; Bi, Q.; Chen, Y.; Cheng, J.; Cu, A.O. Cd2+ and Ni2+ from aqueous single metal solutions on graphene oxide membranes. J. Hazard. Mater. 2015, 297, 251–260. [Google Scholar] [CrossRef] [PubMed]
- Elkhatib, E.A.; Moharem, M.L.; Saad, A.F.; Abdelhamed, S. A novel nanocomposite-based zeolite for efficient remediation of Cd-contaminated industrial wastewater. Appl. Water Sci. 2024, 14, 75. [Google Scholar] [CrossRef]
- Lingamdinne, L.P.; Koduru, J.R.; Roh, H.; Choi, Y.L.; Chang, Y.Y.; Yang, J.K. Adsorption removal of Co(II) from waste-water using graphene oxide. Hydrometallurgy 2016, 165, 90–96. [Google Scholar] [CrossRef]
- Abatal, M.; Lima, E.C.; Anastopoulos, I.; Giannakoudakis, D.A.; Vargas, J.; Aguilar, C.; Olguín, M.T.; Anguebes-Fransechi, F. Effect of alkali treatment on the removal of Co(II) ions by Leucaena leucephala biomass. J. Mol. Liq. 2022, 367, 120419. [Google Scholar] [CrossRef]
- Mondal, N.K.; Chakraborty, S. Adsorption of Cr(VI) from aqueous solution on graphene oxide (GO) prepared from graphite: Equilibrium, kinetic and thermodynamic studies. Appl. Water Sci. 2020, 10, 61. [Google Scholar] [CrossRef]
- Yang, S.T.; Chang, Y.; Wang, H.; Liu, G.; Chen, S.; Wang, Y.; Liu, Y.; Cao, A. Folding/aggregation of graphene oxide and its application in Cu2+ removal. J. Colloid. Interface Sci. 2010, 351, 122–127. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Yang, Y.; Zhou, H.; Ye, T.; Huang, Z.; Liu, R.; Kuang, Y. Highly efficient removal of Cu(II) from aqueous solution by using graphene oxide. Water Air Soil. Pollut. 2013, 224, 1372. [Google Scholar] [CrossRef]
- Velinov, N.; Mitrović, J.; Kostić, M.; Radović, M.; Petrović, M.; Bojić, D.; Bojić, A. Wood residue reuse for a synthesis of lignocellulosic biosorbent: Characterization and application for simultaneous removal of copper (II), Reactive Blue 19 and cyprodinil from water. Wood Sci. Technol. 2019, 53, 619–647. [Google Scholar] [CrossRef]
- Kostić, M.M.; Radović, M.D.; Mitrović, J.Z.; Bojić, D.V.; Milenković, D.D.; Bojić, A.L. Application of new biosorbent based on chemicaly modified Lagenaria vulgaris shell for the removal of copper(II) from aqueous solutions: Effects of operational parameters. Hem. Ind. 2013, 67, 559–567. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, Q.; Chen, C.; Tan, X.; Wang, X. Interaction between Eu(III) and graphene oxide nanosheets investigated by batch and extended X-ray absorption fine structure spectroscopy and by modeling techniques. Environ. Sci. Technol. 2012, 46, 6020–6027. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Ji, H.; Duan, J.; Dang, C.; Chen, X.; Liu, W. Efficient adsorption of europium (III) and uranium (VI) by titanate nanorings: Insights into radioactive metal species. Environ. Sci. Ecotechnology 2020, 2, 100031. [Google Scholar] [CrossRef]
- Tene, T.; Bellucci, S.; Guevara, M.; Arias, F.A.; Paguay, M.Á.S.; Moyota, J.M.Q.; Polanco, M.A.; Scarcello, A.; Gomez, C.V.; Straface, S.; et al. Adsorption of Mercury on Oxidized Graphenes. Nanomaterials 2022, 12, 3025. [Google Scholar] [CrossRef]
- Leiva, E.; Tapia, C.; Rodríguez, C. Removal of Mn(II) from Acidic Wastewaters Using Graphene Oxide–ZnO Nanocomposites. Molecules 2021, 26, 2713. [Google Scholar] [CrossRef]
- Najafi, F.; Moradi, O.; Rajabi, M.; Asif, M.; Tyagi, I.; Agarwal, S.; Gupta, V.K. Thermodynamics of the adsorption of nickel ions from aqueous phase using graphene oxide and glycine functionalized graphene oxide. J. Mol. Liq. 2015, 208, 106–113. [Google Scholar] [CrossRef]
- Yari, M.; Rajabi, M.; Moradi, O.; Yari, A.; Asif, M.; Agarwal, S.; Gupta, V.K. Kinetics of the adsorption of Pb(II) ions from aqueous solutions by graphene oxide and thiol functionalized graphene oxide. J. Mol. Liq. 2015, 209, 50–57. [Google Scholar] [CrossRef]
- Zhao, G.; Ren, X.; Gao, X.; Tan, X.; Li, J.; Chen, C.; Huang, Y.; Wang, X. Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalton Trans. 2011, 40, 10945–10952. [Google Scholar] [CrossRef]
- Leng, Y.; Guo, W.; Su, S.; Yi, C.; Xing, L. Removal of antimony(III) from aqueous solution by graphene as an adsorbent. Chem. Eng. J. 2012, 212, 406–411. [Google Scholar] [CrossRef]
- Zhao, Y.; Guo, C.; Fang, H.; Jiang, J. Competitive adsorption of Sr(II) and U(VI) on graphene oxide investigated by batch and modeling techniques. J. Mol. Liq. 2016, 222, 263–267. [Google Scholar] [CrossRef]
- Xu, H.; Li, G.; Li, J.; Chen, C.; Ren, X.; Th, I.O. Interaction of Th(IV) with graphene oxides: Batch experiments, XPS investigation, and modeling. J. Mol. Liq. 2016, 213, 58–68. [Google Scholar] [CrossRef]
- Li, Z.; Chen, F.; Yuan, L.; Liu, Y.; Zhao, Y.; Chai, Z.; Shi, W. Uranium(VI) adsorption on graphene oxide nanosheets from aqueous solutions. Chem. Eng. J. 2012, 210, 539–546. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, X.; Wu, Y.; Huang, H.; Zeng, G.; Liu, Y.; Wang, X.; Lin, N.; Qi, Y. Adsorption characteristics and behaviors of graphene oxide for Zn(II) removal from aqueous solution. Appl. Surf. Sci. 2013, 279, 432–440. [Google Scholar] [CrossRef]
- Liu, L.; Luo, X.B.; Ding, L.; Luo, S.L. Application of Nanotechnology in the Removal of Heavy Metal from Water. In Nanomaterials for the Removal of Pollutants and Resource Reutilization; Elsevier: Amsterdam, The Netherlands, 2019; pp. 83–147. [Google Scholar] [CrossRef]
- Jia, Z.; Wang, Y. Covalently crosslinked graphene oxide membranes by esterification reactions for ions separation. J. Mater. Chem. A Mater. 2015, 3, 4405–4412. [Google Scholar] [CrossRef]
- Jia, Z.; Shi, W. Tailoring permeation channels of graphene oxide membranes for precise ion separation. Carbon 2016, 101, 290–295. [Google Scholar] [CrossRef]
- Hung, W.S.; Tsou, C.H.; De Guzman, M.; An, Q.F.; Liu, Y.L.; Zhang, Y.M.; Hu, C.C.; Lee, K.R.; Lai, J.Y. Cross-linking with diamine monomers to prepare composite graphene oxide-framework membranes with varying d-spacing. Chem. Mater. 2014, 26, 2983–2990. [Google Scholar] [CrossRef]
- Hua, D.; Rai, R.K.; Zhang, Y.; Chung, T.S. Aldehyde functionalized graphene oxide frameworks as robust membrane materials for pervaporative alcohol dehydration. Chem. Eng. Sci. 2017, 161, 341–349. [Google Scholar] [CrossRef]
- Wei, Y.; Pastuovic, Z.; Shen, C.; Murphy, T.; Gore, D.B. Ion beam engineered graphene oxide membranes for mono-/di-valent metal ions separation. Carbon 2020, 158, 598–606. [Google Scholar] [CrossRef]
- Lv, X.B.; Xie, R.; Ji, J.Y.; Liu, Z.; Wen, X.Y.; Liu, L.Y.; Hu, J.Q.; Ju, X.J.; Wang, W.; Chu, L.Y. A Novel Strategy to Fabricate Cation-Cross-linked Graphene Oxide Membrane with High Aqueous Stability and High Separation Performance. ACS Appl. Mater. Interfaces 2020, 12, 56269–56280. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Wang, H.; Yang, J.; Chen, X.; Chang, X.; Nan, Y.; He, Z.; Hu, P.; Wu, W.; Liu, T. Amino acid cross-linked graphene oxide membranes for metal ions permeation, insertion and antibacterial properties. Membranes 2020, 10, 296. [Google Scholar] [CrossRef]
- Alkhouzaam, A.; Qiblawey, H. Functional GO-based membranes for water treatment and desalination: Fabrication methods, performance and advantages. A review. Chemosphere 2021, 274, 129853. [Google Scholar] [CrossRef]
- Nan, Q.; Li, P.; Cao, B. Fabrication of positively charged nanofiltration membrane via the layer-by-layer assembly of graphene oxide and polyethylenimine for desalination. Appl. Surf. Sci. 2016, 387, 521–528. [Google Scholar] [CrossRef]
- Shao, F.; Xu, C.; Ji, W.; Dong, H.; Sun, Q.; Yu, L.; Dong, L. Layer-by-layer self-assembly TiO2 and graphene oxide on polyamide reverse osmosis membranes with improved membrane durability. Desalination 2017, 423, 21–29. [Google Scholar] [CrossRef]
- Liu, H.; Pang, X.; Ding, W.; Guo, S.; Ding, Z. Preparation of nano-SiO2 modified graphene oxide and its application in polyacrylate emulsion. Mater. Today Commun. 2021, 27, 102245. [Google Scholar] [CrossRef]
- Chen, L.; Shi, G.; Shen, J.; Peng, B.; Zhang, B.; Wang, Y.; Bian, F.; Wang, J.; Li, D.; Qian, Z.; et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 2017, 550, 380–383. [Google Scholar] [CrossRef]
- Kong, Q.; Preis, S.; Li, L.; Luo, P.; Wei, C.; Li, Z.; Hu, Y.; Wei, C. Relations between metal ion characteristics and adsorption performance of graphene oxide: A comprehensive experimental and theoretical study. Sep. Purif. Technol. 2020, 232, 115956. [Google Scholar] [CrossRef]
- Peng, F.; Luo, T.; Qiu, L.; Yuan, Y. An easy method to synthesize graphene oxide–FeOOH composites and their potential application in water purification. Mater. Res. Bull. 2013, 48, 2180–2185. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, B.; He, S.; Man, R. Preparation of Graphene-Oxide/Polyamidoamine Dendrimers and Their Adsorption Properties toward Some Heavy Metal Ions. J. Chem. Eng. Data 2014, 59, 1719–1726. [Google Scholar] [CrossRef]
- Dong, Z.; Zhang, F.; Wang, D.; Liu, X.; Jin, J. Polydopamine-mediated surface-functionalization of graphene oxide for heavy metal ions removal. J. Solid. State Chem. 2015, 224, 88–93. [Google Scholar] [CrossRef]
- Guo, X.; Du, B.; Wei, Q.; Yang, J.; Hu, L.; Yan, L.; Xu, W. Synthesis of amino functionalized magnetic graphenes composite material and its application to remove Cr(VI), Pb(II), Hg(II), Cd(II) and Ni(II) from contaminated water. J. Hazard. Mater. 2014, 278, 211–220. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Li, S.; Zhao, J.; Li, X.; Liu, Z.; Ma, L.; Zhang, X.; Sun, S.; Zhao, C. Biomimetic assembly of polydopamine-layer on graphene: Mechanisms, versatile 2D and 3D architectures and pollutant disposal. Chem. Eng. J. 2013, 228, 468–481. [Google Scholar] [CrossRef]
- Gao, H.; Sun, Y.; Zhou, J.; Xu, R.; Duan, H. Mussel-inspired synthesis of polydopamine-functionalized graphene hydrogel as reusable adsorbents for water purification. ACS Appl. Mater. Interfaces 2013, 5, 425–432. [Google Scholar] [CrossRef]
- Fang, F.; Kong, L.; Huang, J.; Wu, S.; Zhang, K.; Wang, X.; Sun, B.; Jin, Z.; Wang, J.; Huang, X.J.; et al. Removal of cobalt ions from aqueous solution by an amination graphene oxide nanocomposite. J. Hazard. Mater. 2014, 270, 1–10. [Google Scholar] [CrossRef]
- Yuan, X.; Wang, Y.; Wang, J.; Zhou, C.; Tang, Q.; Rao, X. Calcined graphene/MgAl-layered double hydroxides for enhanced Cr(VI) removal. Chem. Eng. J. 2013, 221, 204–213. [Google Scholar] [CrossRef]
- Jabeen, H.; Chandra, V.; Jung, S.; Lee, J.W.; Kim, K.S.; Kim, S.B. Enhanced Cr(VI) removal using iron nanoparticle decorated graphene. Nanoscale 2011, 3, 3583–3585. [Google Scholar] [CrossRef]
- Ge, H.; Ma, Z. Microwave preparation of triethylenetetramine modified graphene oxide/chitosan composite for adsorption of Cr(VI). Carbohydr. Polym. 2015, 131, 280–287. [Google Scholar] [CrossRef]
- Kyzas, G.Z.; Siafaka, P.I.; Bikiaris, D.N.; Koukaras, E.N.; Froudakis, G.E. Alternative use of cross-linked polyallylamine (known as Sevelamer pharmaceutical compound) as biosorbent. J. Colloid Interface Sci. 2015, 442, 49–59. [Google Scholar] [CrossRef]
- Li, L.; Fan, L.; Sun, M.; Qiu, H.; Li, X.; Duan, H.; Luo, C. Adsorbent for chromium removal based on graphene oxide functionalized with magnetic cyclodextrin–chitosan. Colloids Surf. B Biointerfaces 2013, 107, 76–83. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Liu, F.; Duan, H.; Wang, X.; Li, J.; Wang, Y.; Luo, C. The preparation of novel adsorbent materials with efficient adsorption performance for both chromium and methylene blue. Colloids Surf. B Biointerfaces 2016, 141, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.Y.; Liu, Y.G.; Wang, H.; Zeng, G.M.; Hu, X.J.; Zheng, B.H.; Li, T.T.; Tan, X.F.; Wang, S.F.; Zhang, M.M. Adsorption behavior of Cr(vi) from aqueous solution onto magnetic graphene oxide functionalized with 1,2-diaminocyclohexanetetraacetic acid. RSC Adv. 2015, 5, 45384–45392. [Google Scholar] [CrossRef]
- Hu, X.J.; Liu, Y.G.; Wang, H.; Chen, A.W.; Zeng, G.M.; Liu, S.M.; Guo, Y.M.; Hu, X.; Li, T.T.; Wang, Y.Q.; et al. Removal of Cu(II) ions from aqueous solution using sulfonated magnetic graphene oxide composite. Sep. Purif. Technol. 2013, 108, 189–195. [Google Scholar] [CrossRef]
- Cui, L.; Wang, Y.; Gao, L.; Hu, L.; Yan, L.; Wei, Q.; Du, B. EDTA functionalized magnetic graphene oxide for removal of Pb(II). Hg(II) and Cu(II) in water treatment: Adsorption mechanism and separation property. Chem. Eng. J. 2015, 281, 1–10. [Google Scholar] [CrossRef]
- Algothmi, W.M.; Bandaru, N.M.; Yu, Y.; Shapter, J.G.; Ellis, A.V. Alginate–graphene oxide hybrid gel beads: An efficient copper adsorbent material. J. Colloid Interface Sci. 2013, 397, 32–38. [Google Scholar] [CrossRef]
- Chen, J.H.; Xing, H.T.; Sun, X.; Su, Z.B.; Huang, Y.H.; Weng, W.; Hu, S.R.; Guo, H.X.; Wu, W.B.; He, Y.S. Highly effective removal of Cu(II) by triethylenetetramine-magnetic reduced graphene oxide composite. Appl. Surf. Sci. 2015, 356, 355–363. [Google Scholar] [CrossRef]
- Jiao, C.; Xiong, J.; Tao, J.; Xu, S.; Zhang, D.; Lin, H.; Chen, Y. Sodium alginate/graphene oxide aerogel with enhanced strength–toughness and its heavy metal adsorption study. Int. J. Biol. Macromol. 2016, 83, 133–141. [Google Scholar] [CrossRef]
- Xing, H.T.; Chen, J.H.; Sun, X.; Huang, Y.H.; Su, Z.B.; Hu, S.R.; Weng, W.; Li, S.X.; Guo, H.X.; Wu, W.B.; et al. NH2-rich polymer/graphene oxide use as a novel adsorbent for removal of Cu(II) from aqueous solution. Chem. Eng. J. 2015, 263, 280–289. [Google Scholar] [CrossRef]
- Tan, M.; Liu, X.; Li, W.; Li, H. Enhancing sorption capacities for copper(II) and lead(II) under weakly acidic conditions by l -tryptophan-functionalized graphene oxide. J. Chem. Eng. Data 2015, 60, 1469–1475. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, H.; Yang, K.; Wang, H. Functionalization of 4-aminothiophenol and 3-aminopropyltriethoxysilane with graphene oxide for potential dye and copper removal. J. Hazard. Mater. 2016, 310, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Carpio, I.E.M.; Mangadlao, J.D.; Nguyen, H.N.; Advincula, R.C.; Rodrigues, D.F. Graphene oxide functionalized with ethylenediamine triacetic acid for heavy metal adsorption and anti-microbial applications. Carbon 2014, 77, 289–301. [Google Scholar] [CrossRef]
- Chandra, V.; Kim, K.S. Highly selective adsorption of Hg2+ by a polypyrrole–reduced graphene oxide composite. Chem. Commun. 2011, 47, 3942–3944. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yan, T.; Yan, L.; Guo, X.; Cui, L.; Wei, Q.; Du, B. Preparation of novel cobalt ferrite/chitosan grafted with graphene composite as effective adsorbents for mercury ions. J. Mol. Liq. 2014, 198, 381–387. [Google Scholar] [CrossRef]
- Madadrang, C.J.; Kim, H.Y.; Gao, G.; Wang, N.; Zhu, J.; Feng, H.; Gorring, M.; Kasner, M.L.; Hou, S. Adsorption behavior of EDTA-graphene oxide for Pb (II) removal. ACS Appl. Mater. Interfaces 2012, 4, 1186–1193. [Google Scholar] [CrossRef]
- Zhang, N.; Qiu, H.; Si, Y.; Wang, W.; Gao, J. Fabrication of highly porous biodegradable monoliths strengthened by graphene oxide and their adsorption of metal ions. Carbon 2011, 49, 827–837. [Google Scholar] [CrossRef]
- Yang, Y.; Xie, Y.; Pang, L.; Li, M.; Song, X.; Wen, J.; Zhao, H. Preparation of reduced graphene oxide/poly(acrylamide) nanocomposite and its adsorption of Pb(II) and methylene blue. Langmuir 2013, 29, 10727–10736. [Google Scholar] [CrossRef]
- He, Y.Q.; Zhang, N.N.; Wang, X.D. Adsorption of graphene oxide/chitosan porous materials for metal ions. Chin. Chem. Lett. 2011, 22, 859–862. [Google Scholar] [CrossRef]
- Musico, Y.L.F.; Santos, C.M.; Dalida, M.L.P.; Rodrigues, D.F. Improved removal of lead(II) from water using a polymer-based graphene oxide nanocomposite. J. Mater. Chem. A 2013, 1, 3789–3796. [Google Scholar] [CrossRef]
- Luo, S.; Xu, X.; Zhou, G.; Liu, C.; Tang, Y.; Liu, Y. Amino siloxane oligomer-linked graphene oxide as an efficient adsorbent for removal of Pb(II) from wastewater. J. Hazard. Mater. 2014, 274, 145–155. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, Y.; Qian, X.; Shi, J.; Chen, L.; Li, B.; Niu, J.; Liu, L. One step synthesis of polyacrylamide functionalized graphene and its application in Pb(II) removal. Appl. Surf. Sci. 2014, 316, 308–314. [Google Scholar] [CrossRef]
- Yang, J.; Wu, J.X.; Lü, Q.F.; Lin, T.T. Facile preparation of lignosulfonate-graphene oxide-polyaniline ternary nanocomposite as an effective adsorbent for Pb(II) ions. ACS Sustain. Chem. Eng. 2014, 2, 1203–1211. [Google Scholar] [CrossRef]
- Yang, L.; Li, Z.; Nie, G.; Zhang, Z.; Lu, X.; Wang, C. Fabrication of poly(o-phenylenediamine)/reduced graphene oxide composite nanosheets via microwave heating and their effective adsorption of lead ions. Appl. Surf. Sci. 2014, 307, 601–607. [Google Scholar] [CrossRef]
- Zou, X.; Yin, Y.; Zhao, Y.; Chen, D.; Dong, S. Synthesis of ferriferrous oxide/l-cysteine magnetic microspheres and their adsorption capacity for Pb (II) ions. Mater. Lett. 2015, 150, 59–61. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, L.; Liu, J.; Liu, X.; Chen, C.; Li, G.; Meng, Y. Graphene oxides cross-linked with hyperbranched polyethylenimines: Preparation. characterization and their potential as recyclable and highly efficient adsorption materials for lead(II) ions. Chem. Eng. J. 2016, 285, 698–708. [Google Scholar] [CrossRef]
- Hu, L.; Yang, Z.; Cui, L.; Li, Y.; Ngo, H.H.; Wang, Y.; Wei, Q.; Ma, H.; Yan, L.; Du, B. Fabrication of hyperbranched polyamine functionalized graphene for high-efficiency removal of Pb(II) and methylene blue. Chem. Eng. J. 2016, 287, 545–556. [Google Scholar] [CrossRef]
- Qi, H.; Liu, H.; Gao, Y. Removal of Sr(II) from aqueous solutions using polyacrylamide modified graphene oxide composites. J. Mol. Liq. 2015, 208, 394–401. [Google Scholar] [CrossRef]
- Chen, S.; Hong, J.; Yang, H.; Yang, J. Adsorption of uranium (VI) from aqueous solution using a novel graphene oxide-activated carbon felt composite. J. Environ. Radioact. 2013, 126, 253–258. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, D.; Chen, S.; Wang, X.; Chen, C. One-step fabrication of amino functionalized magnetic graphene oxide composite for uranium(VI) removal. J. Colloid. Interface Sci. 2016, 472, 99–107. [Google Scholar] [CrossRef]
- Yap, P.L.; Nine, M.J.; Hassan, K.; Tung, T.T.; Tran, D.N.H.; Losic, D. Graphene-Based Sorbents for Multipollutants Removal in Water: A Review of Recent Progress. Adv. Funct. Mater. 2021, 31, 2007356. [Google Scholar] [CrossRef]
- Sum, J.Y.; Ahmad, A.L.; Ooi, B.S. Selective separation of heavy metal ions using amine-rich polyamide TFC membrane. J. Ind. Eng. Chem. 2019, 76, 277–287. [Google Scholar] [CrossRef]
- Jin, T.; Easton, C.D.; Yin, H.; de Vries, M.; Hao, X. Triethylenetetramine/hydroxyethyl cellulose-functionalized graphene oxide monoliths for the removal of copper and arsenate ions. Sci. Technol. Adv. Mater. 2018, 19, 381–395. [Google Scholar] [CrossRef]
- Adel, M.; Ahmed, M.A.; Elabiad, M.A.; Mohamed, A.A. Removal of heavy metals and dyes from wastewater using graphene oxide-based nanomaterials: A critical review. Environ. Nanotechnol. Monit. Manag. 2022, 18, 100719. [Google Scholar] [CrossRef]
- Ahmad, H.; Umar, K.; Ali, S.G.; Singh, P.; Islam, S.S.; Khan, H.M. Preconcentration and speciation of arsenic by using a graphene oxide nanoconstruct functionalized with a hyperbranched polyethyleneimine. Microchim. Acta 2018, 185, 290. [Google Scholar] [CrossRef] [PubMed]
- Kislenko, V.N.; Oliynyk, L.P. Complex formation of polyethyleneimine with copper(II), nickel(II), and cobalt(II) ions. J. Polym. Sci. A Polym. Chem. 2002, 40, 914–922. [Google Scholar] [CrossRef]
- Bafrooee, A.A.T.; Moniri, E.; Panahi, H.A.; Miralinaghi, M.; Hasani, A.H. Ethylenediamine functionalized magnetic graphene oxide (Fe3O4@GO-EDA) as an efficient adsorbent in Arsenic(III) decontamination from aqueous solution. Res. Chem. Intermed. 2021, 47, 1397–1428. [Google Scholar] [CrossRef]
- Gerçel, Ö.; Gerçel, H.F. Adsorption of lead(II) ions from aqueous solutions by activated carbon prepared from biomass plant material of Euphorbia rigida. Chem. Eng. J. 2007, 132, 289–297. [Google Scholar] [CrossRef]
- Mahadevi, A.S.; Sastry, G.N. Cation-π interaction: Its role and relevance in chemistry, biology, and material science. Chem. Rev. 2013, 113, 2100–2138. [Google Scholar] [CrossRef]
- Ren, Y.; Yan, N.; Feng, J.; Ma, J.; Wen, Q.; Li, N.; Dong, Q. Adsorption mechanism of copper and lead ions onto graphene nanosheet/δ-MnO2. Mater. Chem. Phys. 2012, 136, 538–544. [Google Scholar] [CrossRef]
- Choi, J.S.; Lingamdinne, L.P.; Yang, J.K.; Chang, Y.Y.; Koduru, J.R. Fabrication of chitosan/graphene oxide-gadolinium nanorods as a novel nanocomposite for arsenic removal from aqueous solutions. J. Mol. Liq. 2020, 320, 114410. [Google Scholar] [CrossRef]
- Lingamdinne, L.P.; Lee, S.; Choi, J.S.; Lebaka, V.R.; Durbaka, V.R.P.; Koduru, J.R. Potential of the magnetic hollow sphere nanocomposite (graphene oxide-gadolinium oxide) for arsenic removal from real field water and antimicrobial applications. J. Hazard. Mater. 2021, 402, 123882. [Google Scholar] [CrossRef] [PubMed]
- Joya-Cárdenas, D.R.; Rodríguez-Caicedo, J.P.; Gallegos-Muñoz, A.; Zanor, G.A.; Caycedo-García, M.S.; Damian-Ascencio, C.E.; Saldaña-Robles, A. Graphene-Based Adsorbents for Arsenic. Fluoride, and Chromium Adsorption: Synthesis Methods Review. Nanomaterials 2022, 12, 3942. [Google Scholar] [CrossRef] [PubMed]
- Lou, M.; Huang, S.; Zhu, X.; Chen, J.; Fang, X.; Li, F. Dual-polymers inserted graphene oxide membranes with enhanced anti-wetting and anti-scaling performance for membrane distillation. J. Memb. Sci. 2024, 697, 122494. [Google Scholar] [CrossRef]
- Kong, Q.; Shi, X.; Ma, W.; Zhang, F.; Yu, T.; Zhao, F.; Zhao, D.; Wei, C. Strategies to improve the adsorption properties of graphene-based adsorbent towards heavy metal ions and their compound pollutants: A review. J. Hazard. Mater. 2021, 415, 125690. [Google Scholar] [CrossRef]
- Gholami, F.; Ghanizadeh, G.; Zinatizadeh, A.A.; Zinadini, S.; Masoumbeigi, H. Arsenic and total dissolved solids removal using antibacterial/antifouling nanofiltration membranes modified by functionalized graphene oxide and copper ferrodioxide. Water Environ. Res. 2023, 95, e10902. [Google Scholar] [CrossRef]
- Janwery, D.; Memon, F.H.; Memon, A.A.; Iqbal, M.; Memon, F.N.; Ali, W.; Choi, K.H.; Thebo, K.H. Lamellar Graphene Oxide-Based Composite Membranes for Efficient Separation of Heavy Metal Ions and Desalination of Water. ACS Omega 2023, 8, 7648–7656. [Google Scholar] [CrossRef]
- Koli, M.; Ranjan, R.; Singh, S.P. Functionalized graphene-based ultrafiltration and thin-film composite nanofiltration membranes for arsenic, chromium, and fluoride removal from simulated groundwater: Mechanism and effect of pH. Process Saf. Environ. Prot. 2023, 179, 603–617. [Google Scholar] [CrossRef]
- Zhang, P.; Gong, J.L.; Zeng, G.M.; Deng, C.H.; Yang, H.C.; Liu, H.Y.; Huan, S.Y. Cross-linking to prepare composite graphene oxide-framework membranes with high-flux for dyes and heavy metal ions removal. Chem. Eng. J. 2017, 322, 657–666. [Google Scholar] [CrossRef]
- Mahmoudian, M.; Kochameshki, M.G.; Hosseinzadeh, M. Modification of graphene oxide by ATRP: A pH-responsive additive in membrane for separation of salts, dyes and heavy metals. J. Environ. Chem. Eng. 2018, 6, 3122–3134. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, S.; Chung, T.S. Nanometric Graphene Oxide Framework Membranes with Enhanced Heavy Metal Removal via Nanofiltration. Environ. Sci. Technol. 2015, 49, 10235–10242. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Zhu, H.; Wang, H.; Rassu, P.; Wang, Z.; Song, P.; Rao, D. Free-standing graphene oxide membrane with tunable channels for efficient water pollution control. J. Hazard. Mater. 2019, 366, 659–668. [Google Scholar] [CrossRef] [PubMed]
- Bandehali, S.; Moghadassi, A.; Parvizian, F.; Zhang, Y.; Hosseini, S.M.; Shen, J. New mixed matrix PEI nanofiltration membrane decorated by glycidyl-POSS functionalized graphene oxide nanoplates with enhanced separation and antifouling behaviour: Heavy metal ions removal. Sep. Purif. Technol. 2020, 242, 116745. [Google Scholar] [CrossRef]
- Lin, H.; Li, Y.; Zhu, J. Cross-linked GO membranes assembled with GO nanosheets of differently sized lateral dimensions for organic dye and chromium separation. J. Memb. Sci. 2020, 598, 117789. [Google Scholar] [CrossRef]
- Abdi, G.; Alizadeh, A.; Zinadini, S.; Moradi, G. Removal of dye and heavy metal ion using a novel synthetic polyethersulfone nanofiltration membrane modified by magnetic graphene oxide/metformin hybrid. J. Memb. Sci. 2018, 552, 326–335. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, K.; Li, Z. Graphene oxide composite membranes cross-linked with urea for enhanced desalting properties. J. Memb. Sci. 2018, 563, 718–725. [Google Scholar] [CrossRef]
- Ghaffar, A.; Zhang, L.; Zhu, X.; Chen, B. Scalable graphene oxide membranes with tunable water channels and stability for ion rejection. Environ. Sci. Nano 2019, 6, 904–915. [Google Scholar] [CrossRef]
- Zhang, N.; Qi, W.; Huang, L.; Jiang, E.; Bao, J.; Zhang, X.; An, B.; He, G. Review on structural control and modification of graphene oxide-based membranes in water treatment: From separation performance to robust operation. Chin. J. Chem. Eng. 2019, 27, 1348–1360. [Google Scholar] [CrossRef]
- Sun, J.; Hu, C.; Liu, Z.; Liu, H.; Qu, J. Surface charge and hydrophilicity improvement of graphene membranes via modification of pore surface oxygen-containing groups to enhance permeability and selectivity. Carbon 2019, 145, 140–148. [Google Scholar] [CrossRef]
- An, Y.C.; Gao, X.X.; Jiang, W.L.; Han, J.L.; Ye, Y.; Chen, T.M.; Ren, R.Y.; Zhang, J.H.; Liang, B.; Li, Z.L.; et al. A critical review on graphene oxide membrane for industrial wastewater treatment. Environ. Res. 2023, 223, 115409. [Google Scholar] [CrossRef]
- Cha-Umpong, W.; Hosseini, E.; Razmjou, A.; Zakertabrizi, M.; Korayem, A.H.; Chen, V. New molecular understanding of hydrated ion trapping mechanism during thermally-driven desalination by pervaporation using GO membrane. J. Memb. Sci. 2020, 598, 117687. [Google Scholar] [CrossRef]
- Wang, P.; Jia, Y.X.; Yan, R.; Wang, M. Graphene oxide proton permselective membrane for electrodialysis-based waste acid reclamation: Simulation and validation. J. Memb. Sci. 2021, 640, 119853. [Google Scholar] [CrossRef]
- Andreeva, D.V.; Trushin, M.; Nikitina, A.; Costa, M.C.F.; Cherepanov, P.V.; Holwill, M.; Chen, S.; Yang, K.; Chee, S.W.; Mirsaidov, U.; et al. Two-dimensional adaptive membranes with programmable water and ionic channels. Nat. Nanotechnol. 2021, 16, 174–180. [Google Scholar] [CrossRef]
- Galama, A.H.; Post, J.W.; Stuart, M.A.C.; Biesheuvel, P.M. Validity of the Boltzmann equation to describe Donnan equilibrium at the membrane-solution interface. J. Memb. Sci. 2013, 442, 131–139. [Google Scholar] [CrossRef]
- Verma, B.; Balomajumder, C.; Sabapathy, M.; Gumfekar, S.P. Pressure-driven membrane process: A review of advanced technique for heavy metals remediation. Processes 2021, 9, 752. [Google Scholar] [CrossRef]
- Su, P.; Wang, F.; Li, Z.; Tang, C.Y.; Li, W. Graphene oxide membranes: Controlling their transport pathways. J. Mater. Chem. A Mater. 2020, 8, 15319–15340. [Google Scholar] [CrossRef]
- Yang, T.; Lin, H.; Loh, K.P.; Jia, B. Fundamental Transport Mechanisms and Advancements of Graphene Oxide Membranes for Molecular Separation. Chem. Mater. 2019, 31, 1829–1846. [Google Scholar] [CrossRef]
- Saavedra, A.; Valdés, H.; Velásquez, J.; Hernández, S. Comparative Analysis of Donnan Steric Partitioning Pore Model and Dielectric Exclusion Applied to the Fractionation of Aqueous Saline Solutions through Nanofiltration. ChemEngineering 2024, 8, 39. [Google Scholar] [CrossRef]
- Quintano, V.; Kovtun, A.; Biscarini, F.; Liscio, F.; Liscio, A.; Palermo, V. Long-range selective transport of anions and cations in graphene oxide membranes, causing selective crystallization on the macroscale. Nanoscale Adv. 2021, 3, 353–358. [Google Scholar] [CrossRef]
- Zhang, W.; Li, J.S.; Chen, S.X.; Huang, K.; Luo, L.J.; Tong, K.W.; Guo, J.H.; Li, S.C.; Zhang, R.; Dai, Z.J. Effect of layer charge density and cation concentration on sorption behaviors of heavy metal ions in the interlayer and nanopore of montmorillonite: A molecular dynamics simulation. Colloids Surf. A Physicochem. Eng. Asp. 2023, 657, 130553. [Google Scholar] [CrossRef]
- Niu, Y.; Yu, W.; Yang, S.; Wan, Q. Understanding the relationship between pore size, surface charge density, and Cu2+ adsorption in mesoporous silica. Sci. Rep. 2024, 14, 13521. [Google Scholar] [CrossRef]
- Kalaitzidou, K.; Nikoletopoulos, A.A.; Tsiftsakis, N.; Pinakidou, F.; Mitrakas, M. Adsorption of Se(IV) and Se(VI) species by iron oxy-hydroxides: Effect of positive surface charge density. Sci. Total Environ. 2019, 687, 1197–1206. [Google Scholar] [CrossRef]
- Osorio, S.C.; Biesheuvel, P.M.; Dykstra, J.E.; Virga, E. Nanofiltration of complex mixtures: The effect of the adsorption of divalent ions on membrane retention. Desalination 2022, 527, 115552. [Google Scholar] [CrossRef]
- Li, K.; Tao, Y.; Li, Z.; Sha, J.; Chen, Y. Selective ion-permeation through strained and charged graphene membranes. Nanotechnology 2017, 29, 035402. [Google Scholar] [CrossRef] [PubMed]
- Dutta, M.; Bairoju, S.; De, S. Simplistic determination of the membrane pore charge density in presence of mixture of electrolytes. J. Memb. Sci. 2023, 675, 121577. [Google Scholar] [CrossRef]
- Hagmeyer, G.; Gimbel, R. Modelling the rejection of nanofiltration membranes using zeta potential measurements. Sep. Purif. Technol. 1999, 15, 19–30. [Google Scholar] [CrossRef]
- Velusamy, S.; Roy, A.; Sundaram, S.; Mallick, T.K. A Review on Heavy Metal Ions and Containing Dyes Removal Through Graphene Oxide-Based Adsorption Strategies for Textile Wastewater Treatment. Chem. Rec. 2021, 21, 1570–1610. [Google Scholar] [CrossRef]
- Li, X.; Zhou, H.; Wu, W.; Wei, S.; Xu, Y.; Kuang, Y. Studies of heavy metal ion adsorption on Chitosan/Sulfydryl-functionalized graphene oxide composites. J. Colloid. Interface Sci. 2015, 448, 389–397. [Google Scholar] [CrossRef]
- Sahraei, R.; Hemmati, K.; Ghaemy, M. Adsorptive removal of toxic metals and cationic dyes by magnetic adsorbent based on functionalized graphene oxide from water. RSC Adv. 2016, 6, 72487–72499. [Google Scholar] [CrossRef]
- Zhang, Z.; Gao, T.; Si, S.; Liu, Q.; Wu, Y.; Zhou, G. One-pot preparation of P(TA-TEPA)-PAM-RGO ternary composite for high efficient Cr(VI) removal from aqueous solution. Chem. Eng. J. 2018, 343, 207–216. [Google Scholar] [CrossRef]
- Qalyoubi, L.; Al-Othman, A.; Al-Asheh, S. Recent progress and challenges on adsorptive membranes for the removal of pollutants from wastewater. Part. I Fundam. Classif. Membr. Case Stud. Chem. Environ. Eng. 2021, 3, 100086. [Google Scholar] [CrossRef]
Adsorbed Heavy Metal Ions | Type of Sorbent | qmax (mg g−1) | Operating Conditions | Adsorption Isotherm Models | Reference |
---|---|---|---|---|---|
As(III) | GO | 1432.80 | pH N.A., T N.A. | Langmuir | [34] |
0.02 | pH 7, T 298 K | Langmuir | [35] | ||
Au(III) | GO | 149.20 | pH N.A., T 298 K | Langmuir | [36] |
Cd(II) | GO | 83.80 | pH 5.7, T 305 K | Langmuir | [37] |
530.00 | pH 5.0, T 298 K | Langmuir | [30] | ||
Ze-nWRT | 270.00 | pH 4.0, T 307 K | Langmuir | [38] | |
ZIF-8-EDA | 294.11 | pH 6.0, T N.A. | Langmuir | [31] | |
Co(II) | GO | 21.28 | pH 5.5, T 298 K | Freundlich | [39] |
LL-NaOH | 25.40 | pH 6.0, T 301 K | Langmuir | [40] | |
Cr(VI) | GO | 1.22 | pH 4.0, T N.A. | Langmuir | [41] |
Cu(II) | GO | 46.60 | pH 5.0, T N.A. | Langmuir | [42] |
72.60 | pH 5.7, T 303 K | Langmuir | [37] | ||
294.00 | pH 5.0, T 298 K | Langmuir | [30] | ||
117.50 | pH 5.3, T N.A. | Freundlich | [43] | ||
LC-Al2O3 | 15.69 | pH 5.0, T 298 K | Langmuir | [44] | |
LVB | 23.18 | pH 5.0, T 298 K | Langmuir | [45] | |
Eu(III) | GO | 175.44 | pH 6.0, T 298 K | Langmuir | [46] |
TNRs | 115.30 | pH 5.0, T N.A. | Langmuir | [47] | |
Hg(II) | GO | 8.65 | pH N.A., T 298 K | Intraparticle diffusion | [48] |
Mn(II) | GO | 32.00 | pH 5.0, T 298 K | Langmuir | [49] |
Ni(II) | GO | 62.30 | pH 5.7, T 304 K | Langmuir | [37] |
38.61 | pH 6.0, T 298 K | Langmuir | [50] | ||
Pb(II) | GO | 250.00 | pH 6.0, T 298 K | N.A. | [51] |
842.00 | pH 6.0, T 293 K | Langmuir | [52] | ||
1119.00 | pH 5.0, T 298 K | Langmuir | [30] | ||
Sb(III) | GO | 8.06 | pH 11.0, T 303 K | Freundlich | [53] |
Sr(II) | GO | 5.93 | pH 3.0, T 293 K | Langmuir | [54] |
Th(IV) | GO | 58.59 | pH 1.4, T 293 K | Langmuir | [55] |
U(VI) | GO | 299.00 | pH 4.0, T 298 K | Langmuir | [56] |
5.12 | pH 3.0, T 293 K | Langmuir | [54] | ||
TNRs | 282.50 | pH 5.0, T N.A. | Langmuir | [47] | |
Zn(II) | GO | 246.00 | pH 7.0, T 293 K | Langmuir | [57] |
345.00 | pH 5.0, T 298 K | Langmuir | [30] |
Heavy Metal Ion | Crosslinker (Classification) | Covalent Linker (Classification) | Rejection (%) | Operating Condition | Reference |
---|---|---|---|---|---|
As(III) | TETA (N) | CuFe2O4 (M) | 81.2% | 4.0 bar | [127] |
QT (O) | - | 67.0% | 1.0 bar | [128] | |
As(V) | TETA (N) | CuFe2O4 (M) | 87.9% | 4.0 bar | [127] |
H2SO4 (O) | - | 79.0% | 2.0 bar | [129] | |
Cd(II) | QT (O) | - | 75.0% | 1.0 bar | [128] |
IPDI (N) | - | 52.8% | 1.0 bar | [130] | |
PMMA (O) | - | 68.0% | 5.0 bar | [131] | |
EDA (N) | PEI (N) | 90.5% | 1.0 bar | [132] | |
CR (N, O) | Ca2+ (M) | 99.5% | 5.0 bar | [133] | |
Cr(II) | POSS (M) | PERI (N) | 80.0% | 4.5 bar | [134] |
IPDI (N) | - | 71.1% | 1.0 bar | [130] | |
Cr(VI) | QT (O) | - | 70.0% | 1.0 bar | [128] |
H2SO4 (O) | - | 37.5% | 2.0 bar | [129] | |
EDA (N) | - | 100.0% | 21.0 bar | [135] | |
Cu(II) | MeF (N) | Fe3O4 (M) | 92.0% | 4.0 bar | [136] |
POSS (M) | PERI (N) | 55.0% | 4.5 bar | [134] | |
IPDI (N) | - | 46.2% | 1.0 bar | [130] | |
UR (N, O) | - | 81.0% | 1.0 bar | [137] | |
EDA (N) | - | 59.0% | 1.0 bar | [137] | |
PMMA (O) | - | 58.0% | 5.0 bar | [131] | |
K+ (M) | - | 97.5% | 1.0 bar | [138] | |
Ba2+ (M) | - | 96.4% | 1.0 bar | ||
Ca2+ (M) | - | 96.2% | 1.0 bar | ||
Mg2+ (M) | - | 95.7% | 1.0 bar | ||
CR (N, O) | Ca2+ (M) | 99.0% | 5.0 bar | [133] | |
Ni(II) | PMMA (O) | - | 73.0% | 5.0 bar | [131] |
EDA (N) | PEI (N) | 96.0% | 1.0 bar | [132] | |
K+ (M) | - | 94.3% | 1.0 bar | [138] | |
Ba2+ (M) | - | 93.4% | 1.0 bar | ||
Ca2+ (M) | - | 93.3% | 1.0 bar | ||
Mg2+ (M) | - | 92.4% | 1.0 bar | ||
CR (N, O) | Ca2+ (M) | 98.0% | 5.0 bar | [133] | |
Pb(II) | QT (O) | - | 74.0% | 1.0 bar | [128] |
POSS (M) | PERI (N) | 78.0% | 4.5 bar | [134] | |
IPDI (N) | - | 66.4% | 1.0 bar | [130] | |
EDA (N) | PEI (N) | 95.7% | 1.0 bar | [132] | |
K+ (M) | - | 92.2% | 1.0 bar | [138] | |
Ba2+ (M) | - | 91.9% | 1.0 bar | ||
Ca2+ (M) | - | 92.5% | 1.0 bar | ||
Mg2+ (M) | - | 91.2% | 1.0 bar | ||
CR (N, O) | Ca2+ (M) | 98.0% | 5.0 bar | [133] | |
Zn(II) | PMMA (O) | - | 79.0% | 5.0 bar | [131] |
EDA (N) | PEI (N) | 97.4% | 1.0 bar | [132] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayala-Claveria, M.; Carlesi, C.; Puig, J.; Olguin, G. The Impact of Adsorption Property Modification by Crosslinkers on Graphene Oxide Membrane Separation Performance. Processes 2024, 12, 2320. https://doi.org/10.3390/pr12112320
Ayala-Claveria M, Carlesi C, Puig J, Olguin G. The Impact of Adsorption Property Modification by Crosslinkers on Graphene Oxide Membrane Separation Performance. Processes. 2024; 12(11):2320. https://doi.org/10.3390/pr12112320
Chicago/Turabian StyleAyala-Claveria, Martin, Carlos Carlesi, Julieta Puig, and Gianni Olguin. 2024. "The Impact of Adsorption Property Modification by Crosslinkers on Graphene Oxide Membrane Separation Performance" Processes 12, no. 11: 2320. https://doi.org/10.3390/pr12112320
APA StyleAyala-Claveria, M., Carlesi, C., Puig, J., & Olguin, G. (2024). The Impact of Adsorption Property Modification by Crosslinkers on Graphene Oxide Membrane Separation Performance. Processes, 12(11), 2320. https://doi.org/10.3390/pr12112320