Titanium-Containing Coagulants in Wastewater Treatment Processes in the Alcohol Industry
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
- Aluminum sulfate—88 mg (MeXOY)/L;
- Aluminum oxychloride—80 mg (MeXOY)/L;
- Iron chloride—200 mg (MeXOY)/L.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Altech Environmental Consulting Ltd. A Review of Wastewater Management & Best Practices for Dischargers in the Food Processing Sector; Ontario Centre for Environmental Technology Advancement: North York, ON, Canada, 2005. [Google Scholar]
- Simate, G.S.; Cluett, J.; Iyuke, S.E.; Musapatika, E.T.; Ndlovu, S.; Walubita, L.F.; Alvarez, A.E. The treatment of brewery wastewater for reuse: State of the art. Desalination 2011, 273, 235–247. [Google Scholar] [CrossRef]
- Farizoglu, B.; Uzuner, S. The investigation of dairy industry wastewater treatment in a biological high performance membrane system. Biochem. Eng. J. 2011, 57, 46–54. [Google Scholar] [CrossRef]
- Falletti, L.; Conte, L.; Zaggia, A.; Battistini, T.; Garosi, D. Food Industry Wastewater Treatment Plantbased on Flotation and MBBR. Modern Environ. Sci. Eng. 2015, 1, 94–98. [Google Scholar] [CrossRef]
- Moussas, P.; Tzoupanos, N.; Zouboulis, A. Advances in coagulation/flocculation field: Al- and Fe-based composite coagulation reagents. Desalin. Water Treat. 2011, 33, 140–146. [Google Scholar] [CrossRef]
- Han, S.w.; Kang, L.S. Comparison of Al(III) and Fe(III) Coagulants for Improving Coagulation Effectiveness in Water Treatment June. J. Korean Soc. Environ. Eng. 2015, 37, 325–331. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, Y.; Gao, B.; Zhao, Q. Enhanced algae removal by Ti-based coagulant: Comparison with conventional Al- and Fe-based coagulants. Environ. Sci. Pollut. Res. 2018, 25, 13147–13158. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, B.; Cao, B.; Yang, Z.; Yue, Q.; Shon, H.; Kim, J.-H. Comparison of coagulation behavior and floc characteristics of titanium tetrachloride (TiCl4) and polyaluminum chloride (PACl) with surface water treatment. Chem. Eng. J. 2011, 166, 544–550. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, B.; Zhang, G.; Qi, Q.; Wang, Y.; Phuntsho, S.; Kim, J.-H.; Shon, H.; Yue, Q.; Li, Q. Coagulation and sludge recovery using titanium tetrachloride as coagulant for real water treatment: A comparison against traditional aluminum and iron salts. Sep. Purif. Technol. 2014, 130, 19–27. [Google Scholar] [CrossRef]
- Zhao, Y.; Gao, B.; Zhang, G.; Phuntsho, S.; Wang, Y.; Yue, Q.; Li, Q.; Shon, H. Comparative study of floc characteristics with titanium tetrachloride against conventional coagulants: Effect of coagulant dose, solution pH, shear force and break-up period. Chem. Eng. J. 2013, 233, 70–79. [Google Scholar] [CrossRef]
- Zhao, Y.; Shon, H.; Phuntsho, S.; Gao, B. Removal of natural organic matter by titanium tetrachloride: The effect of total hardness and ionic strength. J. Environ. Manag. 2014, 134, 20–29. [Google Scholar] [CrossRef]
- Kuzin, E.N.; Kruchinina, N.E. Titanium-containing coagulants for found rywaste water treatment. CIS Iron Steel Rev. 2020, 20, 66–69. [Google Scholar] [CrossRef]
- Chernoberezhsky, J.M.; Minejev, D.J.; Dyagileva, A.B.; Lorenzson, A.V.; Belova, J.V. Isolation of sulphate lignin from aqueous solutions by oxo-titanium sulphate, aluminium sulphate and composite coagulant on their basis. J. Appl. Chem. (Zhurnal Prikladnoy Khimii) 2002, 75, 1730–1732. [Google Scholar]
- Mamchenko, A.V.; Gerasimenko, N.G.; Deshko, I.I.; Pakhar’, T.A. The investigation of the efficiency of coagulants based on titanium when purifying water. J. Water Chem. Technol. 2010, 32, 167–175. [Google Scholar] [CrossRef]
- Chekli, L.; Eripret, C.; Park, S.; Tabatabai, S.; Vronska, O.; Tamburic, B.; Kim, J.; Shon, H. Coagulation performance and floc characteristics of polytitanium tetrachloride (PTC) compared with titanium tetrachloride (TiCl4) and ferric chloride (FeCl3) in algal turbid water. Sep. Purif. Technol. 2017, 175, 99–106. [Google Scholar] [CrossRef] [Green Version]
- Galloux, J.; Chekli, L.; Phuntsho, S.; Tijing, L.; Jeong, S.; Zhao, Y.; Gao, B.; Park, S.; Shon, H. Coagulation performance and floc characteristics of polytitanium tetrachloride and titanium tetrachloride compared with ferric chloride for coal mining wastewater treatment. Sep. Purif. Technol. 2015, 152, 94–100. [Google Scholar] [CrossRef]
- Aziz, H.A.; Rosli, M.Y.B.; Amr, S.S.A.; Hussain, S. Potential use of titanium tetrachloride as coagulant to treat semi aerobic leachate treatment. Aust. J. Basic Appl. Sci. 2015, 9, 37–44. [Google Scholar]
- Jeon, K.-J.; Ahn, J.-H. Evaluation of titanium tetrachloride and polytitanium tetrachloride to remove phosphorus from wastewater. Sep. Purif. Technol. 2018, 197, 197–201. [Google Scholar] [CrossRef]
- Pushpalatha, T.N.; Lokeshappa, B. The Use of Alum, Ferric Chloride and Titanium tetrachloride as Coagulants in Treating Landfill Leachate. Int. J.Sci. Eng. Technol. Res. (IJSETR) 2015, 4, 2093–2096. [Google Scholar]
- Mashia, M.; Taguchi, Y.; Ohizumi, M.; Koyanagi, S.; Harigai, T. Removal of phosphates from wastewater by titanium(IV) sulfate with precipitation method. Jpn. J. Water Pollut. Res. 1985, 8, 668–675. [Google Scholar] [CrossRef]
- Hussain, S.; Awad, J.; Sarkar, B.; Chow, C.W.; Duan, J.; van Leeuwen, J. Coagulation of dissolved organic matter in surface water by novel titanium (III) chloride: Mechanistic surface chemical and spectroscopic characterisation. Sep. Purif. Technol. 2019, 213, 213–223. [Google Scholar] [CrossRef]
- Kuzin, E.N.; Krutchinina, N.E. Purification of circulating and waste water in metallurgical industry using complex coagulants. CIS Iron Steel Rev. 2019, 18, 72–75. [Google Scholar] [CrossRef]
- Shon, H.K.; Vigneswaran, S.; Kandasamy, J.; Zareie, M.H.; Kim, J.B.; Cho, D.L. Preparation and Characterization of Titanium Dioxide (TiO2) from Sludge produced by TiCl4 Flocculation with FeCl3, Al2(SO4)3 and Ca(OH)2 Coagulant Aids in Wastewater. Sep. Sci. Technol. 2009, 44, 1525–1543. [Google Scholar] [CrossRef] [Green Version]
- ISO 15705:2002. Water Quality—Determination of the Chemical Oxygen Demand Index (ST-COD)-SMALL-Scale Sealed-Tube Method; ISO: Geneva, Switzerland, 2002. [Google Scholar]
- American Public Health Association. Standard Methods for the Examination of Waters and Wastewater, 21th ed.; American Public Health Association: Washington, DC, USA, 2005; ISBN 0-87553-047-8. [Google Scholar]
- APHA-AWWA-WPFC. Métodos Normalizados Para el Análisis de Agua Potable y Aguas Residuales, 17th ed.; Editorial Díaz de Santos: Madrid, Spain, 1992. [Google Scholar]
- Zeynalov, O.A.; Kombarova, S.P.; Bagrov, D.V. On the effect of metal oxide nanoparticles on the physiology of living organisms. Rev. Clin. Pharmacol. Drug Ther. 2016, 14, 24–33. [Google Scholar] [CrossRef]
- Shabanova, N.A.; Popov, V.V.; Sarkisov, P.D. The Chemistry and Technology of Nanodispersed Oxides; Learner’s Guide; IKTs “Akademkniga”: Moscow, Russia, 2007; p. 309. [Google Scholar]
- Draginskiy, V.L.; Alekseeva, L.P.; Getmantsev, S.V. Natural Water Treatment Methods and Coagulation; Nauchnoeizdatelstvo: Moscow, Russia, 2005; p. 576. [Google Scholar]
- Wang, T.-H.; Navarrete-López, A.M.; Li, S.; Dixon, D.A.; Gole, J.L. Hydrolysis of TiCl4: Initial Steps in the Production of TiO2. J. Phys. Chem. A 2010, 114, 7561–7570. [Google Scholar] [CrossRef] [PubMed]
- Kuzin, E.N.; Kruchinina, N.E.; Gromovykh, P.S.; Tyaglova, Y.V. Coagulants in the Processes of Waste Water Treatment in Dairy Complex Industry. Chem. Sustain. Dev. 2020, 28, 388–393. [Google Scholar]
- Kolesnikov, A.V.; Savel’ev, D.S.; Kolesnikov, V.A.; Davydkova, T.V. Electroflotation extraction of highly disperse titanium dioxide TiO2 from water solutions of electrolytes. Glass Ceram. 2018, 75, 237–241. [Google Scholar] [CrossRef]
- Meshalkin, V.P.; Kolesnikov, A.V.; Saveliev, D.S. Analysis of physicochemical efficiency of electroflotation process for removing titanium chloride hydrolysis products from the anthropogenic effluents. Deport Acad. Sci. 2019, 486, 680–684. [Google Scholar]
- Gan, Y.; Li, J.; Zhang, L.; Wu, B.; Huang, W.; Li, H.; Zhang, S. Potential of titanium coagulants for water and wastewater treatment: Current status and future perspectives. Chem. Eng. J. 2021, 406, 126837. [Google Scholar] [CrossRef]
Indicator | Unit of Measurement | Alcohol Industry Wastewater |
---|---|---|
pH | 4.5 | |
COD | mg(O)/L | 6120 |
BOD 5 | mg(O)/L | 5480 |
Suspended solids | mg/L | 2100 |
Chromaticity | degrees | 5600 |
Fats | mg/L | 1.2 |
Zeta potential | mV | −5 |
Particle size | 130 nm, 74 μm |
Initial Concentration | Aluminiumsulfate Coagulant + TiO2 | Aluminiumsulfate Coagulant | |||
---|---|---|---|---|---|
Concentration after Treatment | Efficiency of Treatment, % | Concentration after Treatment | Efficiency of Treatment, % | ||
pH | 4.5 | - | - | - | - |
COD, mg(O)/L | 6120 | 3543.5 | 42.1 | 3965.8 | 35.2 |
BOD 5 mg(O)/L | 5480 | 3112.6 | 43.2 | 3485.3 | 36.4 |
Suspend solids mg/L | 2100 | 92.4 | 95.6 | 260.4 | 87.6 |
Color | 5600 | 285.6 | 94.9 | 761.6 | 86.4 |
Fat, mg/L | 1.2 | 0.2 | 87.2 | 0.3 | 72.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuzin, E.; Averina, Y.; Kurbatov, A.; Kruchinina, N.; Boldyrev, V. Titanium-Containing Coagulants in Wastewater Treatment Processes in the Alcohol Industry. Processes 2022, 10, 440. https://doi.org/10.3390/pr10030440
Kuzin E, Averina Y, Kurbatov A, Kruchinina N, Boldyrev V. Titanium-Containing Coagulants in Wastewater Treatment Processes in the Alcohol Industry. Processes. 2022; 10(3):440. https://doi.org/10.3390/pr10030440
Chicago/Turabian StyleKuzin, Evgenii, Yulia Averina, Andrei Kurbatov, Natalia Kruchinina, and Veniamin Boldyrev. 2022. "Titanium-Containing Coagulants in Wastewater Treatment Processes in the Alcohol Industry" Processes 10, no. 3: 440. https://doi.org/10.3390/pr10030440